
                                                                                                                                    

Representations and invariant equations of E(3} 
Mayer Humi 
Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts 01609 

(Received 5 May 1987; accepted for publication 5 August 1987) 

Using methods analogous to those introduced by Gel'fand et al. [Representations o/the 
Rotation and Lorentz Groups and Their Applications (Pergamon, New York, 1963)] for the 
Lorentz group the matrix elements for the representations of the Lie algebra of the Euclidean 
group in three dimensions E(3) are explicitly derived. These results are then used to construct 
invariant equations with respect to this group and to show, in particular, that the 
nonrelativistic analog to the Dirac equation is not unique. 

I. INTRODUCTION 

The Euclidean group in three dimensions E(3) plays in 
classical mechanics the same role that the Lorentz group 
plays in relativistic mechanics. I

-
3 Moreover, from a math­

ematical point of view, the Lie algebras of these two groups 
contain six generators Jj> Kj> 1 = 1,2,3, whose commuta­
tion relations (CR) for the Lorentz algebra are 

[J;.J.;] = EijkJk' (1.1) 

[J;,Kj] = EijkKk' 

[K;,Kj] = -EijJk' 

( 1.2) 

(1.3 ) 

The CR of the Lie algebra ofE(3) differ from those above 
only in the third set [Eq. (1.3)], which is replaced by 

[Kj>Kj ] = O. (1.4) 

[For more details regarding the generators of E ( 3) and the 
notations used for the rest of this paper see the Appendix.] 

In view of these similarities it is surprising to find that 
the representations of these algebras and their respective in­
variant equations were treated rather differently in the liter­
ature. 

Thus while complete and explicit expressions for the 
matrix elements of the irreducible representations of the 
Lorentz algebra and its invariant equations exist in the liter­
ature4 the same is not true for E( 3). As for this latter algebra 
the "general form" of the matrix elements for the finite (in­
decomposable) irreducible representations were given 
(somewhat) indirectly in Ref. 5. What has been left open, 
however, was the computation of the interlocking constants 
between the various irreducible representations of 0 ( 3 ) that 
appear in the decomposition of an E(3) representation 
(especially when can these interlocking constants be non­
zero). These constants can be computed by ad hoc methods 
(as suggested in Ref. 5) only in some very simple cases. 

In view ofthese circumstances it is our first objective in 
this paper (Sec. II) to derive explicitly, the expressions for 
the matrix elements for some of the irreducible representa­
tions ofE ( 3) (both finite and infinite dimensional) by meth­
ods that are completely analogous to those used by Gel'fand 
et al. for the Lorentz group.4 

In Sec. III we present a systematic approach to the con­
struction of first-order invariant equations with respect to 
E(3) subject to the constraint that each component of the 
wave function satisfies the Galilean energy momentum rela-

tion 2mE = m 2 + p2 (Refs. 6-8). As a result we show that 
the nonrelativistic analog to the Dirac equation is not unique 
and that there is no nonrelativistic analog to the Majorana 
equation.9 

II. REPRESENTATIONS OF E(3) 

To construct the representations of E ( 3) we first ob­
serve that Gel'fand et al.4 already found the most general 
solution of the CR ( 1.1 ), (1.2). Adopting the notations used 
by Gel'fand et al. we can write this solution as follows: 

H 3S[m = mS[m, 

H+S[m = a~+ IS[m+I' 

H-S[m =a~S[m-I' 

F3S[m = I {Cl'd(/,m)sr_l.m -A l' 
T 

(2.1 ) 

(2.2) 

(2.3) 

xmstm - C~ I d(/ + l,m)sr+ I.m}, 
(2.4) 

- A I'g2(/,m)Stm+ I 

+ C~ Ig3(i,m)Sr+ I.m+ I}' (2.5) 

F-S[m = I {- Cl'gl(l, - m)Sr-l.m-1 
T 

-A I'g2(1, - m)stm-I 

- C~ Ig3(1, - m)sr+ I.m-J}' (2.6) 

where 

a~ = [(I + m) (1- m + 1)] 112, 

d(l,m) = [/2 _ m 2]1/2, 

g I (I,m) = [(I - m) (l - m - 1)] 112, 

g2(1,m) = [(I-m)(I+m+ 1)]112, 

g3(1,m) = [(I + m + 1) (I + m + 2)] 112. 

It is therefore clear that the only step one must take in order 
to construct the representations ofE(3), rather than 0(3,1) 
is to subject this general solution to the constraints given by 
Eqs. (1.4) rather than those of Eqs. (1.3). To carry this 
program out we begin by constructing two special types of 
representations that are important from a physical point of 
view. There are the following. 
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( 1) Representations ofE( 3) whose decomposition with 
respect to 0 (3) contains each irreducible representation of 
0(3) at most once. 

(2) Representations of E (3) in whose decomposition 
with respect to 0 (3) only one irreducible representation of 
this group appears (several times). 

Case 1: Since each representation of 0(3 ) appears only 
once in the decomposition we can drop the degeneracy index 
7. 

Furthermore, we observe that if the representation is 
irreducible and 10, I, are, respectively, the lowest and highest 
I's that appear in the decomposition then each 10 + n, 
n = 1,2, .... ,/, - 10 must also appear in the decomposition. In 
fact, if some representation 10 + n is missing then we can 
infer [since the generators of the algebra, according to 
(2.1)-(2.5), can connect states of 10 + n - 1 only with those 
of 10 + nand (/0 + n - 2) ] that the representations 
10 , ••• ,10 + n - 1 form an invariant subspace in contradiction 
to the assumption that the representation is irreducible. 

Thus an irreducible representation of E (3) that belongs 
to this class is a "ladder representation" which is either finite 
or infinite (presently we show that the ladder must be infi­
nite). 

To construct these irreducible representations we apply 
any of the constraints [F +' F3] = [F +, F _] = [F_, 
F3 ] = 0 to Eqs. (2.4)-(2.6) under the present assumptions 
and obtain the following equations: 

[AI (/ + 1) - A I _ d/- 1)] CI = 0, (2.7) 

(2.8) 

[2/-1]CT- [2/+3]CT+l -AT=O. (2.9) 

To solve these equations we first observe [using Eqs. (2.4)­
(2.6)] that for an irreducible representation CI +, = 0, only 
if I = I, (if such a finite I, exists) and similarly CI = 0 only if 
I = 10 , Hence for other I 's that appear in the decomposition 
of the representation with respect to 0(3), both CI,CI+ 1 are 
nonzero and we infer from Eqs. (2.7) and (2.8) that 

Al =AI _, (/ -1}/(/ + 1), 

which leads to 

(2.10) 

whereA I is an arbitrary constant. Furthermore, to complete 
the anal~gy with the Lorentz group we rewrite (2.10) in the 
form 

Al =ilo£/I(/+ 1). (2.11) 

To evaluate the C/s we now multiply Eq. (2.9) by (21 + 1) 
and sum the resulting equations for I = 10 , ••. ,1. This yields, 
after some algebra, 

C t = L 2 [ (/2 - n ) / (41 2 - 1) 12 ] . ( 2.12 ) 

We infer from this relation that contrary to the Lorentz 
group a ladder representation of E(.3) must be an infinite­
dimensional representation. In fact (2.12) implies that ei­
ther CI = 0 for alII (the representation is then reducible) or 
CI ;60 for all 10 + n, n = 1,2, .... We thus proved the follow­
ing. 

Proposition 1: All irreducible: ladder representations of 
E (3) are of infinite dimension (except the trivial one-dimen­
sional representation). The matrix elements of these repre-
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sentations are given by Eqs. (2.1)-(2.6), where AI' CI are 
determined by Eqs. (2.11), (2.12), respectively. 

It appears to us that the explicit computation of these 
matrix elements is new. 

Case 2: When the decomposition of the representation 
under consideration with respect to 0 (3) contains only one 
irreducible representation I of this group with multiplicity n, 
then obviously the matrix elements of J j are given by the 
Kronecker product 

(2.13 ) 

where J j (I) are the matrix elements of the irreducible repre­
sentation I of 0 (3) and I is the unit matrix of dimension n. 
The matrix elements of the other generators of the algebra 
are given by the following proposition. 

Proposition 2: Under the present assumption the matrix 
elements of K j are given by 

(2.14 ) 

where N is an n X n matrix so that N 2 = O. Moreover, if N 
admits an invariant (proper) subspace then the representa­
tion is reducible otherwise the representation is indecompos­
able. 10 

Proof It is easy to show that if Jj> K j are given by Eqs. 
(2.13) and (2.14) then all the CR of the algebra are satisfied. 

In fact, 

and 

To show that this is the only possible solution of the CR 
under present assumptions it is enough to observe that the 
matrix elements of K3 are [using (2.4)] 

(2.15 ) 

i.e., K3 = N XJ3(/)· 
An appropriate form of the matrix N which is important 

in the construction of E( 3) invariant equations is given by 

0 

a2 0 

N= 0 . . (2.16 ) . 
a n_, 

E,{J2 f3n-l 0 

where a 2 f32 + '" + an _ lf3n _, = 0 and E is an arbitrary 
parameter. 

We now proceed to discuss the irreducible representa­
tions of E( 3) in the general case, i.e., when the decomposi­
tion of the representation with respect to 0(3) contains the 
representations 10/0 + 1...,/" each with multiplicity n j • (Ob­
viously such a representation is irreducible only if all the 
representations 10 + n, n = 0, ... ,/, -/0 appear at least once 
in the decomposition.) To construct the matrix elements of 
F +' F _, and F3 in this case we rewrite Eqs. (2.4)-(2.6) in 
block matrix form: 
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0, NI",/o+ 1 xD(lo), 

N lo + 1./0+ 1 xH3(l0 + 1), 

Nlo +2.10+1 xD(lo+ 1), 

N lo + 1./0+ 2 xD(lo + 1), 

Nlo + 2./0 + 2 xH3(l0 + 2), 

~ ..... ] , 
0'" 

(2.17) 

where the N I"/j are matrices of dimension n; X nj and 

[D(l) ]mm' = 8mm,~(l + 1 )2 - m 2
• (2.18) 

Similar expressions can be written for F +, F _. The CR ( 1.4 ) 
now reduce to constraints on the matrices NI ~ I in the form .. / 

N lo./o = NI",/o + 1 N 10 + 1,10 = Nlo./o N lo./o + 1 = ... = 0, 
(2.19) 

which is, in general, a redundant system of equation for the 
matrix elements of these matrices. 

A particularly interesting case is obtained when the 
multiplicity of each 1 in the representation is the same, i.e., 
n; = n, i = 0,00.,/1 - 10 , In this "degenerate" case all the 
equations of (2.19) can be satisfied if we choose 

NI.I =NI.I±I =M, 

whereM 2 = O. 

III. INVARIANT EQUATIONS 

The study of E( 3) invariant equations was initiated by 
Levi-Leblond6 who constructed by ad hoc methods a non­
relativistic analog of the Dirac equation and studied its prop­
erties. In this section, however, we study the construction of 
such equations from a covariant point of view 7 and especially 
consider the uniqueness of the nonrelativistic analog of the 
Dirac equation. 

Definition 1: Let an operator realization of PA be given 
(see the Appendix). We say that the equation 

(LAPA + in)t/J= 0, t/JERn (3.1) 

is invariant with respect to E(3) if LAPA is a scalar of the 
E ( 3) algebra, viz., 

[LApA,JI'Y] = O. (3.2) 

We observe that this definition is equivalent to the one intro­
duced in Ref. 4 from a group theoretical point of view for the 
Lorentz group. 

At this point on objection might be raised to the effect 
that m appears in (3.1) twice, once as a scalar and once as an 
operator (albeit as a scalar multiplication operator). The 
answer to this is that this dichotomy is inherent to the defini­
tion of mass in nonrelativistic mechanics. In fact m appears 
as a scalar of the (pure) Galileo group and then is added to 
the group as an operator through a central extension.6 In any 
event since m is constant both as a scalar and as an operator 
the equations under consideration describe entities with con­
stant mass. Furthermore, by imposing proper constraints on 
LI' one can insure (see Proposition 3) that each component 
of t/J satisfies the Galilean energy-momentum relation. Thus 
it is appropriate to refer to equations of the form (3.1) as 
nonrelativistic invariant wave equations. 

Corollary 7: Equation (3.1) is invariant with respect to 
E(3) if and only if 
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[LA .JI'Y] = i[gAI'LA - gAyLI'] . (3.3) 

Proof' From (3.2) we infer 

0= [LApA.JI'Y] =LA[PA.JI'Y] + [LA,Jl'y]pA 

=iLA [gAI'Py -gAYPI'] + [LA.JAy]pA 

= i[gYALI' - gJL..tLy ]pA + [LA ,JI'Y ]p\ 

from which Eq. (3.3) follows. 
Furthermore, to insure the physical meaning of such an 

invariant equation we require that each component of t/J 
satisfies the Galilean energy-momentum relation 

E = m + p2/2m, (3.4) 

which leads to the following result. 
Proposition 3: Each component of t/J satisfies Eq. (3.4) if 

{LI'.Ly} = LI'Ly + LyLI' = 2gl'J. (3.5) 

Proof" This result is obvious if we multiply (3.1) by 
(L I'p I' - in) and require that (3.4) is satisfied. Observe, 
however, that sincegl'Y is not diagonal Eq. (3.5) implies 

L ~ = 0, {L4.LS } = 2I. (3.6) 

We now tum our attention to finite-dimensional equa­
tions which describe nonrelativistic particles with definite 
spin, viz., equations based on finite-dimensional indecom­
posable representations of the form given by Eqs. (2.13), 
(2.14), and (2.16). 

To begin with we infer from (3.3) that 

[[L3,H+],H_]=2L3. (3.7) 

Hence using the results in Ref. 4 regarding 0 (3) invariant 
equations we obtain 

L3 = i·D xJ3(l) 

and consequently 

L] = i·D xJ](l), L2 = i'D xJ2(l). 

(3.8) 

(3.9) 

Furthermore, if we write L4, Ls in block form then the CR'S 

[L4.J;] = [Ls,J;] = 0 

imply, using Schur's lemma, that 

L4 =A4XI, Ls =AsXI, 

(3.10) 

(3.11 ) 

where D, ..1,4' As are n X n matrices. From Eq. (3.5) it then 
follows that 

{} 
2 2 -2 ..1,4' As =1, As = -I, D XJ;(/) =IXI, 

(3.12) 

A ~ = {A4,D } = {As,D } = O. 

Thus to complete the construction of the invariant equations 
under consideration we must solve for D, ..1,4' As using the 
remaining CR. However, from 

[L4' J34 ] = 0, [Ls, J34 ] = - iL3' 

[L3, J34 ] = - iL4' 
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[[Ls,F+],F_] = -2L4' 

it follows that 

and 

A4N -NA4 = 0, 

AsN-NAs=D, 

(ND-DN)xJ~(/) =A4, 

NAsN X{H+(l), H_(/)} = 2A4XI. 

(3.15 ) 

(3.16) 

(3.17) 

(3.18 ) 

(3.19) 

(The remaining CR lead to the same constraints on A4, As, 
D.) 

Proposition 4: Invariant equations of the form (3.1) 
based on the indecomposable representations (2.13) and 
(2.14) can be constructed only for 1 = ~. 

Proof: From Eqs. (3.18) and (3.19) it follows that to 
construct E( 3) invariant equations we must have 

{H+(/), H_(l)} = aI, a,/3ER, 

and 

J~ =f3I. (3.20) 

However, this can be satisified only for 1 = l' where 

{H+[l],H_[!]} =1, J~ =!I. (3.21) 

We conclude from this proposition that invariant equations 
describing particles with spin =/=! must be based on "mixed" 
indecomposable representations (/ =/=const) and will con­
tain, therefore, some extraneous components that must be 
eliminated by some subsidiary conditions (this is similar to 
the situation in relativistic mechanics). 

Corollary: For 1 = !, 
NAsN=2A4' [N,D]=4A4, D 2 =4I. (3.22) 

This is a direct consequence of (3.12), (3.18), (3.19), 
(3.21 ). 

The nonrelativistic analog to the Dirac equation derived 
in Refs. 1 and 6 is based on a representation of E( 3) in the 
form (2.13)-(2.15) with dim N = 2. These equations are6 

(a'P)q; + 2mx = 0, (a ·P)X + Eq; = 0, (3.23 ) 

where q;, X are two component functions and a are Pauli 
matrices. We observe however that in these equations q;, X 
satisfy the energy-momentum relation in the form E = P 2/ 
2m rather than Eq. (3.4). Hence E should be replaced by 
E - m to conform to our notation. Using this observation 
we can rewrite Eq. (3.23) in matrix form as 

{(l Xa)·P + [[~ ~] Xl ]E 

+m[ ~ 1 ~]XI}[;] =0. (3.24) 

On the other hand, if we use Eqs. (3.12), (3.16)-(3.19), and 
(3.22) to determine a solution for D, A4, As based on the 
same representation of E ( 3 ), we find 

A4 = [~ ~], As = [; ~ 01, D = [~ ~ 2] 
(3.25) 

subject to the constraints 

a2 + 2c = - 1, 2a + r = o. (3.26) 
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In matrix form the corresponding equations can be written 
as 

{(iD X~?j+ [A4 X/]E 

+ [(As + /) x/]m}[;] = 0, (3.27) 

and it is easily verified that (3.27) is not equivalent to 
(3.24). 

Furthermore, one can find solutions to Eqs. (3.12) and 
(3.16 )-( 3.19) based on higher-dimensional representations 
ofE(3) as illustrated by the following proposition. 

Proposition 5: Let Nbe a 4 X 4 matrix in the form (2.16) 
with E = a 2 = a 3 = f32 = - f33 = 2, then the matrices 
A4=Nand 

[ 0 

0 

~1 -1 0 0 
As= a 1 0 

-1 a 1 
(3.28 ) 

D~2[ ~ 
0 0 

~l -1 0 
-2 

2+2a 0 0 -1 

where a is an arbitrary parameter, are solutions of equations 
(3.12) and (3.16)-(3.19). 

Thus we showed the existence of a new nonrelativistic 
analog to the Dirac equation and demonstrated that the 
number of components in such an equation is indeterminate 
from a purely nonrelativistic point of view. 

We now tum to an attempt to construct a nonrelativistic 
analog to the Majorana equation based on the self-coupling 
ofa ladder representation 10, 10 + 1, ... (case 1 of Sec. II). 

To begin with we introduce an orthogonal basis 5/,m on 
the representation space and set 

L/,'I m = " DI m'l' m' /;'1' m" ~. .(." ... ~ . (3.29) 

However, since [L4' JI-'v] = 0 and the representation is irre­
ducible it follows from Schur's lemma that 

D I,m;I',m' =pDII'Dmm,. (3.30) 

To calculate the other matrices LI-' we observe that it is suffi­
cient to find Ls. Setting 

we infer from [Ls,H3] = 0 that 

CI,m;I'm' = CI,I',mDmm" 

Furthermore, from [Ls,H ± ] = 0 we deduce that 

al,m + 1 Cl,l',m + 1 - al',m + 1 Cl,l',m = 0, 

a l,m Cl,l',m _ 1 - al',mcl,I',m = O. 

(3.31) 

(3.32) 

(3.33 ) 

(3.34) 

By simple algebraic manipulations it then follows that 

(3.35 ) 

To compute thecl's andp we now invoke the relation (3.15). 
By applying this relation to 5/,m we obtain after a long alge-

Mayer Humi 2810 



                                                                                                                                    

bra that p = 0 and CI = C = const, viz., L4 = 0, L5 = cI. 
Using theCR 

[L5,J;4] = - iL; (3.36) 

this implies that L; = O. We conclude then that the relativis­
tic Majorana equation has no nonrelativistic analog. 

APPENDIX: COMMUTATION RELATIONS FOR E(3) 

In this appendix we describe the relationship between 
the different notations for the generators of the Lie algebra of 
the Galilean group G and its E( 3 ) subgroup. We also give an 
explicit differential realization for the commutation rela­
tions (CR) of the extended (physical) Galilean group.6 

1. Real basis1.8 

The Lie algebra of the (pure) Galilean group has ten 
generators which we denote by JjJ KjJ PjJ i = 1,2,3, and E. 
The J; 's are the generators of the Lie algebras of 0 (3) the 
K;'s are the boost generators, and PjJ E are the generators 
for the translations in space and time, respectively [E( 3) is 
generated by JjJ k;, i = 1, 2, 3]. 

The nonzero CR of G are 

[J;'-0] = EijkJk, [J;,Kj] =€ijkKk' 
(AI) 

[J;,Pj ] = EijkPk' [K;E] = Pi' 

The CR for the extended ("physical") Lie algebras of G 
(which is obtained by a central extension) are the same as in 
(AI) except that 

[K;,Pj ] = 0 

is replaced by 

[K;,Pj ] = m8ij' (A2) 

Thus the extended group has an additional generator m. 
However, m is a scalar of the algebra as it commutes with all 
other generators of G. 

2. Complex basis 

If we consider G over the complex numbers and define 

~ = i-0' Kj = iKj' iPj , E = iE, 

j = 1,2,3, in = im, 

then the CR of G (extended) take the form 

[.T;,~] =iEijk.Tk, 

[.T;.i)j] =i€ijkPk' 

3. Covariant notation7.11 

By introducing the nonsingular "metric" 

r
-I 

• - - -·0 
gaP = 0 • 

• 
• 1 

-~-1, 
-IJ 
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(A3) 

(A5) 

where I is the unit matrix in three dimensions and 

Jij = Eijk.Tk, J;4 = K;, 

P; = PjJ P4 = in, P5 = E - in, 
(A6) 

we can write the CR of the extended G in covariant notation 

(note that g44 = 0). We observe that the metric tensor gaP 

can be used only to raise and lower indices of vectors over 
E(3) (Ref.ll),e.g.,ifpa' = [PI,P2,P3,in,E-in] then 

pa = ( - PH - P2' - P3,E,in). (A9) 

Furthermore, Papa = in2 is the Galilean energy-momen­
tum-mass relation. 

A differential realization of the generators (A6) and 
their CR is given by 

4. A basis of raising and lowering operators 

Since E( 3) and the Lorentz group O( 3, I) have the 
same number of generators (and six of the nine CR are the 
same) it is convenient to introduce a basis ofE(3) similar to 
the one used by Gel'fand et al.4 to construct the representa­
tions and invariant equations of O( 3, 1). Thus in Gel'fand's 
notation 

A 12 = J I, A 13 = J2, A23 = J I, B; = KjJ i = 1,2,3. 
(All) 

Hence 

H + =.TI + i12, H _ = 11 - ii2, H3 = .T3, 

F+ =KI +iK2, F_ =KI -iK2, F3=K3' (AI2) 
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All weight-2 zeros of the Wigner 3j coefficients may be obtained from the quadratic 
Di~phantin~ equati?n k~own as Pell's equation. These zeros may then be classified by the 
orbits of a discrete, mfimte-order subgroup of the Lorentz group SO ( 1,1). This is carried out 
by transforming the "polynomial part" of a weight-2 3j coefficient to Pellian form and 
obtaining the fundamental zeros numerically. The relation of this polynomial to a family of 
binary quadratic forms is also given, together with a discussion of the invariance group. 

I. INTRODUCTION AND RESUME 

A number of papersl- 12 have appeared recently on the 
subject of (nontrivial) zeros of the angular momentum coef­
ficients known as 3j and 6j symbols. All such zeros are in­
teger solutions of known polynomial expressions, 12,13 that is, 
of Diophantine equations. The approach to the "zeros prob­
lem" via the study of Diophantine equations,3,5,7-9,l1,12 using 
number theoretic methods, is to be distinguished from the 
mathematical structure that Racah 14 used to "explain" the 
first known such zero, which was a Lie algebra-subalgebra 
relation. Racah's method was extended by Judd, 15 and more 
recently has been studied systematically (though not ex­
haustively) by Vanden Berghe et al. 16 Other important ap­
proaches have been either purely computational,2,17,18 or 
through the use of physical models, 13,15,19 or simply sugges­
tive of an underlying structure, not fully implemented. 1,4,6 

The Diophantine approach shows that the number of 
zeros of the angular momentum coefficients is (denumera­
bly) infinite, but does not suggest physical applications. Al­
though several consequences of the existence of these zeros 
are known, 13,15,19,20 there is at present no systematic study of 
the subject. The mathematical relationship-if one exists­
between solutions of Diophantine equations and Lie alge­
bra-subalgebra structures has not been established. 

The zeros of the 3j and 6j coefficients may all be classi­
fied by their weight, which is defined to be the smallest in­
teger in the associated Regge21 and Bargmann22 arrays, re­
spectively. The weight may assume values 1,2, ... and is 
related to the total degree of the polynomial (in several vari­
abies) whose zeros are sought. The simplest case is weight 1. 
All weight-1 zeros of both the 3j and 6j coefficients have been 
given explicitly.2,5,7-10 Certain general classes of zeros of 
weight-2 6j coefficients have also been found, 12 but this prob­
lem is not completely solved. The success in finding these 
special zeros may be attributed to the fact that they can be 
related to the solutions of classic (well-known) Diophantine 
equations. It appears likely that other Diophantine equa­
tions will need to be studied in classifying zeros of higher 
weight. 11 

In this paper, we classify all zeros of weight-2 3j coeffi­
cients in terms of the classic Diophantine equation known as 
the (generalized) Pell equation. We use a technique devel­
oped earlierl2 for weight-2 zeros of 6j coefficients, as de­
scribed in Secs. II-V. [It is also of interest to study the poly­
nomial in question from a more general viewpoint. This is 
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done in Sec. VI, where it is shown that either the Lorentz 
group SO ( 1,1) or the rotation group SO (2) is an underlying 
symmetry of this polynomial. ] 

Before giving a more detailed description of the prob­
lem, we define some notations used throughout. The real line 
is denoted by R, the plane by R2, etc. The set of all integers is 
denoted by 1:, the subset of natural numbers (including 
zero) by N, and the subset of positive and negative integers 
by 1:+ and 1:_, respectively. The obvious extensions 1:2, N2, ... 
are also used. For typographical convenience, we employ 
one nonstandard notation. We denote the 
(n + 1) X (n + 1) matrix transformation A of a column 
vector x=col(x l,x2, ... ,xn ,1), to a column vector 
x' = col(xi,x2, ... ,x~,1), where A has the (n + 1)st row 
(0,0, ... ,0,1) by 

(1.1 ) 

The general polynomial, the set of whose zeros contains 
all nontrivial zeros of the 3j coefficients, has been given ear­
lier. 12 It was also pointed out that the weight-2 zeros origi­
nate from a family ofPell equations. Since the background of 
this method has been presented in detail in Ref. 12, we pro­
ceed immediately to the description of the polynomial whose 
zeros are the weight-2 zeros of the 3j coefficients. It is con­
venient to use the variables (u l'U2,X 1,x2) given by the follow­
ing Regge array: 

X 2 + U I - 2] 
XI - U2 + 2 . 

U 2 

( 1.2) 

The domain][)4 of the variables (U I ,U2,XI ,x2) is, by de­
finition, the set of all points (U I,U2,X I,x2)EN4 such that the 
remaining four entries in the Regge array also belong to N. 
The polynomial of interest associated with the Regge array 
(1.2) is given by 

Qu"u, (X I ,x2) = 2u I (u l - 1 )(x I - U2 + 1 )(x I - U 2 + 2) 

- 4U I U2(X I - U2 + 2)x2 

The zeros of the Diophantine equation 

Qu"u, (X I ,X2 ) = ° 
with 

(1.3 ) 

( 1.4a) 

(l.4b) 
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give all nontrivial zeros for which 2 occurs in the Regge 
array-a zero of a weight-2 3j coefficient, or, briefly, a 
weight-2 zero. If any of the entries in the Regge array (1.2) 
are equal to 1, the polynomial (1.3) reduces to that for spe­
cial weight-1 zeros. Since all weight-1 zeros have already 
been determined, we will generally restrict the determina­
tion of the zeros ofQul.u, (x\,x2) to those that satisfy not only 

(U\,U2,x\>X2)EN4
, (1.5a) 

I 

where u\>2 and u2>2 and (x)a = x(x + 1)'" (x + a-I) 
for aEN with (x)o = 1. The 3j symbol in this result is related 
to the standard angular momentum notation by 

(
j\ j2 j3). 
m\ m2 m3 

We regard u\ and U2 as parameters, and (x\,x2) as vari­
ables in the expression (1.3); that is, we select values u \ and 
U2 in the domain (1.5) and determine the values of (X\,x2) in 
this domain that are zeros of Qul.u, (x \,x2). Observe that each 
Qul.u, is an inhomogeneous quadratic polynomial in (X\,x2)' 
This viewpoint corresponds to interpreting a 3j coefficient in 
terms of a Wigner operator specified by the parameters 
(U\,U2) acting in a separable Hilbert space with a standard 
orthonormal basis given by 

{!!(x\ +x2)d( -Xl +x2» !X\,X2EN}. (1.7) 

This operator structure ofthe 3j coefficients has been devel­
oped in detail in Ref. 13. We will not pursue it here except to 
note that the zeros (x\,x2) of Qul.u, (x\,x2) correspond to 
vectors in the null space of the Wigner operator specified by 
(u\,u2 ). These null space vectors are distinct from those be­
longing to the characteristic null space (see Ref. 13). As will 
be shown in the sequel, for each pair (u \,u2 ) (i.e., a specified 
Wigner operator), there is a denumerably infinite set of ze­
ros (X\,x2)EN2 of the quadratic polynomial Qul.u, (hence an 
infinite set of vectors in the null space of the corresponding 
Wigner operator). This corresponds to the hyperbolic struc­

tureofQul,u, for each pair of parameters (U\,U2)' as shown in 
Sec. II. 

The "hyperbolic" classification (to be demonstrated) of 
3j coefficients using the solutions of the Diophantine equa­
tion (1.4a) for each pair (U\,U 2 )EN2 is not the only one. It 
must also be possible to classify these zeros by dividing them 
into finite sets according to the value of the "magic square" 
parameter of a Regge array. This parameter is the common 
sum of the entries in the separate rows and columns. It is 
given by x\ + X 2 + u\ for the array (1.2). This suggests a 
change of coordinates. 
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but also 

( 1.5b) 

For completeness, we write down the complete expres­
sion for the 3j coefficient corresponding to the Regge array 
( 1.2) in the form containing the polynomial (1.3) as a fac­
tor: 

(x\ +x2)/2 

(-x\ +x2)/2 

(x \ + X 2 + u \ - u2 ) ) 

(x\ -X2 - u\ - U2 + 4)/2 

Consider the transformation of coordinates 

(U\,U2,X\,x2)~(V\,V2,y\'Y2)' 

Y\ = u\' Y2 =x\ - U2 + 2, 

V\ = u\ + U2 - 2, v2 = x\ + X2 - U2 

with the inverse 

x\ = - Y\ + Y2 + VI' X2 = - Y2 + V2 + 2, 

u\=Y\, u2=v\-y\+2. 

( 1.6) 

( 1.8) 

( 1.9a) 

(1.9b) 

In the new coordinates, the Regge array (1.2) becomes 

Y2 - Y\ + V\ 

v2 - Y2 + 2 

Y\ 

which has magic square parameter 

V\ + V2 + 2. 

( 1. lOa) 

( 1.10b) 

The domain iD4 of the variables (v\,v2'Y\'Y2) is defined 
with the same phrases (mutatis mutandis) used in defining 
the domains D4 of (u\,u2,x\,x2)' namely, it is the set of all 
(v\,V2,y\'Y2)EN4 with the additional property that the re­
maining four entries in the Regge array (1.1 Oa) also belong 
to N. The polynomial (1.3) is expressed in terms of the new 
variables by 

QUI,U, (X\,x2) = PVI,v, (y\,y2) 

= 2y\(y\ -1)Y2(Y2 - 1) 

- 4y\(v\ - Y\ + 2)Y2(V2 - Y2 + 2) 

+ 2(v\-y\ + l)(v\-y\ +2) 

X (v2 - Y2 + 1) (V2 - Y2 + 2). ( 1.11) 

The coefficients of Yi~ ,yiY2' and y~ in PVI,v, (Y\,Yz) 
vanish identically in (V\,V2)' ThusPvl,v, (y\,y2) is an inhomo­
geneous quadratic polynomial in (y\,y2)' This polynomial 
can have only the finite number of zeros that correspond to 
zeros of the 3j coefficient 
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(
VI + 2)/2 

(VI - 2)/2 
( - YI + VI + v2 + 2)/2 

(YI - 2Y2 - VI + V2 + 2)/2 
(YI + h)/2 ) 

( - YI + 2h - v2)/2 . 
(1.12) 

The reason is that for (V ltV2)EN2, we have (V I,V2'YI'Y2)Ejj)4 if 
an only if (YI,y2)EN2 and 

O<YI <VI + 2, 0<Y2<V2 + 2. (1.13) 

Indeed, as we show in Sec. II, the number of zeros (YI,h )EN2 

of the Diophantine equation 

pv •. v, (YI,y2) = 0 (1.14) 

for given (V I,V2)EN2 is finite in consequence of its elliptical 

structure. 

The set of all 3j coefficients is mapped into itself, up to 
phase, under the group of transformations of the angular 
momentum quantum numbers VI,m l ,j2,m2,j3,m3) corre­
sponding to permutations of rows, permutations of columns, 
and transposition of the Regge array. This is a 72-element 
group which is isomorphic to the direct product group 
S3XS3XS2' where Sn denotes the symmetric group on n 
symbols. Thus each zero of the Diophantine equation (1.4) 
gives rise to 72 zeros (or less, if the Regge array is symmetric 
or has some equal columns or rows) corresponding to the 
permutations and the transposition mentioned above. 

We have already used the Regge symmetry to write the 
entry 2 in the upper left-hand corner of the arrays (1.2) and 
(1.10a). The 2 remains in this position under an eight ele­
ment group of transformations K of the variables 
(u I,U2,x 1,x2) generated by the interchange of columns 2 and 
3, of rows 2 and 3, and by transposition (isomorphic to 
S2XS2XS2)' The transformation group is given explicitly 
by 

K = {I,r,t,rt,tr,trt,rtr, (rt)2 = (tr)2}. ( 1.15a) 

The matrices rand t, which correspond to column 2-column 
3 interchange and transposition, are defined by the matrices 

0 1 0 0 0 

0 0 0 0 

r= 0 0 1 

0 -I 1 0 

0 0 0 0 
(1.15b) 

-I 0 2 

1 0 0 0 

t= 1 1 0 0 -2 

0 0 0 

0 0 0 
The transformations of (U I,U2,xI,X2) are then 

(U I,U2,XI,X2)I---+(U; ,u~,x;,x~) 

= k·(U ltU2,XI ,X2 ), kEK. (1.15c) 

The Regge symmetries of the 3j coefficients imply that 
the polynomial Qu •. u, (X I,x2) is invariant under the group K; 
that is, 

Qu' u' (X;,x2) = Qu"u, (X I ,x2)' (1.16) ,. 2 

for each transformation ( 1.15c). We do not take the symme­
try (1.16) into account in the classification of zeros of 
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I 
Qu •. u, (X I,X2 ) given in Sec. V; that is, we have not attempted 
to partition these zeros into the equivalence classes resulting 
from the definition (u;,U~,x;,x2)-(UI,U2,x1,x2)' if Eq. 
( 1.16) is satisfied. Thus, with each zero of Eqs. (1.4), we 
associate a set of 72 zeros, obtained from the given one by the 
Regge group. Some of these sets will be identical because of 
( 1.16); some elements in a given set may also be equal if the 
Regge array is symmetric or has equal columns or rows. 

Results similar to the above also apply to the polynomial 
p v •• v, (YI,y2)' [We will not deal directly with this expression, 
but let us note that its zeros can be obtained from those of 
Qu •. u, (X I,x2) by use of the transformation (1.9).] 

II. TRANSFORMATION TO DIAGONAL FORM 

In studying the properties of the polynomials 
Qu.,u, (X I,X2 ) and pv.,v, (YI,y2) defined by Eqs. (1.3) and 
(1.11), respectively, we can regard (U I,U2,XI ,x2) and 
(V I,V2'YI'Y2) as arbitrary points in R4. We do this in much of 
this section, except when we want to relate the results to 
zeros of 3j coefficients. 

The inhomogeneous polynomial ( 1.3) is written in stan­
dard matrix form as 

Q."., (x,,x,l ~ (x, x, llAG) (2.1) 

where A is the real 3 X 3 symmetric matrix 

A=(aij), 

with 
all = 2u I (u l - 1), a 12 = - 2U IU2, 

(2.2a) 

a 22 = 2u2(U2 - I), a 13 = - UI(U I -1)(2u2 - 3), 
(2.2b) 

a 23 = 2U IU2(U2 - 2) - U2(U2 - I), 

a33 = 2u I (u I - l)(u2 - l)(u2 - 2). 

The polynomial (2.1), that is, the matrix A, is brought to 
diagonal form using the upper triangular transformation 
(see Ref. 12 for the details) : 

A, {~' :~: 
where 

we obtain 

(det aA )Qu •. u, (X I,x2) = p~i + s~ + PIP3, 

where 

(2.3a) 

(2.3b) 

(2.4a) 

(2.4b) 

PI = a w P2 = a 22, P3 = det A, det aA = PI P2' 
(2.4c) 
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[Note that (2.4b) is a true "quadratic form" with the vari­
able 53 = 1.] Explicit evaluation of the PI and az3, using the 
coefficients (2.2), gives 

PI = 2u I (u l -1), P2 = - 4U I Ul(U I + Ul - I), 

P3 = !(u l - l)(ul - I)(u l + Ul)Pl' (2.5) 

al3 = !(u l - 1 )Pl' 

Let us digress to consider the application of this diagon­
alization procedure to the problem of 3j coefficients; in this 
case all the entries in the matrix.:\,., are integral. According­
ly, the map (xl,xl)I--+(51,5l) given by Eq. (2.4a) is, for 
(xI,xl)eN2, from Nl to ZZ. The converse of this result is, 
however, not true in general, since the inverse transforma­
tion is 

X 2 = (52 - a Z3 )/Pl' 

XI = (51 - alzXl - a13 )/PI' 

Nonetheless, if solutions of 

(2.6a) 

(2.6b) 

Qu,.u, (xl,xz) = 0 (2.7a) 

exist in the domain ( 1.5), they must correspond to solutions 
(51)5z)eZz ofthe Diophantine equation 

pzs-t + 5~ + PIP3 = O. (2.7b) 

This equation can be simplified further because the coeffi­
cient al3 contains P2 as a factor. Hence we can write 

(2.Sa) 

so that 5l/Pl is always half-integral for xzeN and uleN. Con­
sequently, it is necessary that 5z have the form 

52 = - 2u tuz(u t + U2 - 1)y, yeZ, (2.Sb) 

in order that x 2eN. 
Let us return to the general diagonalization (2.4b) for 

which the only restriction is det .:\,., #0, that is, Pt #0, P2 #0. 
Under the further change of variable 

51 =x, xeR, 

52 = - 2u luz(u l + u2 - l)y, yeJR, 

(2.4b) reduces to 

2ut(ul -l)Qu,.u, (xt,xz) 

= x 2 - utUZ(u l + U2 - l)y2 

+ ut(u t - 1)2(U2 - I)(u] + U2)' 

(2.9a) 

(2.9b) 

(2.10) 

The relation between the variables (X t,x2) and (xJ') is 

X + u1u7Y 1 
XI = + - (U2 - 3), (2.11a) 

2u l (u] - 1) 2 

X 2 =!(y - Ul + I). (2.llb) 

Relation (2.10) is valid for all points (U t,U2,xt,xl)eR4
, ex­

cepting the points that have U 1 = 0 or U I = 1, with the trans­
formation between coordinates given by Eqs. (2.11). 

The problem of finding all nontrivial weight-2 zeros of 3j 
coefficients has now been reduced to the following: For each 
pair (u I ,ul)eN2 with ut>2 and u2>2, find all solutions 
(xJ')eZ2 of the Pell equation 

x 2 - utUZ(u l + U2 - 1)r 

= - ut(u 1 - l)2(Ul - l)(u l + ul ) (2.12) 
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such that the coordinates (Xl,xl) given by Eqs. (2.11) satis­
fy (xt,xl)eNz andx.>u2,xz>2. The corresponding weight-2 
3j coefficients that are zero are then given by Eq. (1.6). 

That such zeros exist is shown by the example 
Ut = U2 = 2, X = 3S, y = 11, Xt = 20, Xl = 5, which corre­
spondsto 

(~ (2.13) 

As will be shown in the next section, this zero is one of a 
denumerably infinite family corresponding to certain points 
(xJ')eNl on the hyperbola 

Xl - 12y2 = - 8. (2.14) 

We refer to the classification of the weight-2 zeros of 3j 
coefficients using the Pell equation (2.12) as the hyperbolic 
classification. This method is developed in some detail in Sec. 
III. 

The diagonalization procedure described by Eqs. (2.3)­
(2.5) also applies to the polynomial 

p"~ (Y,.v,) ~ (y, y, [)B~:} (2.[S) 

where B is the real 3 X 3 symmetric matrix 

B = (bij)' (2.16a) 

with 

bll = 2(v2 + l)(v2 + 2), biZ = 2(v. + l)(v2 + 1), 

b22 = 2(v l + l)(v l + 2), 

b13 = - (V2 + 1)(v2 + 2)(2vI + 3), 

bZ3 = - (VI + l)(v l + 2)(2v2 + 3), 

b33 = 2(v l + 1 )(v j + 2)(vl + 1)(v2 + 2). 

(2.16b) 

The final result, which is analogous to Eqs. (2.10) and 
(2.11), is 

2(Vl + 1) (v2 + 2)Pvl'v, (yjJ'2) 

=Xl + (v j + l)(vl + l)(vl + Vz + 3)y2 

- (VI + 2)(v2 + l)(vl + 2)2(VI + vl + 2), 
(2.17) 

where the transformation between the coordinates (Y1J'l) 
and (X,y) is 

_ X - (VI + l)(v2 + l)Y+ 1 ( + 2) 
YI- - VI , 

2(v2 + l)(vl + 2) 2 

Yl=~(Y+V2+2). 

(2.1Sa) 

(2.1Sb) 

Relation (2.17) is valid for all points (Vl>V2J'jJ'z)eR4, ex­
cepting the points having Vz = - 2 or Vz = - 1, with the 
transformation between coordinates given by Eqs. (2.1S). 

The problem of finding all nontrivial weight-2 zeros of 3j 
coefficients has now been reduced to the following: For each 
pair (vl,vl)eNl , with v1>2 and vz>2, find all solutions 
(X,y)eZl that belong to the ellipse 

X 2 + (VI + l)(vl + l)(vl + Vz + 3)y2 

= (VI + 2)(v1 + l)(v2 + 2)Z(VI + Vl + 2) (2.19) 
such thatthe coordinates (yjJ'l) given by Eqs. (2.1S) satisfy 
(YIJ'z)eNz and 2~1 <VI' 2~1<V2' The corresponding 
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weight-2 3j coefficients that are zero are then given by Eq. 
(1.12). 

That such zeros exist is shown by the example VI 2, 
V2 = 23, X = 10S0, Y = 15, YI = 2, Yz = 20, which corre­
sponds to the zero given by Eq. (2.13) [see Eqs. (1.9a) and 
( 1.12) ]. This zero comes from the ellipse 

X 2 + 2016y 2 = 1620000. (2.20) 

We refer to the classification of the weight-2 zeros of 3j 
coefficients using integral points on the ellipse (2.19) as the 
elliptical classification. AU weight-2 zeros of 3j coefficients 
can be classified by either the hyperbolic or the elliptic 
scheme, or both. 

III. GENERAL PROCEDURE FOR SOLVING PELL'S 
EQUATION 

Our procedure for solving Pell's equation, 

x2 - Dy2 = N, (3.1) 

where D is a positive integer and N integral but not necessar­
ily positive, has been described in detail in Ref. 12. All proofs 
of the results stated below are given there. For the reader's 
convenience, we summarize briefly this method of orbits. 

We order all points (x,y)eRz by the rule (x,y) < (x',y') 
if x <x' and (x,y) < (x,y') ify<y'. The point (x,y) is called 
positive if x > ° and y>O. We also use the following nota­
tions. 

(i) (uo,vo) denotes the least positive solution of 

u2 - Dv2 1 (3.2) 

(such a solution always exists; see, for example, Le Veque23
). 

(ii) (xo,Yo) denotes the least positive solution of the Pell 
equation (3.1) for givenD andN, whenever solutions of this 
equation exist. 

With the solution (uo,vo) ofEq. (3.2) we associate the 
matrix go of unit determinant given by 

_ (Uo VoD) go- . 
Vo Uo 

(3.3 ) 

The basic result for solutions of the general Pell equation 
(3.1) is the following: For each neZ and each solution (x,y) 
of (3.1), the point (x(n),y(n» defined by 

(
x(n») = (x) 
y<n) g:; y (3.4) 

is a solution of (3.1). 
Relation (3.4) is the principal result needed for classify­

ing all solutions of Pelt's equation (3.1) by means of the 
orbits of the group Go defined by 

Go = { g:; IneZ}. (3.5) 

Each geGo maps a point (x,y)eRz of the hyperbola 
x 2 - Dy2 = N to a new point 

g 

(x,y)~(x',y') = g(x,y) (3.6a) 

of the hyperbola. The action ofg on the point (x,y) is given 
by matrix multiplication 

(3.6b) 
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In particular, (x,y)eZ2 implies (x',y')eZ2
, and conversely. 

The orbit of the point (x,y)eZ2 is the set of points Go(x,y) 
defined by 

Go(x,y) = {g(x,y) IgeGo}. (3.7) 

A set of fundamental solutions with respect to Go of Pell's 
equation (3.1) is given by 

]]) = {(x,y) Ixz - Dy2 = N; (x,y)eN2
; 

(3.Sa) 

Here (uo,vo) and (xo,Yo) denote the least positive solutions 
ofEqs. (3.2) and (3.1), respectively. The set]]) depends, of 
course, on D and N in Eq. (3.1), that is, we really have 

]]) = ]])(D,N). (3.Sb) 

The set of all integer solutions of the Pell equation (3.1) 
belonging to the positive branch of the hyperbola (x > 0, if 
N>O;y>O, if N <0) is given by the sets 

g:;]]), n = 0, ± I, ± 2,... . (3.9) 

Here multiplication of]]) from the left by g:; means that each 
element of]]) is multiplied by g~. Alternatively, the set of all 
integer solutions (3.9) of Pelt's equation belonging to the 
positive branch may be classified by orbits under the action 
of the group Go, 

Go(x,y) = ~ (x,y) In = 0, ± 1, ± 2, ... }, (3.lOa) 

where 

(x,y)e]]). (3.lOb) 

One obtains, of course, all integer solutions of Eq. (3.1) 
from those given by the sets (3.9) [or (3.10)] by adjoining 
those with reversed sign of the x coordinate if N > ° and of 
the y coordinate if N < 0. 

The number of orbits, that is, the number 1]])1 of ele­
ments in the set ]]), is not known in general. Bounds on this 
number have been given by Stolt.24 For the special Pell equa­
tion of interest here, we determine the number of orbits nu­
merically, as described in the next section. 

IV. PROPERTIES OF THE PELL EQUATION FOR 
WEIGHT-2 ZEROS OF 3/ COEFFICIENTS 

The Pell equation of interest here for determining all 
weight-2 zeros of3j coefficients is given by Eq. (2.12). Be­
cause both D and N are polynomials in the variables 
(u VU2) eN2, this Pell equation has many nice properties that 
allow us to give a reasonably comprehensive treatment. In 
terms of the notation (3.1 ) for the general Pell equation, Eq. 
(2.12) is 

x 2 _Dy2 =N, 

where the integers D and N are given by 

D = U 1U2(U\ + U2 - I), 

N = - uI(u\ - l)z(uz - 1 )(u l + uz), 

where 

(4.1a) 

(4.1b) 

(4.1c) 

(u\,u2)eNz, u 1>2, u2>2. (4.1d) 

Throughout this section, D and N denote the polynomials 
(4.1b) and (4.1c), respectively, subject to conditions (4.1d) 
unless otherwise specified. 
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One of the special properties ofEq. (4.1a) is that it pos­
sesses two parametric solutions. Namely, for all 

the following values of x and y solve Eq. (4.1a): 

x=u t (U t -1), y=u t -l; 

x = ut(u t + 2U2 - 1), y = Ut + 1. 

(4.2) 

(4.3a) 

(4.3b) 

For all (Ut,U2)EN2 with u t >2 and u2>2, one can prove by 
elementary methods that these two solutions are the only 
parametric solutions ofEq. (4.1a). In fact, each parametric 
solution must have y = U t + a, aEl., since this is the only way 
that the term - u~ U2 on the right-hand side can be canceled 
identically by a term from the left-hand side. The values 
a = ± 1 are then determined by substituting y = U t + a in 
Eq. (4.1a). 

Numerical calculations show that the parametric solu­
tion (4.3a) is sometimes, but not always, the smallest posi­
tive solution (xo,Yo) of the equation. More generally, it can 
be shown that 

(4.4) 

but we cannot give the exact result for (xo,Yo)' 
Let us summarize, for the special Pell equation (4.1), 

the method of solution given in Sec. III [see Eqs. (3.8)]. The 
fundamental solutions are 

( 4.5) 

where D and N are defined by Eqs. (4.1b) and (4.1c). As 
noted earlier, (uo,vo) and (xo,yo) are the least positive solu­
tions, respectively, of u2 - Dv2 = 1 and x 2 - Dy2 = N. The 
set ][}(u t ,u2 ) contains at least two points, namely, the two 
parametric solutions (4.3). For a specific (u t ,u2 ), the set of 
all integral solutions of Eq. (4.1a) belonging to the positive 
branch of the hyperbola is given by 

g~][}(Ut,U2)' n = 0, ± 1, ± 2,... . (4.6) 

The orbit Go(x,y) of the fundamental solution (x,y) 
E][}(U t ,U2) is 

Go(x,y) = {~(x,y)lnEl.}. (4.7) 

An integral solution of the Pell equation does not, in 
general, correspond to a zero of the 3j coefficient. This is 
because the map (x,y)f--o+(X t,x2) given by Eqs. (2.11) is not 
from integers into integers. For that property to hold, it is 
necessary (but not sufficient) that U t (u t - 1) divide 
x + u t u2 y; that is, 

k = (x + u tu2y)/u t (u t - 1)El.. (4.8) 

When this condition is fulfilled, the map (2.11) 
(x,y )f--o+(x t,x2) is 

x t =(k+u2 -3)/2, 

x 2 = (y - U t + 1)/2. 

(4.9a) 

(4.9b) 

From the above results we conclude the following: For each 
(U t,U2)EN with u t >2, u2>2, the necessary and sufficient 
conditions that a solution (x,y) of the Pell equation corre­
spond to a weight-2 zero of a 3j coefficient are 

(i) x + u t u2 y = 0 [mod Ut CUt - 1)]; 
(ii) (u t,u2) and (k,y) satisfy k>u2 + 3 with k and U2 of 
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opposite parity, andy>u t + 3 withy and U t of op­
posite parity. 

We formulate two theorems that are basic for obtaining 
the zeros of the 3j coefficients from the zeros of the Pell 
equation. First, we define the subset A(ut,u2) of the set 
][}(u t ,u2 ) offundamental solutions of the Pell equation by 

A(ut,u2) = {(X,y)E][}(U t,U2) I condition (i) holds}. 
(4.10) 

Theorem 4.1: A necessary and sufficient condition that a 
solution (x',y') of the Pell equation be divisible by 
U t (u t - 1) is that (X',y')EGo(X,y), where (x,y)EA(u t,u2). 

Proof: Let (x,y) and (x',y') be any two integer solutions 
of the Pell equation that are related by (x',y') =go(x,y), 
where go is the generator (3.3) of Go. We prove the theorem 
by showing that, if x + U t U2 Y is divisible by U t (u t - 1), 
then so is x' + UtU2Y', and conversely. Define k and k' [see 
(4.8)] by 

k = (x + u tu2y)/u t (u t - 1), 

k' = (x' + Utu2yt)lut(ut -1). 

The transformation (x,y)f--o+(x',y') = go (x,y) 
(k,Y)f--o+(k ',y') = ho(k,y); that is, 

(4.11a) 

(4.11b) 

then gives 

(4.12a) 

where ho is the matrix of unit determinant defined by 

ho 
__ (uo + u tu2Vo - U2(U2 - I)Vo). 

U t (Ut - 1 )vo Uo - UtU2VO 
(4.12b) 

Clearly, k and y integral imply k' and y' integral, and 
conversely, since h 0- t is obtained from ho by replacing 
%~-~ • 

The significance of Theorem 4.1 is in showing that for 
obtaining solutions of the Pell equation (4.1a) that map 
back to integer solutions (X t ,x2) of QU,.U2 (X t,x2) = 0 it is 
sufficient to consider those fundamental solutions in the set 
A(Ut,U2)' We must still select from the orbit Go(x,y) , 
(x,y)EA(u t,u2), those points having parity such that 
(x t ,x2 ) defined by Eqs. (4.9) are integral. This selection is 
also reduced to the set A(Ut,U2) by the next result. 

Theorem 4.2: Each point in the orbit Go(x,y), 
(x,y)EA(u t,U2) has the same parity as the point (x,y). 

Proof: It is sufficient to show that the maps (x,y) 
f--o+(x',y') = go (x,y) and (x,y) f--o+ (x" ,y") = go-t (x,y) con­
serve the parity of (x,y) for any integer solution of the Pell 
equation. We do this by considering all cases. To this end we 
write (a,b) = (e,o) if the integer pair (a,b) has a even andb 
odd, etc. Then for (u t,u2) = (0,0) we have that D is odd, N is 
even, and (x,y) = (e,e) or (0,0), while (uo,vo) = (o,e) or 
(e,o). For (U t,U2) =1= (0,0), we have thatD is even, Nis even, 
and (x,y) = (e,e) or (e,o), while (uo,vo) = (o,e) or (0,0). 
Considering all eight cases in tum, we verify parity conserva­
tion for the map (x,y)f--o+(x',y') =go(x,y). This result also 
applies to (x,y )f--o+(x" ,y") = go- t (x,y), since go- t is obtained 
from go by the map Vof---+ - VO, which conserves parity. • 

It remains to explain briefly our numerical method for 
solving the general Pell equation (3.1 ), where D is a positive, 
nonsquare integer. We do not treat the elliptical case here, 
although, in fact, it is much simpler than the hyperbolic case. 
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If D is a perfect square, there are, as in the elliptical case, only 
a finite number of solutions for given N, and these are easily 
dealt with. 

Let us choose D and N randomly (in some appropriate 
fashion) from a very large integer lattice of (D,N) points. 
Then the Pell equation has, with high probability, no solu­
tions at all. Le Veque23 gives bounds on x and y [depending 
on (uo,vo), D, and N] such that if the equation has solutions 
it must have at least one satisfying these bounds. In our case, 
Eq. (4.Ia), there are parametric solutions, so this problem 
does not arise. 

Ifwe take the least positive solution (xo,yo) and operate 
on it as in Eq. (3.4) (withn = 1) we get the value (X6\),Y6\», 
the second point on the first orbit. We then solve for all 
(x',y') < (X6\) ,y61) thus generating the set D of (3.8a), and 
hence all fundamental solutions of our special Pell equation. 
The procedure is to transpose the equation to x 2 = Dy2 + N 
and to lety vary fromyo tOy61). For eachy, we test the right­
hand side ofthis expression for "squareness"; whenever it is 
a square, we have a solution. We used various Cray comput­
ing machines and worked in double precision. Since Crays 
have not been designed with such number theoretic prob­
lems in mind, it was necessary to do some preprocessing in 
order to speed up the calculations. Briefly, this consisted in 
examining a fixed number of trailing bits in Dy2 + N to 
eliminate those values which could not possibly be squares. 
This is quite fast compared to determining whether the 
expression in question is a square. 

There was one further problem of a technical nature. 
The process described above requires knowledge ofthe ma­
trixgo [Eq. (3.3)], hence of (uo,vo), the least positive solu­
tion of Eq. (3.2). A look at Kortum and McNiees shows 
that these integers can be very large indeed; manipUlating 
them would require multiprecision arithmetic, where 
"multi" means greater than "double." The very large solu­
tion appearing in the set D would probably be of no interest 
in the physics of the present problem; consequently, we 
made no effort to calculate all orbits in these cases. 

Finally, the code was modified to exclude solutions not 
satisfying the divisibility conditions of Eq. (4.8); parity vio­
lations were dealt with by eye. 

v. THE WEIGHT-2 ZEROS OF 3/COEFFICIENTS 

We have tabulated in Table I the elements (x,y) in the 
setD(u\,U2) for2,u\,6, 2,u2,6, together with the integer 
k defined by Eq. (4.8), and the solution (uo,vo) of 
u2 - Dv2 = 1. These integers are presented as (x,y)(k) 
when k exists, and as (x,y) otherwise. Recall that A(U\,U2) 
is the subset of all fundamental solutions of the Pell equation 
(4.1a) such that (x,y)ED(u\,U2) and x + u\u2y is divisible 
by u\ (u\ - 1), this quotient defining the integer k. Thus the 
coordinates (k,y) and the elements of the matrix ho in Eqs. 
(4.12) are completely determined for each point 
(x,y)EA(U I ,U2)· 

We shall now show how to obtain all weight-2 zeros of 
the 3j coefficients from the fundamental solutions 
(x,y)EA(u"u2), Eqs. (4.12), and Eqs. (4.9). We must take 
into account the transformations (4.8) and (4.9), as well as 
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the parity requirements and conditions k>u2 + 3 and 
y>u\ + 3 given just below Eqs. (4.9). 

Let L denote the linear transformation 

( S.Ia) 

(S.lb) 

The group Ho defined by 

Ho = LGoL -\ = {h ~ InEZ} (S.2) 

is isomorphic to Go. The matrix ho [see Eq. (4.12b)] is com­
pletely determined by (uo,vo) and (u\,u2). 

Next, we define the set B(U\,U2) to be the image of 
A(u\,u2) under the transformation L, 

L 

A(u \,u2)I---+B( u\,u2). (S.3 ) 

Thus the elements of B(u lJu2 ) are the pairs of integers 
(k,y )EN2 obtained by applying the transformation L to each 
element (x,y)EA(u\,U2). 

We can now prove the following result. 
Theorem 5.1: For each hERo, the transformation 

(k,Y)l---+h(k,y), (k,y)EB(u\,u2) 

conserves parity; that is, the integer pair (k',y') = h (k,y ) 
has the same parity as (k,y). 

Prool It is sufficient to prove that the transformation 
(n\,n2)l---+ho(n\,n2) conserves the parity of (n 1,n2), where 
(n lJn2 ) is any pair of integers. This is done by considering all 
cases for (u\,u2), (uo,vo), and (n lJn2). We find thatthediag­
onal elements of the matrix ho [see Eq. (4.12b)] are always 
odd and the off-diagonal ones even. This implies that 
(n; ,n2) = hO(n 1,n2 ) and (n 1,n2 ) have the same parity. • 

The significance of Theorem S.l for weight-2 zeros of 3j 
coefficients is that we can restrict our considerations to those 
elements (k,y)EB(u\,u2) that satisfy the required parity 
properties. This motivates us to define the subset S (u \,u2 ) of 
B(u\,u2) by 

S(U"U2) = {(k,y)EB(u\,u2) IU2 + k odd; u\ + y odd}. 
(S.4) 

Not all points (k,y) in the set S(u\,u2) are mapped by 
the transformation (4.9) to coordinates (X\,x2) that give 
weight-2 zeros of a 3j coefficient. This is because the "thresh­
old conditions" k>U2 + 3, y>u\ + 3 must still be satisfied. 
This situation suggests defining the pair of integers 
(k '" ,y'" ) EN2 to be the least pair in the sets 

... ,h 0- 2S(U\,u2),h 0- \S(u\,u2),S(U\,u2), 

(S.Sa) 

such that 

k "'>u2 + 3, y"'>u\ + 3. (S.Sb) 

[Note that ho is defined in (4.12b).] We find, in fact, that 

This result may be proved by using the parametric solution 
( 4. 3a). This parametric point gives 
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TABLE I. Fundamental solutions of Pell's equation. 

(u t ,u2 ) (uo,uo) 

(2,2) (two orbits) (7,2) 
(2,3) (two orbits) (5,1) 
(2,4) (three orbits) (19,3) 
(2,5) (four orbits) (31,4) 
(2,6) (six orbits) (55,6) 

(3,2) (two orbits) (5,1 ) 
(3,3) (six orbits) (161,24) 

(3,4) (four orbits) (17,2) 
(3,5) (six orbits) (41,4) 

(3,6) (square) (1,0) 
(4,2) (four orbits) (19,3) 
(4,3) (four orbits) (17,2) 
(4,4) (eight orbits) (127,12) 

(4,5) (ten orbits) (721,57) 

(4,6) (nine orbits) (485,33) 

(5,2) (four orbits) (31,4) 
(5,3) (seven orbits) (41,4) 

(5,4) (eight orbits) (721,57) 

(5,5) (square) ( 1,0) 
(5,6) (12 orbits) (1351,78) 

(6,2) (nine orbits) (55,6) 

(6,3) (square) ( 1,0) 
(6,4) (12 orbits) (485,33 ) 

(6,5) (12 orbits) (1351,78) 

(6,6) (eight orbits) (199,10) 

(x,y) (k) and (x,y) 

(2,1)(3) (10,3)(11) 
(2,1)(4) (14,3)(16) 
(2,1)(5) (18,3)(21) (82,13)(93) 
(2,1)(6) (22,3)(26) (38,5)(44) (178,23)(204) 
(2,1)(7) (16,2)(20) (26,3 )(31) (82,9)(95) (128,14)( 148) 
(394,43)( 455) 
(6,2)(3) (18,4)(7) 
(6,2)(4) (24,4)(10) (66,10)(26) (174,26)(68) (456,68)(178) 
( 1194,178)(466) 
(6,2)(5) (30,4)(13) (66,8)(27) (186,22)(75) 
(6,2)(6) (36,4)(16) (69,7)(29) (111,11)(46) (204,20)(84) 
(594,58)(244) 
(6,2)(7) (42,4)( 19) 
(12,3)(3) (28,5) (68,11)(13) (132,21)(25) 
(12,3)(4) (36,5)(8) (108,13)(22) (228,27)(46) 
(12,3)(5) (44,5) (68,7)(15) (156,15)(33) (348,33)(73) (772,73) 
(1132,107)(237) (2508,237)(525) 
(12,3)(6) (52,5) (108,9)(24) (212,17)(46) (492,39)(106) 
(948,75)(204) (2188,173) (4212,333)(906) (8108,641)(1744) 
(18708,1479)( 4024 ) 
(12,3)(7) (60,5)(15) (156,11)(35) (276,19)(61) (660,45)(145) 
(1572,107)(345) (2748,187)(603) (6540,445)(1435) 
(15564,1059) (3415) 
(20,4)(3) (40,6)(5) (200,26)(23) (340,44)(39) 
(20,4)(4) (50,6)(7) (85,9)(11) (160,16)(20) (295,29) (470,46)(58) 
(860,84)(106) 
(20,4)(5) (60,6)(9) (300,24)(39) (580,46)(75) (1340,106) (173) 
(2580,204)(333) (11460,906) (1479) (22060,1744)(2847) 
(20,4)(6) (70,6)(11) (155,11) 
(20,4)(7) (80,6)(13) (160,10)(23) (340,20)(47) (620,36)(85) 
(1280,74)(175) (2320,134)(317) (4780,276)(653) 
(8660,500)( 1183) (17840,1030)(2437) (32320,1866)(4415) 
(66580,3844 )(9095) 
(12,4)(2) (30,5)(3) (54,7) (114,13)(9) (180,20)(14) (282,31) 
(558,61)(43) (870,95)(67) (1356,148) 
(30,5)(4) (66,7) (222,19) 
(30,5)(5) (78,7) (114,9)(11) (210,15)(19) (510,35)(45) (894,61) 
(1218,83) (107) (2130,145)( 187) (5070,345)(445) (8862,603) 
(12066,821) (1059) (21090,1435) (1851) 
(30,5)(6) (90,7)(10) (210,13)(20) (390,23)(36) (810,47)(74) 
(1470,85)(134) (3030,175)(276) (5490,317)(500) 
(11310,653)( 1030) (20490,1183)( 1866) (42210,2437)(3844) 
(76470,4415) (6964) 
(30,5)(7) (102,7) (366,19)(35) (690,35)(65) (1290,65)(121) 
(2406,121) (7422,373)(695) (13830,695)(1295) 

(S.7) 

showing that the set §(U l ,U2) is never empty; on the other 
hand, the point (S.7) does not satisfy the threshold condi­
tion (S.Sb). It is, however, true that 

in terms ofPe11's equation. We state this result as a theorem, 
using the notations above. 

hO-I(U2 + l,ul-l) <hO(u 2 + l,ul-l), 

hO(u2 + l,ul - l»(u2 + 3,u l + 3) 

(S.8a) 

(S.8b) 

for u l >2, u2>2, which proves (S.6). Relation (S.8a) is tri­
vial to prove; (S.8b) may be proved directly from the defini­
tion (4.12b) of ho, using the property vo> 1, Uo > u 1 + 1 of 
the least positive solution of u2 

- Dv2 = 1 for u l >2, u2 >2 
and D nonsquare. 

The orbit Ho(k,y) of the point (k,y)e§(u l ,u2) under the 
action of the group Ho is, by definition, the set of points 

Ho(k,y) = {h ~ (k,y) IneZ}. (S.9) 

The results above furnish the complete answer to the 
problem of obtaining all weight-2 zeros of the 3j coefficient 
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Theorem 5.2: For each pair (u l ,u2)eN2 with u l >2, 
u2>2, we have 

X 2 + Ul - 2] 
Xl-U2+2 =0, 

U2 

(S.lO) 

where the integer pair (x l ,x2)eN2 withxl >u2, x2>2 is any of 
the pairs given by 

Xl = (k' + u2 - 3)/2, (S.l1a) 

X 2 = (y' - U l + 1)/2, 

for each (k',y') such that 

(k ',y')eHo(k,y), 

(k' ,y'» (k * ,y*), 

J. D. Louck and P. R. Stein 
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in which the point (k,y) itself runs over all elements in the 
set §(u\,u2). 

Remark: the Regge symmetries and Theorem 5.2 give 
all nontrivial weight-2 zeros of the 3j coefficients in terms of 
positive solutions of the Pell equation. Because of parity, 
modular, and threshold restrictions, not all solutions of the 
Pell equation map back to weight-2 zeros. In the final result, 
given by Theorem 5.2, the zeros (5.10) are classified accord­
ing to the orbits Ho(k,y), where (k,y) is a point in §(U\,U2)' 
there being an orbit for each such point. By construction, 
each point (x',y') in the orbit Ho(k,y) has parity such that 
the pair (x\,x2 ) is integral, but not necessarily positive nor 
greater than the threshold required to make all entries in the 

I 

Regge array greater than 2. The condition (k ',y') ;;;. (k * ,y*) 
assures this property for the corresponding points (X\,x2)' 

It is useful to illustrate the results given here and in Sec. 
IV by an example from Table I. Consider (u \,U2 ) = (6,2), 
which has D = 84 and N = - 1200. The least positive solu­
tion (uo,vo) of u2 - 84v2 = 1 is (uo,vo) = (55,6), which 
gives 

(5.13 ) 

The set D(6,2) of fundamental solutions of x2 - 84y2 
= - 1200 is 

{ 
(12,4), 

0(6,2) = (282,31), 
(30,5), 

(558,61 ), 

(54,7), 

(870,95), 

(114,l3), 

(1356,148) 
(180,20)} . 

( 5.14a) 

The set of all solutions belonging to the positive branch y > 0 
is 

{g;;0(6,2) In = 0, ± I, ... }, (5.14b) 

or, equivalently, it consists ofthe set of nine orbits 

{Go (x,y) I (x,Y)ED(6,2)}. (5.14c) 

The subset A(6,2) C 0(6,2) of fundamental solutions 
whose points satisfy x + 12y = 0 mod 30 is 

A(6,2) 

(180,20) } 

(5.15 ) 

with the corresponding set B(6,2) of values (k,y) given by 

B(6,2) 

{ 
(12,4), 

= (558,61), 
(30,5) , 

(870,95) 

( 114,l3), 

{ 
(2,4), 

= (43,61), 
(3,5), 

(67,95) 

(9,l3), (14,20)} . 

(5.16) 

Finally, the subset §(6,2) of points in B(6,2) having the 
proper parity is 

§(6,2) = {(3,5), (9,l3), (43,61), (67,95)}. (5.17) 

The group Ho is given by 

Ho = {h ~ In = 0, ± 1, ± 2, .. .}, 

where 

h = (127 
o 180 

- 12). 
- 17 

The orbits of the group Ho on the set §(6,2) are 

Ho(3,5), Ho(9,l3), Ho( 43,61), H o(67,95). 

(5.18a) 

(5.18b) 

( 5.19) 

We see that there are four disjoint denumerably infinite 
families of weight-2 zeros of the 3j coefficients correspond­
ing to (u\,u2 ) = (6,2). These zeros are given by the Regge 
array 

[(k' + Y'~-1O)/2 
(k' -1)/2 
(y' - 5)/2 

6 

(y' + 3)/2] 
(k' ~ 1 )/2 = 0, 

(5.20) 

where (k' ,y') is a positive point in any of the four orbits 
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I 
(5.19) satisfying (k ',y');;;. (5,9) = (k *,y*). This includes, in 
fact, all points in the orbits (5.19) with the exception of the 
four points: 

(1,5) = h 0-\(67,95)EHo(67,95), 

(1,7) = h 0- \( 43,61 )EHo( 43,61), 

(3,31) = h 0-\(9,l3)EHo(9,l3), 

(3,5) = h g (3,5)EHo(3,5). 

The result for weight-2 zeros of the 3j coefficients as 
given by Theorem 5.2 is, we believe, a comprehensive and 
elegant statement of the origin of these zeros in terms of a 
classical Diophantine equation, the Pell equation. 

VI. RELATION TO BINARY QUADRATIC FORMS 

We have chosen to solve the Pell equation (3.1) in deter­
mining the weight-2 zeros of the 3j coefficients. This proce­
dure required rejecting from the set offundamental solutions 
those that failed to satisfy the divisibility condition (4.8). 
This step can be avoided by using a different formulation of 
the problem. This alternative, but closely related, method is 
of interest because it relates the properties of the weight-2 3j 
coefficients directly to those of binary quadratic forms, 
which is a well-studied subject in number theory.26-28 

A (real) binary quadratic form q a.b,c is a homogeneous 
polynomial in (x,y)ER2 with coefficients (a,b,c)ER3

, 

qa,b,c (x,y) = ax2 + bxy + cy2. 

The discriminant d of qa,b,c is 

d= b 2 
- 4ac. 

(6.1 ) 

(6.2) 

The form is said to be definite if d < 0; indefinite if d > O. 
To transform Qul,u, (X\,X2) [see Eq. (1.3)] to binary 

quadratic form, we eliminate only the linear terms. Thus 
carrying out the transformation 

(U\,U2,x\,X2) = U·(u\,u2,x,y), (6.3a) 

0 0 0 0 
0 1 0 0 0 

U= 0 ~ ! 0 -~ , (6.3b) 

-~ 0 0 1 ! 2 
0 0 0 0 1 
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we obtain the new polynomial F, 

F(u t,u2,x,y) = Qut,u, (XI,x2) = qa,b,c (x,y) - m. (6.4) 

The coefficients a,b,c are the following functions of U 1,U2: 

a ul(ul-l)/2, C=U2(U2-l)/2, 

b = - UIU2' m = - (u l - 1)(u2 - 1 )(u l + u2)/2. 
(6.5) 

The quadratic polynomial PVt,v, (Y1,y2) may be similarly 
transformed: 

(VI,V2,yI,Y2) = V'(VI,V2,x,y), (6.6a) 

1 0 0 0 
0 1 0 0 

V= ~ ° ! ° (6.6b) 

° ! ° ! 

° 0 0 0 

G(VI,V2,x,y) = PVt,v, (Y1,y2) = qa,b,c (x,y) - m, (6.7) 

with coefficients 

a = (v2 + 1)(v2 + 2)/2, c = (VI + 1)(v1 + 2)/2, 

b = (VI + 1)(V2 + 1), (6.8) 

m = (VI + 2)(v2 + 2)(vl + V2 + 2)/2. 

The discriminants of these two forms qa,b,c with coefficients 
(6.5) and (6.8), respectively, are 

d l (U I,U2) = UIU2(U I + U2 - 1), 

d 2 (vt>V2 ) = - (VI + l)(v2 + I)(vl + v2 + 3). 

(6.9a) 

(6.9b) 

Consequently, for ul>I, u2>2 and vl>O, V2>O, the corre­
sponding forms q a,b,c are indefinite and definite, respectively. 

In studying the relations between the families of qua­
dratic polynomials described above, we take the various pa­
rameters and coordinates to be defined individually on the 
real line; an n-tuple composed of these is taken to lie in Rn; 
for example, 

(U I,u2,x,y)eR4
• (6.10) 

With this extension, the relation 

G( - U2 - 1, - UI - I, - x,y) = F(ul,uz,x,y) (6.11) 

is valid for the full domain (6.10). Consequently, there is 
only one family of binary quadratic forms occurring here; 
namely, the form (6.4) with coefficients given by Eqs. (6.5). 
The discriminants then also agree, d2 ( - u2 - I, - ul - 1) 
= d l (u l'U2 ). 

Relation (1.11) can also be expressed in terms of the 
variables (6.10). In terms of the transformation W defined 
by (V I ,VZ,yI,y2) = W'(Ul>U2,xt,x2) [see Eqs. (1.9)], U de­
fined by Eqs. (6.3), and V by Eqs. (6.6), the relation 
between G and F is 

G(T·(UI,U2,x,y») = F(u!,u2,x,y), (6.12a) 

where 

1 1 0 ° -! -~ ~ ! -1 
T= V-IWU= 1 -1 0 0 ° 

! -! ! -! ° 0 0 0 0 
(6.12b) 
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Combining relations (6.11) and (6.12) we obtain the fol­
lowing theorem. 

Theorem 6.1: The function F is invariant under the 
transformation S defined by 

! ~ -! -! 
-1 -1 0 0 

S= -1 1 0 ° ( 6.13a) 

! -! ! -! 

° 0 0 0 
that is, 

F(u.,uz,x,y) = F(S·(U I ,U2,x,y». (6.13b) 

This symmetry of F is in addition to the eight Regge array 
symmetries of the group K defined by Eq. (1.15). The latter 
symmetry is expressed by F(U 1,U2,x,y) = F(m'(u 1,u2,x,y»), 
each mEM = U-1KU. In particular, the interchange sym­
metry U I-U2' x-y of Fis the transformation U-1rU. 

The group M' generated by the group M and the trans­
formation S is a finite group of symmetries of the function F. 
This group will be described in detail in another paper deal­
ing with the general symmetry group of the "polynomial 
part" of a 3j coefficient. 

The group M' is the same for all (u l,u2,x,y)eR4
; that is, 

the group elements do not depend on the point in R4. The 
function F has, in addition, a continuous group a/symmetries 
at each point (u 1,u2 )eRz. The nature ofthis group depends 
on the point (u 1,U2)' Since this group structure belongs to an 
arbitrary binary quadratic form qa,b,c (x,y) defined by Eq. 
(6.1 ), we give its general formulation. 

We define the graph Ad of the function u2 
- dv2 = 1 by 

Ad = {(u,v) Iuz - dv2 = n, (6.14) 

where d is the discriminant of qa,b,c' To each point (u,v )eAd , 

we let correspond the 2 X 2 unimodular matrix 

(
u -bv -2cV) 

h(u,v) = lov u + bv ' (6.15) 

where a,b,c are the coefficients in qa,b,c' which we regard as 
specified. Then the set H defined by 

H = {h(u,v) I (u,v)eAd } (6.16) 

is a group under matrix multiplication, which may also be 
expressed as h(u,v)h(u',v') = h(uu' + vv'd,uv' + vu'); the 
identity is h(1,O), andh(u,v) -I = h(u, - v). [Here the co­
efficients have been suppressed in writing Hand h (u,v).] 

The principal result for the group H, which may be 
proved by direct substitution, is the following. 

Theorem 6.2: The group H is an invariance group of the 
binary quadratic form q a,b,c; that is, 

qa.b,c (x',y') = qa,b,c (x,y), ( 6.17a) 

for 

(6.17b) 

It is not difficult to prove that H is isomorphic to the 
Lorentz group SO(1,I) for d>O, to the rotation group 
80(2) for d<O, and to a group A(2) of 2X2 triangular 
matrices for d = O. 

The invariance group H is important for the study of the 
Diophantine equation 
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qa.b.c (X,y) = m, (6.18) 
where now (a,b,c,x,y)EZ5 and mEZ is in the range of qa.b.c' 
The group H is significant because of its integer subgroups: 
integer points (u,v)EAd correspond to elements h(u,v)eH 
with integer entries, and such elements of H map integer 
solutions of (6.18) to integer solutions. Not all integer ele­
ments of H, however, lead to distinct solutions. This is be­
cause all integer solutions of u2 

- dv2 = 1 belong to a single 
orbit of the group {Go, - Go}, where Go is defined by Eq. 
(3.5) withD = d = b 2 - 4ac. The implication ofthis result 
is that only the subgroup Ho = {h ~ IneZ}cH, where 

ho = (Uo - bvo - 2cvo l, (6.19) 
2avo Vo + bvj 

is relevant in the classification of the set of solutions of Eq. 
(6.18) by the orbits of{Ho, - Ho}. 

Let (x,y)EZ2 be a solution ofEq. (6.18), if such exists. 
We can define a fundamental solution with respect to Ho to 
be the least positive solution in the orbit ± Ho(x,y). (Any 
set of orbit representatives could serve as a set offundamen­
tal solutions.) In this way, the problem of finding all integer 
solutions of Eq. (6.18) is reduced to that of finding the fun­
damental ones, which are always finite in number (including 
zero). For d>O and nonsquare (hyperbolic case), the ma­
trix ho generates an infinite-order discrete group 
HoCSO(1,l), and the infinitely many solutions of Eq. 
(6.18) are classified by a finite number of orbits ± Ho(x,y), 
one for each fundamental solution (x,y). For d>O and 
square (hyperbolic case) or for d <0 (elliptical case), we 
have (Uo,Llo) = (1,0) so that ho = Ho = I, the identity ma­
trix. The invariance groups {I, - I}CSO(1,I) and 
{I, - I}CSO(2) now yield only the points (x,y) and 
( - x, - y) in the same orbit. 

In the application of the preceding results on binary 
quadratic forms to the special forms with coefficients (6.5) 
and (6.8), an extra richness of structure appears. This is 
brought out nicely by considering the surface IF in R4 defined 
by 

(6.20) 

The set of lattice points n:.. of this surface is the set of points of 
F with integer coordinates, 

n:.. = {(ul,u2,x,y)EZ4IF(ul,u2,x,y) = O}. (6.21) 

In particular, the set n:.. contains all points that correspond to 
weight-2 zeros of the 3j coefficients, both in the hyperbolic 
and elliptical classifications [see Eqs. (6.3), (6.4), (6.6), 
(6.7), and (6.11)]. Unlike the general case (6.18), the set L 
is never empty, since it always contains the points 

(U 1,U2,U2 + 1,ul - 1), all (U I,U2)EZ2, 

and 

(U 1,U2,U2 + 1 + (4U2/(UI - 1»),u2 + 1), all (u j ,u2)EZ
2 

such that U I - 1 divides 4U2' 
Each (U 1,U2 ) plane in IF has a symmetry group that is 

eitherisomorphic to SO(1,I) (d>O), to SO(2) (d <0), or 
to A(2) (d = 0). If we restrict the surface IF to its subset of 
lattice points L, the relevant group for the (UI,U2) plane, 
with (ul,u2)el?, is restricted to the discrete subgroup 
{Ho, - Ho}, so that all points in L can be classified by orbits 
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relative to this subgroup. (This is, to be sure, a rather trivial 
classification in some cases. ) 

In addition to the group structure of points in a (U I ,U2 ) 

plane described above, there is also the symmetry of the sur­
face F corresponding to the transformations belonging to the 
finite group M' (see Theorem 6.1 et seq.) These transforma­
tions map points from one (U 1,U2 ) plane to another. The 
following example illustrates this property. 

Take (U 1,U2) = (6,2). This is our earlier example [see 
Eqs. (S.l3 )-(5.18)] rephrased in terms of binary quadratic 
forms. We have 

F(6,2,x,y) = lSx2 
- 12xy + y2 + 20 = O. (6.22) 

The (6,2) plane in L contains an infinite number of lattice 
points given by the orbits ±Ho(xl,yl)' where 
(xl,yl)eB(6,2). These orbits, of course, constitute all in­
teger solutions ofEq. (6.22). 

Under the transformation S given by (6.l3a), an integer 
solution (x,y) of (6.22) is mapped to an integer solution of 

F(u; ,u2,x',y') = 0, (6.23a) 

where 

(ui ,u2) = (4 - ~(x + y), - 7), 

(x',y') = (- 4,2 + !(x - y»). 

(6.23b) 

(6.23c) 

The point (ui ,u2,x',y') belongs to L. The original (6,2) 
plane is, however, hyperbolic, while for Ix + yl>lO, the 
(ui ,U2) plane is elliptical. The integer solutions (infinite in 
number) of 

qlS. -12.1 (x,y) = - 20 (6.24a) 

are distributed by the map S into integer solutions, one each, 
of the infinite number of Diophantine equations. 

qa·.b·.c'( - 4,2 + !(x - y») = m', (6.24b) 

where a',b ',c', and m' are expressed in terms of (ui ,u2) by 
Eqs. (6.5). 

The properties of the function F( U j,u2,x,y) discussed in 
this section are intended only to indicate the deep structure 
associated with the polynomial part of a 3j coefficient. We 
have not implemented methods discussed in Refs. 26-28 of 
solving the Diophantine equation F(Uj,U2,x,y) = 0, since 
from a calculational viewpoint this would repeat much of 
Sees. III-V, which have been based directly on Pe1l's equa­
tion. 
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The following procedure is described: Starting with a connection in a principal fiber bundle 
P(M,G), where G is either the Poincare group or one of the de Sitter groups, a connection in 
the bundle of linear frames of a submanifold N of M is constructed by using the translational 
components of the original connection for frame identification. The dimension of N is gauge 
dependent, and the flat four-dimensional Minkowski space-time may appear of dimension less 
than 4 when certain gauges are used. It is shown that in the case of a de Sitter group, the 
minimum dimension to which the flat four-dimensional space-time can be reduced is 1, while 
the number is 0 for the Poincare group. The gauge transformation that achieves the maximum 
dimension reduction in the de Sitter case is constant and leads to infinite strings as a result. 
Variable continuous gauge transformations that can reduce the dimension over a finite region 
of the base manifold are also considered. 

I. INTRODUCTION 

Ever since Kibble l proposed a theory with translations 
included in the gauge group of general relativity, the subject 
has been extremely popular. The emphasis has been, how­
ever, on the introduction of torsion into general relativity 
(Riemann-Cartan geometry) and the construction of La­
grangians. Some examples of the literature are given in Ref. 
2. 

In this paper it is the geometry of the construction that is 
primarily studied, expanding a short note listed in Ref. 3. 
The main geometric role played by the translations in the 
gauge group is that it can provide the necessary "solder­
ing,,,4 i.e., it changes a principal fiber bundle with no special 
relationship between the points on the fibers and the base 
manifold into the bundle of linear frames of the base mani­
fold. The soldering is based on an identification of the trans­
lational component of the original connection form with the 
canonical form of the bundle oflinear frames. The identifica­
tion is made on a partially fixed cross section subject only to 
Lorentz gauge transformations. Since the Poincare group 
and de Sitter groups are indistinguishable as far as the ad­
joint action of the Lorentz subgroup is concerned, the sol­
dering can be done in the same way for all three cases. How­
ever, the procedure depends on the selection of the reference 
cross section, and that is where the difference between the 
Poincare and the de Sitter groups shows up. When the rank 
of the translational component of the connection form is less 
than 4, full soldering is not possible, but in some cases it can 
still be carried out on a submanifold of the base manifold. In 
particular, a connection may yield the flat four-dimensional 
space-time in one gauge, and a space of a lower dimension in 
another gauge. One can ask about the minimum dimension 
to which the flat four-dimensional space-time can be re­
duced by a transformation. In the de Sitter case, which is, in 
general, geometrically more interesting than the Poincare 
case, the minimum dimension is 1. This could be somehow 
connected with the fact that the most elementary constitu­
ents of matter seem to have the appearance of one-dimen­
sional strings. 

Section II introduces the construction of a bundle of 
linear frames from the principal fiber bundle with Poincare 

or de Sitter structure using the formalism of the modern 
differential geometry.5 Section III discusses a physical inter­
pretation of the construction. Section IV describes explicitly 
the construction of Sec. II in terms of coordinates, while Sec. 
V is concerned with the construction of a flat Minkowski 
space and its gauge dependence. Section VI gives an example 
of a partial dimension reduction in spherical coordinates. 

II. SOLDERING BY GAUGE TRANSLATIONS 

Chapter III of Ref. 5 describes the reduction of the bun­
dle of affine frames to the bundle of linear frames and the 
affine connection. Since it is closely related to the construc­
tion described later, it will be briefly reviewed. A linear 
frame of an n-dimensional manifold Mis a basis (Xl, ... ,xn) 
of the tangent vector space Tx (M) at xEM. An affine frame 
is a linear frame together with a point in Tx (M) regarded as 
an affine space. There is a natural map from the bundle of 
linear frames L(M) into the bundle of affine frames A (M) 
defined by 

(2.1 ) 

where Ox is the origin of Tx (M). Ifm is a connection form on 
A (M) then its imageonL(M) splits naturally into GI (n, R) 
components, 

y*m = Q) + rp . (2.2) 

Every linear frame (Xl, ... ,xn ) at xEM can be considered as a 
linear map u of Rn onto Tx (M) by 

n 

u(al, ... ,an
) = I aiX; . 

i=1 

(2.3 ) 

The canonical form 0 on L(M) is the Rn-valued form de­
fined by 

O(X) = U-
l(1T(X»), (2.4) 

where X is a tangent vector in the bundle manifold of L (M), 
and 1T is the canonical projection in L(M) from the bundle 
manifold to the base manifold. It is easy to see that 

(R :O)(X) = a-l(O(X») , (2.5) 

whereRa is the right action of a E GI(n, R) onL(M). Since 
the form defined by (2.2) has the same transformation law 
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(2.5) as 0, it is possible to define an affine connection in 
A (M) as a connection for which 4> = O. The curvature form 
o of an affine connection in A (M) decomposes under the 
injection r defined by (2.1) according to 

r*O = n + e , (2.6) 

where n and e are, respectively, the curvature and torsion 
forms on L(M). 

If an affine connection in A (M) is reducible to a Poin­
care type subgroup of the affine group, then the linear con­
nection in L (M) is reducible to the corresponding Lorentz 
type subgroup ofGl(n, R). 

The aim of this section is to use the above for defining a 
construction of a bundle of linear frames from a principal 
fiber bundle P(M,G), where M is a four-dimensional mani­
fold, and G is the Poincare group. Only local aspects of the 
construction will be considered in this paper. Thus the bun­
dle manifold P can be considered as M X G, and a subbundle 
Q(M,H) of Pc an be identified. HereQ = M XHandHisthe 
Lorentz subgroup of G. If r is the natural injection of Q into 
P and w is a connection form on P, 

r*w = w + 0, (2.7) 

where wand 0 are forms on Q with values in the Lorentz 
algebra and Rn

, respectively. Under the right action of a EH, 
o behaves exactly as in (2.5). It can thus be identified with a 
canonical form of a bundle oflinear frames, which is already 
reduced to a Lorentz structure. By the identification it is 
meant that (2.4) is used to determine u - 1, which in its turn 
defines the frames by (2.3). To ensure the existence of u we 
must have a condition 

O(X) = O=>1T(X) = O. 

Let us now assume that 

O(X) = 0 if 1T(X)EUx , 

(2.8) 

(2.9) 

where Ux is a subspace of Tx (M). Selecting another sub­
space Vx of Tx (M) such that 

Tx (M) = Ux EB Vx and O(X) #0 

if 1T(X) #0 and 1T(X)EVx ' 

an invertible map V-I: VX -+]RP can be defined by 

p(O(X») = V-
1(1T(X»), 1T(X)EVx , (2.10) 

wherep is a canonical projection]R4 -+ ]RP,p = Dim Vx' If Vx 
defines an involutive distribution on M then there exists (lo­
cally) a submanifold N of M such that Tx (N) = Vx ' In that 
case map v can be used to define linear frames on N. A con­
nection in L (N) is defined by w with values restricted to the 
subgroup of the Lorentz group determined by projection p. 

Several comments about the above described construc­
tion are in order. 

(i) Depending on the original connection in P(M,G) it 
mayor may not be possible to construct submanifold N. 
When the construction is possible, it is in general not unique. 
The dimension of N, however, is unique since it is deter­
mined by the rank of O. 

(ii) The construction does not work only for the Poin­
care group in the role of G. If G is ten-dimensional and its Lie 
algebra can be written as 
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(2.11 ) 

where H is the Lie algebra of the Lorentz group and T is an h­
dimensional subspace of G that transforms under the adjoint 
map ad H in the same way as the translations in the Poincare 
group, then G can be used for the construction. Indeed, injec­
tion r will still exist, r*(J will still decompose as in (2.7), and 
it will still have the correct behavior under the right action of 
H. Since the construction is on the subbundle Q(M,H), the 
Lie aglebraic properties ofT are not important, except for its 
transformation under ad H. In this way G can be also a de 
Sitter group of type either (4,1) or (3,2). 

(iii) The construction may be possible also when M has 
dimension higher than 4. Since 0 can have rank at most 4, 
some dimension reduction must occur, and the success of the 
construction will depend on the existence of the involutive 
distribution Vx ' 

(iv) Most importantly, the construction depends on the 
particular way in which P is represented as M X G. Such a 
representation involves a selection of a reference cross sec­
tion corresponding to the identity element of G. In physical 
applications this is called gauge, and a change from one ref­
erence cross section to another is called a gauge transforma­
tion. Gauge invariance of the construction is retained only as 
far as a Lorentz gauge transformation is concerned (or the 
appropriate subgroup of the Lorentz group in case of a lower 
dimension), but a gauge transformation involving transla­
tions can change the result, including the final dimension of 
the constructed submanifold. Gauge dependent results are 
usually not studied in differential geometry. After all, a 
gauge transformation is just a special kind of a coordinate 
transformation, and the true modern differential geometry is 
concerned only with the properties that can be described in a 
coordinate-free fashion. Alas, in physical applications the 
selection of a gauge and gauge transformations often play an 
important role and, as discussed in the next section, the role 
could be crucial in case of translations. 

III. PHYSICAL INTERPRETATION 

Before the construction described in Sec. II is demon­
strated on particular examples, let us discuss the physical 
motivation and interpretation of the results. For a physical 
understanding of concepts like connection and reference 
cross section, it is better to introduce the connection via the 
horizontal lift, rather than the connection form. 

If P(M,G) is a principal fiber bundle with a connection 
form w, the horizontal lift X (h) of X E Tx (M) is the unique 
tangent vector at pEP, X = 1T(p), satisfying 

1T(X(h» =X and W(X(h» = O. (3.1) 

Physically, transport in the horizontal direction implies 
no measurable change of the geometrical properties de­
scribed by G. For example, if P(M,G) were a bundle oflinear 
frames of a three-dimensional manifold and G the group of 
rotations, a frame transported in the horizontal direction 
would be perceived as parallel to the original frame, i.e., 
without any observable rotation. 

Thus O(X) = 0 of Sec. II can be interpreted as "no ob­
servable translation" in the direction of 1T(X). Dimension of 

P. K. Smrz 2825 



                                                                                                                                    

M is then just the number of parameters needed to describe 
physical fields, while the dimension of the submanifold N is 
the observable physical dimension. Our macroscopical expe­
rience with space-time tells us that the observable dimension 
is 4. Since the dimension depends on the selected reference 
cross section (gauge), it mu~t be assumed that the gauge is to 
some extent fixed. It is not too surprising, since even the 
Lorentz gauge, though theoretically free to choose, would be 
difficult to set up practically if its Lorentz frames involved 
high velocities. Hence it is possible that our macroscopical 
methods of measuring space-time intervals restrict us to a 
fixed gauge as far as translations are concerned. Such restric­
tions may not apply in the microworld of elementary parti­
cles, where the same space-time may appear to have a differ­
ent dimension due to the fact that it is viewed from a different 
gauge. 

IV. EXPRESSION IN LOCAL COORDINATES 

To investigate particular cases one has to formulate 
everything explicitly, using local coordinate systems. 

Let Mbe a four-dimensional manifold with a local coor­
dinate system (x", J.t = 1, ... ,4). Consider a principal fiber 
bundle P(M,G), where G is either the Poincare group or one 
of the de Sitter groups. In a particular gauge, a connection in 
P can be defined by the horizontal lift of a lax"eT" (M) , 

X(h) =..!..... - ~A i} (x) W- -A j (x)T (4.1) 
JJ ax" 2 JJ jl JJ i' 

Here Jfji and Ti are the right invariant vector fields in G, 
with Jfji spanning the Lorentz algebra. Functions A ! (x) 
are the Lorentz components of the connection, while A ~ (x) 
correspond to the form (} of (2.7) by 

(4.2) 

The coordinates in the Poincare group can be chosen as 
the elements of 5 X 5 matrices 

[
X; I 0] - +-
Yj I 1 ' 

(4.3) 

where 

x - I 
jgi/X k =gjk' (4.4) 

gjk = diag(1,I,I, - 1) . 

The right-invariant vector fields are then 

(4.5) 

and 

(4.6) 

The coordinates in a de Sitter group can be chosen as the 
elements of 5 X 5 matrices [X:] satisfying 

X~gpgX: =g,.. , 
(4.7) 

grs = diag(1,I,I, - 1, ± 1) . 

The right-invariant vector fields are then 

wr=xr~ 
P s axp' 

s 

(4.8) 
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where the restriction of indices to the range 1,2,3,4 defines 
Wi}' while 

(4.9) 

A gauge transformation is characterized by the right 
action of group G on the reference cross section with the 
group element being a function of position in M. This causes 
a change of the coordinate system in P = M X G with the 
new coordinates in G measuring the position on the fibers 
from the new cross section. If the variable group elements 
are characterized by a; (x) and aj (x) in case of the Poincare 
case and by a: (x) in the de Sitter cases, the respective trans­
formations are 

and 

F=x", X;=b~(x)X;, 

~ = Yj - a j (x)b Ux)X;, 
(4.10) 

x: = b~(x)X; . (4.11) 

Here matrices [b;] and [b:] are inverses of [a;] and 
[~]. 

Applying the transformations (4.10) and (4.11) to the 
horizontal lift (4.1) yields the gauge transformation of the 
connection components. 

For the Poincare case 
Ai} = b j A klb j + (a b j )bj,.kl 

JJ k JJ 1 JJ k IS, 

A j = b j A k + b i A klb j a + g'-I(a a ) 
JJ kJJ kJJlj JJI ( 4.12) 

-I k -+ g' b 1 (aJJb',. )aj • 

For the de Sitter case 

Apq=bPArsb q+ (a bq)bP,.,rs p r p. s p. r sl5 , (4.13) 

where 

A ~ =A ~ of (4.1) . 

Restricting the gauge transformation to the Lorentz 
subgroup means aj (x) = 0 for the Poincare group, and 
a; (x) = aJ (x) = 0, a~ (x) = 1 for the de Sitter groups. Of 
course, the transformation of A ~ is then identical in all cases 
and given by 

(4.14 ) 

which is just an explicit expression for the transformation 
(2.5) of the canonical form. 

Curvature of the connection in P can be calculated by 
taking the commutator 

[X~h),x~h)] =!R!vJfji +S~vTj' (4.15) 

The two terms on the right-hand side of (4.15) correspond 
to the decomposition (2.6). 

V. FLAT SPACE CONSTRUCTION AND ITS GAUGE 
DEPENDENCE 

Let us now assume that in a particular gauge the connec­
tion describes a fiat Minkowski space. Explicitly it means 
that the connection is described by a horizontal lift of the 
form 

X(h)=..!.....-A j (x)T. 
JJ ax" JJ " 

(5.1) 
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where the matrix [a~] is invertible for all x, and 

allA ~ -ayA~ =0. (5.2) 

Here A ~ (x) are proportional to the partial derivatives of 
Minkowski coordinates Xi, i = 1, ... ,4, with respect to general 
coordinates xIl, Il = 1, ... ,4. If the coordinates are considered 
as measured in units of length, we can write 

A i ( ) _ 1 axi x ---
Il I axil' 

where I is a constant length. 

(5.3 ) 

Calculating the curvature of the connection defined by 
(5.1 ), according to (4.15) one obtains 

RZv =S~y = 0 (5.4) 

for the Poincare group and 

RZv = ±(A~A~-A~A~), S~v=O (5.5) 

for the de Sitter groups. The curvature of the connection in 
L (M) generated according to the construction described in 
Sec. II is, of course, 0 in both cases. 

Under a gauge transformation the components of the 
curvature in (4.15) transform according to the action of 
ad a-I(x), a(x)EG. In the Poincare case, R Zv and S~v re­
main 0 in all gauges. For de Sitter groups 

-i i k I k I S 6 Sllv= ±bk(AyAIL-AIlAv)bl' (5. ) 

and requirement S ~y = 0 leads to b ~ = 0, b ~ = 0, and 
b; = 1. Thus only a Lorentz gauge transformation is per­
mitted if S ~v is to remain O. At the same time, the induced 
connection in L (M) is not changed by Lorentz gauge trans­
formations. Thus in the de Sitter case, the flat connection in 
L (M) with S ~v = 0 is unique. The geometric meaning of 
S~v in L(M) is that of torsion. Hence we can state the fol­
lowing. 

If a flat connection is generated from a connection in 
P(M,G) with G being a de Sitter group, the gauge is deter­
mined up to a Lorentz gauge transformation by the require­
ment of zero torsion. 

This is quite pleasing from the physical point of view, 
since it hints on a possible relationship between space-time 
measurements and the choice of the gauge. Macroscopical 
measurements of space and time are based on the use of geo­
desics (light rays) and a connection constructed from geo­
desics (using the Schild's ladder) comes automatically with 
zero torsion.6 

Let us now investigate how the dimension of submani­
fold N constructed from the connection described by (5.1) 
depends on the choice of the gauge. In particular, we should 
be interested in the minimum dimension to which the flat 
four-dimensional space-time can be reduced, and in the 
gauge that can achieve the maximum reduction. 

In the Poincare case the answer is rather trivial. Using 
Minkowski coordinates (A ~ = (l11)t5~), A ~ = 0 in (4.12) 
leads to 

(5.7) 

Thus the rank of (J is 0, and so is the minimum dimension. 
This is not surprising, since the original connection in 
P(M,G) is flat. 
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In the de Sitter case it is easy to see that the minimum 
dimension must be greater than O. Namely, assume that it is 
O. Then the horizontal lift (4.1) has only the Lorentz com­
ponent in the appropriate gauge. But then the curvature has 
also only the Lorentz component, and that is impossible 
since S ~v can be 0 only in the original gauge. Thus the mini­
mum dimension must be at least 1. The direct way to show 
that it is in fact equal to 1 is to solve the equations A ~ = 0, 
i = 1,00.,4, for as many values ofindexll as possible. Separat­
ing index 5 from the remaining values Eq. (4.13) reads 

A~ =b{A;b; -b;A~b~ + (allb;)b;~s 
+ (allb J)b ~gjk = O. (5.8) 

Working in Minkowski coordinates we have for, say Il = 1, 

(1I1)b}b; - (1I1)b;b i + b; (alb; )~5 

(5.9) 

After multiplication by matric [a~] one obtains 

(l11)t5) - (lIi)~b i + ~ (alb D~5 + gPj(alb J) = 0, 

for p = 1'00.5, which can be written as 

(1I1)b; + gil (alb i) = 0 , 

- (lli)bi +~5(alb;) =0, (5.10) 

alb~ =alb~ =alb~ =0. 

Similar sets of equations must be valid for every dimen­
sion Il for which A ~ = O. If only one more dimension is 
added, say Il = 2, the resulting set of equations leads to b i 
= b ~ = b; = O. The process can be extended by one more 

dimension. The third dimension cannot be chosen arbitrar­
ily, since [b ~ ] must belong to the particular de Sitter group 
and due to b; = 0 the equation 

b iijb J = ~5 (5.11 ) 

must be satisfied. Thus if the de Sitter group is the type (4,1 ) 
(e.g., ~5 = + 1), the maximum dimension reduction can 
be achieved by 

b i = b ~ = b ~ = b; = 0, b ~ = 1 , 

while if the type is (3,2) (~5 = - 1) then we have 

b i = b ~ = b ~ = b; = 0, b ~ = 1. 

In both cases the minimum dimension is 1, but its character 
(spatial or temporal) depends on the type of the de Sitter 
group. 

VI. DIMENSION REDUCTION IN SPHERICAL 
COORDINATES 

The maximum reduction described in the previous sec­
tion is allowed by the ultimate symmetry of the flat space­
time expressed in Cartesian coordinates. The gauge transfor­
mation is also constant and cannot be continuously changed 
into the identity. It is of interest to study variable transfor­
mations that can reduce the dimension of a finite region of 
space-time while remaining everywhere continuous. In par­
ticular, eliminating the radial distance could lead to a model 
of a pointlike particle that would at the same time occupy a 
finite region of the base manifold and thus preserve an inter-
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nal structure. This could be used also for dealing with classi­
cal singularities caused by pointIike character of particles. 
The Schwarzschild metric should be investigated in this 
manner, but here only the reduction of a flat space-time met­
ric in spherical coordinates will be considered as a prelimi­
nary study. 

and 

in 

In the initial gauge we can choose 

A ~ = (1I1)cos (), A; = (lIl)sin () sin ¢, 

A; = (lll)sin () cos ¢ , 
(6.1 ) 

A? = 0 for all i,j = 1, ... ,4. (6.2) 

The same reasoning that lead to Eqs. (5.10) now results 

0 cos¢ 
sin () - cos () sin ¢ 

[b:1 = cos(rll)cos () cos(rl/)sin () sin ¢ 

0 0 

A ~b; + gij(arb J) = 0, i = 1,2,3 , 

g4j (arb J) = 0 , - A ~b i + (arb; )tS = 0 . 

Eliminating b J yields 

ts(a;b;) + (lIF)b; =0, 

with the general solution 

b; = a cos(rll) + b sin(rl/) , 

if t S = + 1 [the case of (4,1) de Sitter group], and 

b; = aerll + be - rll , 

if t S = - 1 [the case of (3,2) de Sitter group] . 

(6.3 ) 

(6.4 ) 

(6.5) 

(6.6) 

For example, a complete solution for the (4,1) case can 
be written as 

- sin¢ 0 0 
- cos () cos ¢ 0 0 

cos(rll)sin () cos ¢ 0 sin (rll) (6.7) 
0 0 

- sin(rl/)cos () - sin (rl/) sin () sin ¢ - sin(rl/)sin () cos ¢ 0 cos(rl/) 

At r = 21Tnl, n integer, the gauge transformation (6.7) 
reduces to a 3 X 3 transformation of spatial frames. The fact 
that it does not reach the identity is due to the nonexistence 
of a global frame selection on a spherical surface, and it could 
be fixed by using an appropriate patching. The important 
feature is that the translational components of the gauge 
transformation disappear on the surface of radius 21Tnl. 
Thus it is possible to have a continuous gauge transforma­
tion that leaves the outside of the sphere as the four-dimen­
sional space-time, while the inside region loses one observ-

2828 J. Math. Phys., Vol. 28, No. 12, December 1987 

able dimension, namely the radial distance. 
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In this paper it is shown that the procedure of geometric quantiztion applied to Kahler 
manifolds gives the following result: the Hilbert space JY' consists, roughly speaking, of 
holomorphic functions on the phase space M and to each classical observable/ (i.e., a real 
function on M) is associated an operator f on JY' as follows: first multiply by! + If1/l.dJ (/l.dR 
being the Laplace-de Rham operator on the Kahler manifold M) and then take the 
holomorphic part [see G. M. Tuynman, J. Math. Phys. 27, 573 (1987)]. This result is correct 
on compact Kahler manifolds and correct modulo a boundary term f Mda on noncompact 
Kahler manifolds. In this way these results can be compared with the quantization procedure 
ofBerezin [Math. USSR Izv. 8, 1109 (1974); 9,341 (1975); Commun. Math. Phys. 40, 153 
(1975)], which is strongly related to quantization by *-products [e.g., see C. Moreno and P. 
Ortega-Navarro; Ann. Inst. H. Poincare Sec. A: 38, 215 (1983); Lett. Math. Phys. 7, 181 
(1983); C. Moreno, Lett. Math. Phys. 11, 361 (1986); 12, 217 (1986) ]. It is shown that on 
irreducible Hermitian spaces [see S. Helgason, Differential Geometry, Lie Groups and 
Symmetric Spaces (Academic, Orlando, FL, 1978)] the contravariant symbols (in the sense of 
Berezin) ofthe operators Cas above are given by the functions! + If1/l.dJ. The difference with 
the quantization result of Berezin is discussed and a change in the geometric quantization 
scheme is proposed. 

I. PRELIMINARIES 

Let (M,w) be a symplectic manifold describing the 
phase space of some physical system in classical mechanics. 
By n we always denote half the (real) dimension of M and by 
Ek we denote the 2k-form on M, 

Ek = (_I)k(k-l)12lk!wk, 

in particular, Eo = 1 and En is the Liouville volume element 
on M. On M we choose the orientation such that En is posi­
tive and hence we can (and will) identify densities and vol­
ume forms on M. 

Geometric quantization with the metalinear correction 
incorporated then constructs a Hilbert space J¥' out of sec­
tions of a complex line bundle QB over M and assigns (tries 
to assign) to an observable/(i.e.,fM -+R) an operator fon 
J¥'. In Ref. 1 a general formula is derived for the local 
expression of the inner product on J¥' and moreover, for 
those observables satisfying [Xf,P + P t] C P + pta gen­
eral (local) expression for fis given that is derived by means 
of an infinitesimal pairing (Ref. 2) [Xf denotes the Hamilto­
nian vector field associated to the functionf ix~ + d/ = 0, 
P denotes the polarization and t means complex conjugation 
(and in case 0/ matrices it means transposition as well) ] . 

We now briefly recall those formulas, in case the polar­
ization P is a positive Kahler polarization. The prequantum 
bundle L (see, for instance, Refs. 2 or 3) is constructed by 
means of a set of local potentials {}j on ~ for w (i.e., 
d{}j = w), where {~} covers the symplectic manifold M. 
On ~ n Uk one supposes {}j - {}k = dUjk for some function 
ujk and then the transition functions of the bundle L are 
given by exp(iujklfl). In the sequel we will identify local 
sections of L with functions on M, always with respect to 
such a trivialization, i.e., depending on the choices of local 

symplectic potentials {}j. The quantum bundle QB is defined 
as the tensor product of L with a line bundle associated to the 
bundle of metalinear P frames. Since the bundle of metalin­
ear P frames has (locally) a canonical trivialization in the 
case of a Kahler polarization (see Ref. 1), it follows that our 
trivialization of L defines a trivilization of QB. Let f/!o be a 
local nowhere-zero section of L (i.e., identified with a local 
nowhere-zero function) that is covariant constant along the 
polarization P (with respect to the connection V on L, see 
below) and let zt, ... ,z" be local complex coordinates on M. 
These coordinates exist because (M,w) together with a posi­
tive Kiihler polarization determine a complex structure on 
M for which w isa (positive) Kahler form (e.g., see Ref. 4). 
With f/!o and i as above each global section f/! of QB which is 
covariant constant along P determines (uniquely) a local 
holomorphic function h (z) such that locally f/! = hf/!o. More­
over, J¥' consists of these covariant constant sections of QB; 
to two such sections f/! and f/!' is associated a density == mea­
sure = volume form (f/!',f/!) on M and the inner product 
< f/!', f/!) in J¥' is calculated by integration of (f/!', f/!) over M. 

Because of the one-to-one relation between sections of 
QB that are covariant constant in the direction of P and 
(local) holomorphic functions on M we will use the two 
notations f/! and h, with f/! = hf/!o interchangeably. With these 
conventions the local expression for (f/!',f/!) as given in Ref. 1 
becomes 

(f/!',f/!)(z,zt) = (h ',h)(z,zt) = Hh'h (z,zt) En , 

Hh'h (Z,zt) = h '(z)th(z) if/!o(z,ztW'V det(21Tifl)-1 

X W(XzJt,x,.k) )j,k= l, .... n. (1.1) 

Since (f/!',f/!) and En are globally defined densities it follows 
that Hh 'h is a globally defined function on M. Then J¥' con-
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sists of those", that are covariant constant in the direction of 
P and for which S M (""",') is finite. If we omit the condition 
that h (and h') should be holomorphic (i.e., if we omit the 
condition that '" should be covariant constant in the direc­
tion of P) then ( 1.1) defines a density for each pair of global 
sections of QB and one can consider the Hilbert space 
L 2 (M,P) of square integrable sections. Then K is the closed 
subspace of hoi om orphic sections of L 2(M,P), 

K=.L 2(M,P)ho' CL 2(M,P), (1.2) 

and the orthogonal projection Tr: L 2 (M,P) -K admits a 
(local) integral representation (local in the sense that it de­
pends upon the chosen trivialization of QB). Now let fbe 
an observable, then for heJY' we can define a section L,h of 
QB (which need not be covariant constant in the direction of 
P) by 

(L,h) "'0 = - ifJX,(h",o) 

+ (f - {}(X,) - ~ili i ajj)h"'o ( 1.3 ) 
2 i=' 

or equivalently with our identification of a section h"'o with 
the function h, 

L,h = - ifJX,h + (r - {}(X,) - ifJX, log "'0 

- ~ iii ~ ajj )h' 

where aJk is defined by the equation 

[Xf,xZl] = L(ajkXZk + bikXzkt) 
k 

and where {} is a local potential for (J) (d{) = (J), used to de­
fine the trivialization of the prequantum bundle L; the com­
bination 

V x (h",o) = X(h¢o) - (illi){}(X) (h",o) 

is the local expression for the connection V on L acting on 
the section h"'o in the direction X. Using the general 
Blattner-Kostant-Sternberg (BKS) kernel one can show 
that the operator f acting on h as defined by the method of 
infinitesimal pairing is given by the orthogonal projection of 
Lfh on K; more precisely, 

domain f= {heJY'ILfheL 2 (M,P)}, 
and 

fh = TrLfh ¢} 

Vh'eJY' Vhedomain f: (h I,fh) = fM (h ',Lfh). 

II. ON KAHLER MANIFOLDS 

( 1.4) 

In this section we briefly recall some elementary facts 
about Kahler manifolds, and then apply them to formulas 
( 1.1) and (1.3). Our basic reference will be the book of 
Weils and we will adopt the conventions used therein. A 
Kahler manifold M is a complex manifold with a (complex) 
Hermitian inner product G on each tangent space: ifz', ... ,zn 
are local complex coordinates then 

G(m) = gik(m)dzi®dzk t with gJk =gki; 

(gik) should be positive definite and we denote by g the de-

2830 J. Math. Phys., Vol. 28, No.12, December 1987 

terminant of (gjk ), 

g = det(gjk)' 

The imaginary part (J) of G, (J) = 1m G, is an antisymmetric 
two-tensor, hence a two-form. In the local coordinates zi we 
have 

• '-1< d it (J) = !%kdz 1\ z , 

and the condition M is Kahler equivalent to the condition (J) 
symplectic. On the other hand, the real part of G defines a 
Riemannian structure on M seen as a real manifold (of di­
mension 2n) and hence there exists a Laplace-de Rham op­
erator adR on forms. In the local coordinates this operator is 
expressed on functions/: M - R as 

a f- 4gik. ay with glk'gkm = 01". (2.1) 
dR - - aziazkt 

The invariant volume form associated to this Riemannian 
structure is the form En; if we denote zi = xi + iyi then 

En = (!i)n'g'dz'l\ " 'I\dz" I\dz't 1\'" I\dz"t 

= g'dx' 1\ " . 1\ dxn 1\ dy' 1\ " . 1\ dyn = g' Leb2" 

with Lebn the Lebesgue measure on R". 
The complex structure on M defines a natural grading of 

the k-forms and the exterior derivative splits accordingly, 
d = d' + d" (d' the del operator and d " the del-bar opera­
tor). Using the Grothendieck-Dolbeault lemma on the 
closed two-form (J) oftype (1,1) one can show the local exis­
tence of a real function F on M such that 

1 'd'd"F a
2
F (J) = - I ¢} g 'k = . 

2 ] azk azit 

From this it follows that the local one-form {} defined by 

{}=~i(d"F-d'F) =~i( aF dzkt _ aF dzk) 
4 4 a~t azk 

is a local symplectic potential. Computing X
zj 

we find 

X 2 · ik a j=-lg--
z azkt ' 

{}(X j) = ~ iX )F, 
z 4 z 

(J)(Xzlt,xz") = 2igik, 

from which we deduce that the "function" "'0 defined by 

"'0 = exp( -IF Iii) 
is nowhere vanishing and covariantly constant in the direc­
tion of the polarization P spanned by the Xzj [see the defini­
tion of V after formula (1.3) ]. This polarization is indeed a 
positive Kahler polarization on M seen as symplectic mani­
fold, and conversely, if P is a positive Kahler polarization on 
a symplectic manifold then there exist local complex coordi­
nates zi (turning M into a complex Kahler manifold) such 
that Xz ) span P, a fact that should explain our interest in the 
local Hamiltonian vector fields Xz1 • Finally the condition 
d(J) = 0 implies that 

L(agi~ + gik a 10gg) = 0 (Vk), 
i azi azi 

and we find after some calculations that the expression 
- !ilil:ajj in (1.3) is given by 

_ ~ Ii ~ a .. = _ ~ liadJ _ 11 a log g .glk. aj . 
2 ~ JJ 4 azi azk t 
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Combining all these facts and substituting them in ( 1.1 ) and 
( 1.3) we find 

and 

H",,, (z,zt) = (1rli) -,,/2h '(z)th(z)exp( - V" /Ii)g-I/2 

(2.2) 

Lf = -iliXfh +h'[/- ! IiAdJ 

_a(F+lilogg). Jk. a/] 
azJ g a~t' 

Since (h ' ,Lfh) figures in the expression for f we can inte­
grate by parts with respect tOXfinside (h ',Lfh) and we find 

(h ',Lfh) = (h " [( 1+ !liAdR )/]h) + Rf(h ',h), (2.3) 

Rf(h ',h) = . f ~[(1rli) -"/2h '(z)th(z) 
J,~I az 

X exp( - F) gl/221i gJk a/ ] Leb2" 
21i a~t 

= (-1)"-lilid'[H",,,d"(IE,,_I» 

=( -1),,-lilid [H",,,d"(IE,,_I)] =da. (2.4) 

From this expression we see that a = ( - 1)" - 1 

X iliH" '" d " (IE" _ 1 ) is a well-defined global (2n - 1) -form 
on M (because H",,,,Jand En _I are global), so Rf(h ',h) is 
an exact 2n-form and the following theorem immediately 
follows. 

Theorem 2.1: If M is a compact Klihler manifold with­
out boundary, iff: M .... R is any observable, and if¢, ¢'eK 
are global sections of QB, then 

f¢ = 17"( [ (I + !liAdR )1 ] ¢) (orthogonal projection), 

or equivalently 

Remark 2.2: If M is not compact then there might be an 
extra term resulting from f Mda, which depends on the be­
havior of a "at infinity" (or at the "boundary" of M). In 
Secs. IV and V we will consider the cases M = C and M is an 
irreducible Hermitian symmetric space of noncompact type 
and in these cases we will redefine f as if Theorem 2.1 were 
true for these noncompact spaces. We then will give some 
examples to make plausible that the boundary term fda is 0 
for physically interesting observables, which should justify 
the redefinition of f. 

Remark 2.3: There is a remarkable resemblance be­
tween Rf(h ',h) and the inner product (h ',h): 

(h',h) =Hh'hE" = (-l)n- 1i(2n)-IHh""dd"(FE,,_I)' 

Rf(h ',h) = d [( - 1)n- 1iIiHh,,,d" (IEn_ d]. 

III. INTERMEZZO 

In this (brief) section we recall some definitions of Bere­
zin6

•
7 in order to be able to compare our results with his. Let 

Kbe a Hilbert space and M ° a manifold with measure p. and 
let E = {em JmeM°} be a set of vectors in K. 
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Definition 3.1: The system E is called (super) complete 
iff 

It follows that K can be embedded in L 2(M°,p.) by 
leK .... /(m) = (em,J). 

Definition 3.2: Suppose E is a super complete system and 
A is an operator such that E is contained in the domain of A, 
then the function Ao defined by 

Ao(m) = (em,Aem )/(em,em) 

is called the covariant symbol of the operator A. 
Definition 3.3: Let E be a super complete system and A 

an operator that can be calculated by 

(J,Ag) =1 (J,em)AO(m)(em,g)dp.(m) 
M O 

for some function A ° onMo, then A ° is called the contravar­
iant symbol of the operator A. 

Proposition 3.4: Suppose A is an operator on K for 
which both the covariant and contravariant symbol exist, 
then we have 

Ao(m') = 1 (em' ,em )(em,em,) A o(m)dp.(m). 
Mo (em' ,em') 

IV. QUANTIZATION ON C 

On M = C with complex coordinate z = x + iy we use 
the symplectic form (tJ = yt dz /\ dzt = A dx /\ dy. For A> 0 
the polarization P = CXz is a positive Klihler polarization, 
so we can apply the theory of Secs. I and II. The global 
function F = AZZ t satisfies (tJ = !id ' d " F so the general (lo­
cal) formulas (1.1), (1.2), (2.1), (2.2), and (2.4) become 
global and reduce to 

L 2(C,P) = {h:C .... C/i Jh(Z)/2 

X exp( -~zzt)d Leb2 < 00 } , 

K = {heL 2(C,P) Jh is holomorphic}, 

(h ',h) = 1T- 1/ 2( ~ y/2 i h ' (z) th(z) 

( 
-Azzt) 

xexp Ui d Leb2
, 

Il.dR = - 4A -I~ = -A -1(a 2 + a 2) 
azazt x Y' 

Rf(h ',h) = d (j1T- 1/2(1iI A) 1/2h ' (z)th(z) 

X exp( - ytzzt /Ii)d "I]. 

Remark 4.1: In physics a symplectic form has the same 
units as an angular momentum [kg m2 sec -I] == [Joule 
sec]; in mathematics coordinates usually do not have any 
units, so one expects the symplectic form to have no units. In 
order to separate these two aspects of a symplectic form we 
have introduced a parameter A which has the same units as 
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Planck's constant Ii (Le., Joule sec) and we have introduced 
dimensionless coordinates z = x + iy; all units have been ab­
sorbed in the parameter A.. As is clear from the above formu­
las, in relevant formulas this parameter always occurs in the 
combination A. Iii, which is dimensionless (the combination 
liadR is dimensionless and it is this combination that occurs 
in the expression for the operators), so one might be tempted 
to omit one of them (as does Berezin, see Ref. 6). We will not 
do so, because A. and Ii have different physical interpreta­
tions: A. represents a physical quantity and Ii represents the 
quantum mechanical yard stick with which to measure A.. In 
Secs. V and VI a parameter A. will be introduced in the same 
way as in this section and with the same motivations; in this 
section one can imagine that A. represents the mass of the 
(one-dimensional) system, in case M = S 2 ( = M i.I' see 
Sec. VI) A. represents the intrinsic angular momentum 
( spin) (see for instance Refs. 8 and 9). 

For an observable/we now define (redefine) (the do­
main of) f as follows: 

domain f = {hEKI [ (I + !liadR ) / ] hEL 2 (C,P)}, 

fh = 1T( [I + !liadR ) / ] h ) 

= 1T([/ - !(IiI,1)(J~ + J; )/]h). 

This definition is different from the definition given in Sec. I, 
but we will make plausible by means of examples that in 
interesting cases if hEdomain f and h 'EK then SRf(h ',h) 
= 0, which implies that then the two definitions "coincide," 

the only possible difference being the case that in (2.3) the 
left-hand side (h ',Lfh) is finite whereas both terms on the 
right-hand side are infinite. 

Proposition 4.2: If J/IJzt is bounded on C then 
SCRf(h ',h) = 0 for all h ',hEK. 

Proof: For h ',hEK the function G = 1T- 1/2 

X (A. Iii) l/2h '(z) th (z)exp( - ytzztli) is absolutely integra­
ble over C (it is the integrand of (h ',h») so 

IIGldLeb2= 1'" dR f1T dq?RIGI<oo, 

hence there exists a sequence Rk tending to 00 such that 

lim r Rk IG Idq? = O. 
k~ 00 Jizi = Rk 

We now have 

= lim I r Gdll/I 
k_ 00 Jizi = Rk 

where the last inequality is a consequence of our assump­
tion. Q.E.D. 

Proposition 4.3: If IJ/ IJztl ~cII (l + l liadR )/1 + C2 for 
some positive constants CI and C2 then hEdomain f and 
h 'EK~SCRf(h ',h) = o. 
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Proof: Ifwe define G as in Proposition 4.2 then the con­
ditions show that the function C II [ (1 + lliadR )j] G I 
+ c21 G I has a finite integral over C and then we can apply 

the same reasoning as in Proposition 4.2. Q.E.D. 
Remark 4.4: Proposition 4.2 is clearly a special case of 

Proposition 4.3, although the statement is slightly stronger. 
The condition mentioned in Proposition 4.3 is true for the 
observablesx,y (linear momentum and position), x2,y2, and 
x 2 + y2 (kinetic energy, quadratic potential, and the har­
monic oscillator) so for these observables both definitions 
coincide, i.e., for these observables the procedure of geomet­
ric quantization gives the result of Theorem 2.1 for the (non­
compact) manifold C. 

Remark 4.5: The condition of Proposition 4.3 is not sat­
isfied by / = xy = r - zt2. However, if we are interested in 
the angular momentum, then we have to consider the sym­
plectic manifold Cn(n > 1) and there one can show with the 
same arguments that for/=xlY2-x2YI=zlzI-z~t 
then again the two definitions coincide. 

We now turn our attention to the orthogonal projection 
1T: L 2 (C,P) .... ,w'; it is well known that 1T admits an integral 
representation with a Bergman kernelK" (w,zt) defined by 

1 (,1)112 (,1wzt) K" (w,zt) = 21T-1/2 -,; exp ~ 

and 

( 
-,1zzt) 

xexp 21i d Leb2(z). 

If we define the elements ewEKby ew (z) = K" (z,wt) then 
this becomes 

(1Tg)(W) = (ew,g) [inner product in L 2(C,P)). 

Since 1T is a projection we have the reproducing property 
formula for gEK:g(w) = (ew,g), whence the set {ew IWEC} 
is a supercomplete system in the sense of Berezin if we 
denote by f.l the measure defined by 

df.l (z) = 1T- 1/2 (,1 Iii) 1/2 exp( - ! ,1zzt lli)d Leb2 (z). 

With these conventions the expression for f becomes 

(h ',fh) = f h '(Z)t[ {I + ! liadR}t ]h (z)df.l (z) 

= f(h',ez)[(I+! liadRY](ez,h)df.l(Z), 

so the contravariant symbol of f is the function 

contravar(f) = (I + lliadR)/ 

For M = C the relation between covariant and contravariant 
symbols is known (see Ref. 6), 

Ao = exp( - !liadR )A 0, 

from which we deduce 

covar(f) = (I + lliadR )exp( - ~liadR)/ (4.1) 

G. M. Tuynman 2832 



                                                                                                                                    

V. QUANTIZATION ON IRREDUCIBLE HERMITIAN 
SYMMETRIC SPACES OF NONCOM PACT TYPE 

According to the general theory 10 the four series of irre­
ducible noncompact Hermitian symmetric spaces are just 
the classical bounded domains in en (Ref. 11). These do­
mains are characterized by matrices as described in Table I 
(matrix A > 0 means all eigenvalues positive). In the sequel 
we will often identify a set of coordinates (zl, ... ,zn) with the 
corresponding matrix, so depending on the context z means 
either the matrix or the set of coordinates. 

These four series can also be described as certain homo­
geneous spaces; this alternative description is listed in Table 
II. When seen as bounded domains, these spaces possess a 
(classical) Bergman kernel K(z,wt ) (see Ref. 11) that is 
also listed in Table II (up to a multiplicative constant). We 
now introduce a Kahler structure on n (for all four series 
simultaneously) by 

(J) = !id'd" F with F(z,zt) = A log K(z,zt) 

for A positive and real. 

The associated (positive definite) Hermitian metric is 
(apart from a multiplicative constant) the usual Bergman 
metric which is invariant under the holomorphic diffeomor­
phisms of n. Since each n is homogeneous (the group G can 
be realized as holomorphic isometries of n) there exist posi­
tive constants c(n) such that 

( 
a2F) g = det --t = C(n)A nK(z,zt). 

azaz 

Finally, the polarization P spanned by (Xzi ) is a positive 
Kahler polarization with respect to the symplectic form (J) 

defined above and, moreover, Fis global so the (local) for­
mula (Ll), (1.2), (2.2), and (2.4) are global: 

L 2(n,p) = {h:n .... elllh(Z) 12K(z,zt) I-A/W'2 d Leb2n < oo}, JY' = {hEL 2(n,p) Ih is holomorphic}, 

(h ',h) = c( n) -1/2( 1TAIi) - nl2l h ' (z) th (z)K(z,zt) - (\ + A 1~)/2En 

= c(n) 1/21T - n12(A lli)n/2l h , (z)th(z)K(z,zt) (\ - A/W2 d Leb2n, 

Rf(h ',h) = d [ ( - 1)n - 1ili c(n) -1/2( 1TAIi) - nl2h ' (z) th(z)K(z,zt) - (1 + A/~)/2 d" (fEn _ 1 ) ]. 

Remark 5. J: For A Iii = 1 we see that JY'is the ordinary Hilbert space of hoi om orphic, square integrable functions on the 
domain n (with respect to the Lebesgue measure). For more comments on the interpretation of the parameter A, see Remark 
4.1. 

Remark 5.2: In Ref. 12 Berezin introduces a parameter h -I when quantizing irreducible Hermitian symmetric spaces of 
noncom pact type, a parameter which in our treatment is given by! (1 + A Iii) (see also Remark 4.1 ). After the introduction of 
h - 1 he gives a definition of "allowed value" for h - 1 that is, roughly speaking, the following condition: the Hilbert space JY' 
depends upon the parameter h -I (i.e., onA) and h 0- 1 is allowed if JY'(h -I) is "analytic" in a neighborhood ofh 0- I. He then 
shows that the set of allowed values consists of a continuous part and a discrete part. In our case with A > 0 the corresponding 
value of h -I always lies in the continuous part, i.e., in the set of allowed values. 

For irreducible Hermitian symmetric spaces of compact type there is in Ref. 12 also a parameter h -I and a definition of al­
lowed value, but in the compact case the definition of allowed value is different from the noncom pact case (see for more details 
Sec. VI after Theorem 6.5). 

As on e we now define (redefine) for an observable j n .... R (the domain of) the operator If as follows: 

domain If = {hEJY'1 h ( I + ! liadR )fEL 2( n,p) A V h 'EJY':l Rf(h ',h) = o}, fh = 1T( [ (l + AliadR ) f] h l, 

and again we wish to make plausible that this definition does not differ very much from the definition given in Sec. I. We do 
this by considering the case nLI' which can be interpreted as the Lobatschevsky plane ~nLI = D 1 = {ZEC! Izl < n. 

Proposition 5.3: IfjD I .... R is.such thataf /azt is bounded by (1 - zzt) -I onD I then SD.Rf(h ',h) = 0 for all h ',hEJY'. 
Proof: On D I we have K(z,zt) = (1 - zzt) -2 so assuming h ',hEJY' we find 

TABLE I. Irreducible Hermitian symmetric spaces of noncom pact type. 

Name Description 

n!.. matrices z of order p X q 
n!I symmetric matrices z of order p Xp 
n!I1 antisymmetric matrices z of order p Xp 

n!V row vectors z in CP 

Coordinates 

all pq entries of z 
the upper triangle including the diagonal 
the upper triangle without the diagonal 

all p entries 
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Condition 

1- zzt>O 
I-zzt>O 
I-zzt>O 

{
I + IZZTI2 - 2zzt>O 

IZZTI < 1 (T = transpose) 

n == C dimension 

p-q 
!p(p + 1) 

!p(p -1) 

p 
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Proposition 5.4: Let f D I_ R and suppose there exist 
positive constants CI and C2 such that (1 - zzt) la f aztl 
<C II (1 + !MdR )f I + C2 on D I then hEdomain f and 
h 'EK:::!? fRf(h ',h) = o. 

Proof: If one pastes together the arguments of the proofs 
of Proposition 4.3 and 5.3 then one obtains easily a prooffor 
this proposition. Q.E.D. 

Example 5.5: The group SUe 1,1) acts on D 1 as the 
group of holomorphic symplectic isometries by 

(
a b) az+b 

g = b t at: z- b tz + at ' 

gESU(l,1){::}laI2 
- Ib 12 = 1. 

We can exhibit three one-parameter subgroups g/t) of 
SUO,l), 

(
cosh t sinh t ) 

gt(t) = sinh t cosh t ' 

(
cosh t i sinh t) (eit 0) 

g2(t) = -isinht cosht ' g3(t) = a e- it ' 

which become after differentiation the generators of the Lie 
algebra su (1, 1) : 

g; (0) = (~ ~), gi (0) = ( ~ i ~) , 

g; (0) = (~ ~ J . 
The momentum map8.13.14 associated to this action maps 
these three generators of the Lie algebra to the functions: 

fl = - a zt - z , f. _ A zt + Z f3 = A 1 + zzt . 
1 - zzt 2 - 1 _ zzt ' 1 - zzt 

TABLE II. Bergman kernels for the bounded domains. 

n!.q det(l, - zwt) -, - q 

n!I detClp _ZWt )-p-l 

n!1I detC I, - zwt) - p+ I 
n!V (1- 2zwt +ZZT(WWT)t)-p 

Alternative description as 
G IK Csee Ref. 10) 

SUCp,q)/S(UCp) xUCq») 
Sp(p,R)!U(p) 
SO*C2p)!U(p) 
SOo(p,2)/(SO(p) XSO(2») 
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Q.E.D. 

I 
One can show that these functions satisfy the condition of 
Proposition 5.4, so in computing fj we can forget about the 
term Rf(h ',h). SinceSU(1,l) actsholomorphically, the as­
sociated Hamiltonian vector fields Xf ) leave the polarization 
P invariant, which shows that Lfh is already in!/t' and we 
find 

(Lf,h)(z) = (fl)h(z) 

= i' (l-r) ~~ - (1 + ~yh(Z») 
= 1T(h (1 + !liadR )/) , 

(Lf,h)(z) = (f2h)(z) 

= -1i((1+z2)~~ +(l+~yh(z») 
= 1T(h (1 + !liadR )/) , 

(L"h)(z) = (f3h)(z) 

= -li( 2z ~~ + (1 + ~ Yh(z) ) 

= 1T(h (1 + !liadR )/) • 

On the other hand, one verifies easily that the actionp(g) of 
SU(1,l) on!/t' given by 

(p(g)h Hz) = (a - b tz) (l +Al1I)h(g-IZ), 

gESU ( 1, 1) as above, 

is a projective representation of SU(1,l) on !/t'. For fixed 
gESU(1,l) and Izl < 1 we have la - b tzl > 0, so 
(a - b tz ) - (I +Al1I) is holomorphic onD I; however, such a 
branch cannot be chosen consistently for all gESU ( 1,1) si­
multaneously (see also Ref. 15). For the one-parameter 
groups p(g j (t») a consistent choice can be made, resulting in 
a unitary representation of lR on 71", showing that their gen­
erators fj are (essentially) self-adjoint operators: 

p(gj(t») = exp( - itfj/Ii). 

Back to the general case, the (generalized) Bergman 
kernel K). (z,wt ) associated with the orthogonal projection 
1T: L 2(O,P) -71" is calculated by Berenn,12 

K;.. (z,wt) = Ii;.. (O)K(Z,Wt)(1 +11.111)/2, 

i.e., 
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(17"g)(w) = C({l)-1/2(1TA~) -,,12 

X In KA. (w,zt)g(z,zt)K(z,zt) - (1 + A.l1i)/2E" 

= c( .0) -1/2( 1TA~) - "l2iiA. (.0) 

i t [K(w,zt)]-(l+A.lli)/2 
X g(z,z) t En' 

G K(z,z ) 

where the branch of the mapping t ...... t (1 +A.l1i)/2 is chosen 
such thatKA. (z,wt) is real for z = w, and theconstantiiA. (.0) 
is determined by iiA.(n) = 11111- 2

, where 11111 denotes the 
norm in ? of the function which is constant 1 on .0 (it 
should be noted that indeed Ie£' for each A > 0). If we now 
define for each wen the function ewe£' by 

ew (z) = KA. (z,wt ), 

then because of the reproducing property of the orthogonal 
projection we know that the set {ew I wen} is a supercom­
plete system of elements of? and, moreover, by definition 
of domain C, we can show with the same reasoning as in Sec. 
IV, 

contravar(f) = (1 + !~adR)/ 
The relation between covariant and contravariant symbols is 
in these cases more complicated then for M = C; explicit 
expressions for the connecting operator in terms of powers of 
adR is given by Moreno. 16-18 

VI. QUANTIZATION ON IRREDUCIBLE HERMITIAN 
SYMMETRIC SPACES OF COMPACT TYPE 

In this section the main problem is not to "show" that 
Rf(h ',h) does not contribute to f, because that is guaranteed 
by compactness, but to exhibit a supercomplete system of 
vectors in ? In particular, we will show that the allowed 

I 

a chart which covers G /K except for a submanifold oflower 
dimension. The local diffeomorphisms between two charts 
Ug and Ug' is given by z ...... kz for some keG, more precisely, 

f/Jg'0(f/Jg)-I: z ...... (g'g-I)(Z). (6.1) 

On each M = G / K there exists a Kahler structure a> 
(invariant with respect to the action of G) which is given in 

TABLE III. Irreducible Hermitian symmetric spaces of compact type. 

values of the parameter h -I of Berezin in Ref. 12 (see Re­
mark 5.2) correspond exactly to the (pre)quantizable val­
ues of our parameter A (quantizable in the sense of Kostant 
and Souriau, a condition on the cohomology class of the 
symplectic form). 

The four series of irreducible Hermitian symmetric 
spaces of compact type (which are dual to the noncompact 
ones) are listed in Table III. As in the noncompact case z 
denotes either the local coordinates (Zl, ... ,z") or the corre­
sponding matrix. To obtain a full set oflocal charts we need a 
(partial) action of G on the local coordinates; therefore we 
represent each geG as block matrices gij (i,j = 1,2) of ap­
propriate sizes as follows: 

with 

( gll g12) =A(M)gA(M)-I, 
g21 g22 

A (M!.q ) = Ip+q' A(M!I) = 12P ' 

(I ~ ) (I 
A(M!I) = i{p ~: ' A (M!v) = oP 

(note that as a result each matrix gij is a special unitary 
matrix). Using these block matrices one defines the action of 
G on the local coordinates by 

gz = (gllZ + g12) (g21Z + g22) -I, for types I, II, and III 

and 

for type IV, 

where Vz is given by Vz = H(ZTZ + 1),!i(ZTZ - 1))T. Since 
the stabilizer of Oec" is just the subgroup K in the definition 
of the homogeneous space G /K (Table III) we can use this 
action of G on e" to define a set of local charts {Ug IgeG} for 
G /K; the chart f/Jg: Ug ...... e" is defined by 

local coordinatesz by a> = !id'd H F(z,zt) , whereFis defined 
by 

F(z,zt) = - A log K(z,zt) , A> 0, 

K(z,wt ) = N(z,wt ) - v(M). 
(6.2) 

The defining functions N(z,wt ) and v(M) are given by 

Name Description as G / K Local coordinates n == C dimension 

2835 

SU(p + q)/S(U(p) XU(q») 
Sp(p)!U(p) 
SO(2p)!U(p) 

SO(p + 2)/(SO(p) XSO(2») 
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matrices z of order p X q 
symmetric matrices z of order p Xp 
antisymmetric matrices z of order p Xp 

vectors z of length p 

p-q 

!p(P + 1) 

!p(p - 1) 

p 
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t {det( 1 + zwt ), for types I, II, and III, 
N(z,w ) = T T t 

1 + 2zTZ + (z z) (z z), for type IV, 

v(M!,q) = p + q, V(M!II) = P - 1, 

V(M!I) = p + 1, v(M!v) = p. 

(6.3) 

(6.4) 

Since A. > 0 the associated Hermitian metric is positive defi­
nite and the polarization P spanned by (Xz ) is a positive 
Kahler polarization, so again we can apply the general for­
malism of Sec. II. Since M is homogeneous there exist con­
stants c(M) such that 

( 
a2F) det --t = c(M)A. nK(z,zt) 

azaz 
(6.5) 

(here we omit the letter g for this determinant to avoid con­
fusion with the elements of the group G); furthermore, since 
each local chart U

8 
covers M except for a set of measure 0 

(with respect to En = the Liouville measure) it follows that 
instead of integrating over M we may restrict the integration 
to the local chart U id ~cn. Hence formulas (1.1), (1.2), and 
(2.2) become 

L 2 (M,P) = {h:Cn ..... qh represents a global section ofQB 

and i Ih(z) 12K(Z,zt) (.till + 1)/2 
c· 

X d Leb2n < 00 } , 

K = {heL 2 (M,P) Ih holomorphic}, 

(h ',h) = c(M) -1/2( 17'A.II) - n/2 

xi h '(z)th(z)K(z,zt)(.tIII- I )/2En (6.6) 
c· 

= c(M) 1/217'- n12( ~ )"/2 

xi h '(z)th(z)K(z,zt)AII/+ 1)/2 d Leb2n, 

C· 

and for any observable f M -+ R we have (Theorem 2.1 ) 

(h ',Ch ) = (h', [(1 + lli~dR )f]h ) [in L 2(M,P)!]. 

The only remaining problem now is the determination 
of the structure of the (nontrivial) bundle QB. According to 
the general theory the bundle QB is the tensor product of the 
prequantum bundleL and a line bundle ML associated to the 
bundle of metalinear P frames. It is not true that both bun­
dles do always exist: ML exists iff the first Chern class 
c I (w ) R of the symplectic manifold is even, and L exists iff the 
symplectic form will determines an integer cohomology 
class, and QB exists iff [wlli] and !cl (w )ReZ. However, if we 
are only interested in the bundle QB and not in the two con­
stituents separately, then one can reduce the condition on 
existence to 

(6.7) 

a result which can be obtained by using Mpc structures. 19 

What we will do is to construct explicitly the transition func­
tions of the bundle QB and then finding those values of A. for 
which this system of transition functions is indeed well de-
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fined, which in turn are those values of A. for which (6.7) is 
satisfied. Since En = const K(z,zt)d Leb2n (6.5) is invariant 
under the action of G it follows that 

I 
agZI-2 K(gz,(gz)t) = az K(z,zt), (6.8) 

agz = det(Jacobian (z ..... gz»). 
az 

Now suppose that the holomorphic functions h ~') on Ui 

(i = 1,2) are local representations of global sections ",(') of 
QB, then from Sec. I we know that the function Hh 'h (1.1) is 
a global function on M, hence h ~I)(z) = tr I2 (z)'h j')(gz) 
[where g is the diffeomorphism (6.1) between the two 
charts UI ..... U2 and where trI2(z) is the transition function 
between the two trivializations above UI and U2 ] implies 

h; (z)th
l
(z)K(z,zt)(AIII-I)/2 

= Itr 12(Z) 12h ~ (gz) th2(gz)K(z,zt) (.till - 1)/2 

= h 2 (gz)th2(gz)K(gz,(gz)t)(.tIII-1)/2 

= h 2 (gz)th2(gz) I ~z I (I -.till) K(z,zt) (.tIII- 1)/2 

I 
agz I (I - A III) => Itr I2 (z)j2 = a; . 

Because of the identification of local sections '" which are 
covariant constant along P with holomorphic functions h, 
the transition functions are holomorphic (QB is in cases un­
der investigation a holomorphic bundle). Since agzl az is ho­
lomorphic, too, we deduce that 

(
agz)(I-AIII)/2 

tr I2 (z) = - . 
az 

(6.9) 

Remark 6.1: If one computes the transition functions of 
the bundles L and ML seperately, one finds that for ML it 
is (agzlaz) 1/2 and for L(agzlaz) -AIM, which also shows 
that for QB = L ® ML the transition function is (agzl az) 1/2 
X (agzlaz) -.tIIi/2 = (agzlaz)O-.tI1I)/2. 

Remark 6.2: In reality one has a degree offreedom, one 
can modify (6.9) by a phase factor exp(icp) (which vanishes 
when taking the absolute values). This freedom determines a 
Cech 1-cocycle with values in U ( 1) (the phase factor de­
pends on the intersection U1 n U2 ) and hence an element of 
H I(M, U ( 1 »). which classifies the space of the inequivalent 
(pre) quantizations. However, each irreducible Hermitian 
symmetric space of compact type is simply connected, hence 
HI(M,U(1») = {O},somoduloanaturalequivalenceofbun­
dIes Land QB our choice in (6.9) is unique. 

We now want to "compute" the values of A. for which 
the transition functions (6.9) are well defined (perhaps by 
using subcharts on which the function t ..... t o - AIII)/2 is de­
fined) and for which they satisfy (at the same time) the 
cocycle condition trl2tr23 = trIJ. 

Proposition 6.3: If w = g - I (0) ECn exists then 

agz = const(g)K(z,wt) = const N(z,wt) - v(M). 

az 

The proof of this proposition can be found in Ref. 12, 
Theorem 2.1. It can be verified easily for the spaces of type I, 
II, and III by using relation (6.8) to calculate agzl az expli-
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citly (~agzlaz = [det(g21z + g22)] - v(M), a formula that 
is valid for all geG) . 

Corollary 6.4: trI2 (z) = const·N(z,wt )(A.l1i-I)·v(M)I2. 

In Ref. 12 it is shown that for the manifolds of type I, II, 
and IV N(z,wt ) is an irreducible polynomial in the un­
knowns (z,wt ) and for type III N(z,wt ) is the square of an 
irreducible polynomial. This fact is the main ingredient of 
the proof of the following theorem, a proof which will be 
delegated to the Appendix. 

Theorem 6.5: (a) The values of A for which the transi­
tion functions (6.9) define a bundle are given below [v(M) 
is defined by (6.4) ] : 

!(A Iii - 1 )v(M)EZ, 

(A Iii - 1 )v(M)EZ, 

for types I, II, and IV, 

for type III, (6.10) 

or equivalently, 

name allowed A'S (kEZ) name allowed A'S (kEZ) 

M!,q 
p+q+2k Ii MIll p-l +k Ii 

p+q P p-l 

p + 1 + 2k Ii MIV p + 2k Ii. 
p+ 1 P P 

(b) For 0 < A < Ii and A allowed (i.e., A > 0 and k < 0) 
dim K = 0, for A = Ii (i.e, k = 0) dim K = 1 and for k > 0: 
O<dimK<oo. 

When we compare our allowed values with the allowed 
values of Berezin, we see that we can get a complete agree­
mentifwe identify our "parameter" ~(A Iii - 1) [which ap­
pears in the transition function (6.9) and in the description 
of the inner product (6.6) ] with the parameter h - 1 of Bere­
zin,12 which appears in exactly the same way in the inner 
product. However, Berezin's definition of allowed values 
does not involve any condition on the bundle existence, it 
involves a certain condition on the Bergman kernel on the 
local chart c;n (see below). Since the allowed values agree, 
we may deduce that on the local chart Uid the (generalized) 
Bergman kernel K;.. (z,wt) that is associated to the orthogo­
nal projection 1T: L 2 (M,P) -K is given by 

K;.. (z,wt) = n;.. (M)K(z,wt ) (l-A.l1i)/2 

[in fact it is the validity of this relation between the function 
K(z,wt ) (6.2), (6.3), and the Bergman kernelK;.. that is the 
condition of Berezin] , i.e., for kEL 2(M,P), 

(1Tk) (w) = c(M)-1/2(1TAIi) -n/2 r K;.. (w,zt)k(z,zt) Jc. 
XK(Z,zt)(A.l1i-l)/2En 

=c(M)-1/2(1TAIi)-nl2 n;..(M) r k(z,zt) Jc. 

[ 
K(z,zt) ](;"/1i-1)/2 

X En' 
K(w,zt) 

The constant n;.. (M) is determined by n;.. (M) = /11/1-2, 
where /11/1 is the norm of the global section", which is repre­
sented by the constant (holomorphic) function 1 on the lo­
cal chart Uid ; the branch of the function; _; (1 - A.l1i)/2 is 
determined in the same way as for the tansition functions 
(6.9), K;.. (z,wt) is a polynomial in (z,wt) that is constant 1 
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for z = O. As in Sec. V it follows that the set 
{ew (z) = K;.. (z,wt) I ween } is a supercomplete system 
[with M 0 of Definition (3.1) given by the (local) chart 
en e; Uid ] and that for any observable f M -+ R, 

contravar(f) = (1 + !IiAdR )/ 

As in the noncompact case we refer to Refs. 18 and 20 for the 
relation between covariant and contravariant symbols. 

VII. SUMMARY AND DISCUSSION 

In Sec. II we showed that on Kabler manifolds the geo­
metric quantization scheme gives the following results: mod­
ulo a boundary term S da the operator f associated to a classi­
cal observable f is given by the process (1) multiply by 
(1 + !IiAdR )fand then (2) take the holomorphic part (JY 
is the subspace of hoI om orphic sections ofQB with regard to 
the space of all "square integrable" sections of QB). For 
compact Kabler manifolds the boundary term S da is 0 and 
the above described result is exact. It was made plausible 
that for the physically interesting observables the result is 
also true on irreducible Hermitian symmetric spaces of non­
compact type, from which one can deduce that it is true for 
all simply connected Hermitian symmetric spaces (see Ref. 
10 Chap. VIII, §6). On the other hand, the above description 
of f can NOT be true in general: for M = {Izl < Gee, 
(i) = !idz !\dzt andf = z + zt (a bounded observable) the 
contribution fda is NOT zero for all h, h 'EJY'. 

In Secs. IV-VI we showed (forgetting for the moment 
about the boundary term) that on the quantizable irreduci­
ble Hermitian symmetric spaces (which gave a condition in 
the compact case) a supercomplete system (in the sense of 
Berezin) exists and that the contravariant symbol of any 
operator f associated to a classical observable f is given by 
contrav(f) = (1 + !IiAdR )/ Moreover, the quantization 
condition in the compact case coincides exactly with Bere­
zin's definition of allowed values. 

In order to relate our results to results obtained by 
*-product quantization we need a few comments on the close 
relationship between Berezin's quantization method and 
quantization by *-products. Both methods have as their ba­
sic assumption that quantum mechanics is a deformation of 
classical mechanics; the algebra of operators (especially ob­
servables) on the quantum mechanical Hilbert space de­
pends upon a parameter Ii and in the limit IiW this algebra 
reduces to the Poisson algebra of functions on the classical 
phase space (in quantum mechanics products of operators 
and commutators; in classical mechanics pointwise products 
of functions and Poisson brackets). More abstractly they 
study deformations (depending on a parameter) of the Pois­
son algebra. On the one hand Berezin realizes such a defor­
mation as the set of covariant symbols of operators on a Hil­
bert space, deducing the product structure on these symbols 
from the product structure of the corresponding operators. 
On the other hand, *-products study such deformations ab­
stractly. To compute physical relevant data (i.e., spectra of 
observables) they use a beautiful theorem21 stating that to 
compute the spectrum of an "operator" [i.e., an element of 
the (deformed) algebra] one only needs the algebra struc­
ture, i.e., the *-product structure. 
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In Ref. 12 Berezin has computed the quantization on 
irreducible Hermitian symmetric spaces; for these cases the 
connection between covariant symbols and contravariant 
symbols and the associated *-products are calculated by 
Moreno in Refs. 16-18,20. This gives us a way to compare 
the geometric quantization scheme with the quantization by 
*-products (deformations of the Poisson algebra), although 
the comparison works only in the case of Kahler manifolds 
(more precisely, for Hermitian symmetric spaces). 

The results which have been discussed up till now are 
obtained by (conventional) geometric quantization includ­
ing the metalinear correction. I now propose to "change" 
this quantization scheme in the case of positive Kahler po­
larizations: "hypothesis": the contravariant symbol of the 
operator f associated to the classical observable lis given by 

fcontravar = exp(!lil1dR )J, 
instead of (1 + !lil1dR )/ At first this might seem a fancy 
change, but let us discuss the merits of this hypothesis. One 
of the first merits is that when we compare this quantization 
scheme in en [resulting in operators on the Bargmann rep­
resentation) with the usual geometric quantization scheme 
on en with the vertical polarization [resulting in operators 
on the Schrodinger representation tW's = L 2 (R n ) 1 then the 
results are the same for operators of the form 
p2 + pa(q) + V(q) (i.e., at most quadratic in the momen­
tum variables). If.fcontravar had been given by (l + !lil1dR )1 
then the results would have been different (see Ref. 1 for 
explicit calculations) . 

A second merit of our hypothesis can be found in the 
comparison with the Weyl-Wigner quantization scheme on 
en. In Ref. 6 it is shown that the Weyl symbol/w of an 
operator f is related to the contravariant symbol/contravar of 
the same operator by 

Iw = exp( - !lil1dR )fcontravar· 

With our hypothesis we find that/w =J, i.e., the Weyl sym­
bol is the classical observable we started with. It follows from 
the above observation that our hypothesis gives the same 
quantization prescription as the Weyl-Wigner quantization 
scheme, from which one deduces that our hypothesis gives 
on en the same quantization results as Berezin's and as the *­
product approach (since these also coincide with the Weyl­
Wigner procedure). 

Apart from the above-mentioned merits of our hypothe­
sis (i.e., giving the same results as various other quantization 
schemes) there is another merit: in Ref. 9 a problem was 
encountered in the (geometric) quantization of the classical 
hydrogen atom including spin: the hyperfine interaction 
term contains an incorrect factor ij (for !-densities the incor­
rect factor is §) that cannot be absorbed by rescaling. Assum­
ing our hypothesis, this factor disappears (after reinterpret­
ing the classical intrinsic angular momentum) . More 
generally the situation is as follows: suppose we have two 
(isolated) physical systems without interaction, described 
by the symplectic (Kahler) manifolds (MI,lU I) and 
(M2,lU2)' Then (MI XM2, lUI + lU2) describes the two sys­
tems simultaneously and one can quantize it. Now suppose 
we consider observables lion MI and 12 on M2, then 
l(m H m 2) =/1(m l )h(m2) is an observable on M I XM2. 
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Quantization of (Mi ,lUi) yields a Hilbert space tW'i (ofholo­
morphic sections of QBi ) and operators fi on tW'i; quantiza­
tion of MI XM2 yields a Hilbert space tW' (which is in a 
certain sense the tensor product tW'1 ® tW' 2) and one gets an 
operator f associated to I = II 12' When we now assume that 
after quantization the two systems should remain isolated (a 
reasonable assumption in physics), then one expects that 

[fl,fz1 = O} 
f= f l f2• 

(noninterference axiom). 

Although the relation [fI,fz1 = 0 is satisfied, the second re­
lation f = flfz is not satisfied. Investigating their contravar­
iant symbols we find 

contravar(f) 
=IJ2 + 11i(11 1 + I1z)fJ2 

=IJ2 + !'FifII12h + lfif2l1JI' 
contravar(flf2) 

= (/1+ !IiI1JI)(/2 + 11i11d2) 

=contravar(f) + 16-I~(I1JI)(112h), 

so geometric quantization does not comply with our nonin­
terference axiom [it is precisely the absence of the term 
16 - lli2 (11 JI ) (112 h) that explains the incorrect factor ~ in 
the quantization of the hydrogen atom in Ref. 91. On the 
other hand, our hypothesis, which changes the quantization 
results, does comply with the noninterference axiom: 

exp(!Ii(111 + 112)lfJ2 = [exp(!lil1d/d [exp(!1i112)h1. 

At this point we must remember that our hypothesis is valid 
in the context of Kahler manifolds with their associated 
Kahler polarizations [sothattW'i consists (locally) ofholo­
morphic functions on Mi 1. If MI and M2 are two cotangent 
bundlesMi = T*Qi and if we use the vertical polarizations 
(~tW'i ~functions on Qi) then the axiom of noninterfer­
ence is satisfied by the geometric quantization procedure (at 
least for the directly quantizable observables, i.e., the ones 
which are linear in p). 

To summarize, the merits of our hypothesis are three­
fold: (1) the quantization results in en are the same as for 
Weyl-Wigner, Berezin, and *-products, (2) the quantiza­
tion results in en are the same as for the vertical polariza­
tion, and (3) the quantization result satisfies the noninter­
ference axiom. 

Considering the above-mentioned arguments in favor of 
the hypothesis, I propose to change the geometric quantiza­
tion scheme in such a way that the factor (1 + !lil1dR ) in 
(2.3) is replaced by exp(!lil1dR ), i.e., considering geometric 
quantization as a first order approximation in Ii to "real" 
quantum mechanics. Unfortunately however, I have no con­
ceptual idea how to change geometric quantization in order 
to obtain this result. 

Remark 7.1: The arguments in favor of our hypothesis 
are arguments with physics in mind; from the point of view 
of representation theory of Lie groups this hypothesis is not 
so good. It should also be mentioned that the change 
(1 + !lil1dR ) ...... exp(!lil1dR ) does not explain the substitu­
tion 4..1 3 - 3..1 4 ...... ..1 2JO( - 2i log A) made by Rawnsley and 
Sternberg in Ref. 22 to obtain (by means of geometric quan­
tization) representations ofSL(3,R). 
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Remark 7.2: All preceding results concerning geometric 
quantization were derived by using the metalinear correc­
tion. When one uses !-densities instead of !-forms, there are 
some (minor) differences, some of which will be listed be­
low. 

(1) Hh 'h (z,zt) = (1rli) - n/2h '(z) th(z)exp( - !f Iii) 

[formula (2.2)]. 

(2) Lfh = - iftXfh + h· [f - ar: .gik • aft]' 
az1 a~ 

(3) Starting at formula (2.3) the term (l + lliadR ) 

should be replaced everywhere by (l + lliadR ), 

(4) The formulas Rf(h 'h) = da, a = ( - 1)n-1 
X iliHh 'hd" (fEn _ I ) remain valid (with the changed func­
tionHh'hl)· 

(5) In Sec. V the exponent -! ( 1 + A Iii) should be 
replaced by - ¥ Iii and in Sec. VItheexponenq (A Iii - 1) 
should be replaced by ¥ Iii (undoing of the metalinear cor­
rection). 
The results with !-densities are exactly equal to results ob­
tained by using prequantization only and restricting oneself 
to holomorphic sections. 

APPENDIX: PROOF OF THEOREM 6.5 

We start with some notations: (1) jl(g,z) = agzlaz and 
(2) C (z) denotes the field of quotients of polynomials in the 
variables Zl"",z" . 

Proof of (a): sufficiency: We suppose that A satisfies 
(6.10) and we have to prove that the transition functions 
(6.9) really define a holomorphic line bundle. Berezin 
proved in Ref. 12 thatN(z,wt ) is (the square of) an irreduci­
ble polynomial in the unknowns (z,wt ), so it follows from 
Proposition 6.3, Corollary 6.4, and the condition (6.10) onA 
that for certain geG [i.e., g-I(O) should exist] that 

tr (z) = constoN(z,wt )(..t/Ii-I)·v(M)/2EC(z). 
12 ==== 

Since there exists a neighborhood of idEG for which this 
condition ong is satisfied and sincejl(g,z) (see above) satis­
fies the relation 

jl(g'g',z) =jl(g,g'z)'jl(g',z), 

it follows that tr 12(Z)EC(Z) for allgEG [use that for nonzero 
constants there always exists a [ (A Iii - 1)' v(M) 12] power 
and use that the components of gz are in C(z)]. Hence for 
each pair of charts U1 and U2 connected by the element gEG 
the function trnCz) exists as a holomorphic function (in 
particular, as a quotient of polynomials). 

The next step is to choose the functions tr 12 (z) in such a 
way that they satisfy the cocycle condition, using the cover 
{Ug IgEG} (the different choices are different branches of 
the complex logarithm). For two charts Ug and Us' the con­
necting group element is g'g-I [see (6.1)] so tr(g.s') (z) 
should be a choice for jl(g'g-l ,z)(\ -VIi)/2. We are going to 
define tr(g,s') in two steps. We start with 

tr(e,g) (z) =jl(g,z)(\-VIi)/2 

with an arbitrary choice of the branch of the log [except for 
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tr(e.e) (z) = 1)]. We know thattr(e,g) (Z)EC(Z). Then we de­
fine 

trIg,s') (z) = tree,s') (g-lz)/tr(e,g) (g-lz)EC(z). 

Thistr(g,s') (z) is for each fixedzECa [(1-Alli)/2] power 
of a(g'g-l )zlaz, hence it is a holomorphic solution of (6.9) 
and moreover the system of transition functions trIg,s') (z) 
defined in this way obviously satisfies the cocycle relation 

trIg,s') (z) ·tr(s',gO) «g'g-I )z) = trIg,s') (z), 

which proves that for A 's satisfying (6.10) there exists a line 
bundle QB with transition functions defined by (6.9). N.B. 
In general, one cannot expect that for any choice of 
branches jl(g,z)(\-VIi)/2 the relation jl(gh,z)(\-VIi)/2 
=jl(g,hZ)(\-VIi)I2'jl(h,z)(\-VIi)/2 is satisfied for all 

g,hEG simultaneously (there exist easy counterexamples); 
this fact shows the necessity of our detour by tr(e.g') (z). 

Proof of (a): necessity: We have seen that there exist A 's 
for which the line bundle QB is defined and in the same way 
one can show that there exist A 's for which the prequantum 
bundle L is defined. This shows that the group of periods of 
the symplectic form liJ on M is discrete (see Ref. 15) and 
since M is compact it must be isomorphic to Z, implying that 
the set of allowed values of A is discrete (countably infinite). 
Hence there exists a smallest positive Ao for which L exists, 
and this Ao with the corresponding Lo we will call the ele­
mentary prequantization. The general theory now shows 
that, given one quantum bundle QB(A) for a certain value of 
A, all other QB's (for other values of A) can be obtained by 
tensoring with the elementary prequantization: 
QB(A) ®Lo(Ao) = QB(A +Ao). 

We know two obvious solutions AI and A2: AI = Ii 
[whereQB is trivial: tr(z) = 1, see (6.9)] andA2 defined by 
(A2/1i - I) 'v(M)/2 = 1 (for type I, II, and IV; ! for type 
III) with tr(z) = const S(z,wt ), where S(z,wt ) is the irre­
ducible polynomial from Berezin [S(z,wt) = N(z,wt ) for 
type I, II, and IV and S(z,wt )2 = N(z,wt ) for type III]. 
From this we deduce that the difference A2 - AI is an integer 
multiple k of Ao. 

Now choose any geG such that S(z,wt ) has a simple 
zero in z [w t depends on g; such a g exists, although it is not 
true, in general, that for all w S(z,wt ) should have a simple 
zero in z]. From A2 - AI = kAo it follows that QB(A2) 
~QB(AI) ® ® k Lo~ ® k Lo [remember that QB(A I) is tri­
vial]. Denote by T(z) the transition function of Lo between 
the two local charts Ue and Ug (our special g of above!) then 
by the bundle equivalence there exist nonzero holomorphic 
functions Ke on Ue and Kg on Ug such that T=Ke-ISKg • 

Since Ue ~ Ug ~ cn there exist global k th roots of K so there 
exists on Ue n Ug a k th root of S(z,wt ). Because Ue n Ug 

= {ZEUe IS(z,wt ) ¥O} and because S(z,wt ) has a simple 
zero in z this leads to a contradiction except if k = 1, proving 
the necessity of condition (6.10). 

Proofof(b): If k = 0 (i.e., A = AI and QB is trivial) then 
jy consists of global holomorphic sections of the trivial bun­
dIe over a compact complex manifold, hence these sections 
must be constant, implying jy ~C. Another way to derive 
this result is by using the transition functions, if the global 
section rp is represented on two local charts by hi (z) and 
h2 (z) then hl(z) = h2 (gz). Now both hl(z) and h2 (z) are 
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global holomorphic functions on Cn and gz is a quotient of 
polynomials with nonconstant denominator (in general) so 
hl(z) andh2 (z) must be constant. 

Now suppose k < ° (and A. > 0) then we know from the 
proofofpart (a) that tr I2 (z) = polynomial(z)k so the rela­
tion hi (z) = tr 12 (z)h2(z) combined with hi (z) globally ho­
lomorphic shows that this is possible only if hi (z) 

= ° = h2 (z), hence JY = {O}. 
For k> ° the relation hl(z) = tr I2 (z)h2(z) poses a con­

dition on hi (z) and h2 (z) which restricts these holomorphic 
functions to polynomials of fixed degree, so JY is finite di­
mensional. The same conclusion can be obtained by inspect­
ing the condition on the sections imposed by JY [see (6.6)], 
h: Cn -C holomorphic is an element of JY iff 

Jlh(Z) 12N(Z,zt) - (..t/Ii+ l)'v(M)12 d Leb2n < 00, 

which also shows that h is restricted to polynomials of fixed 
degree [N(z,zt) is a polynomial]. Q.E.D. 
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A class of time independent two-dimensional integrable potentials, all possessing an invariant 
of the same general form, is constructed. One of these potentials is superintegrable, its 
invariants realize the symmetry algebra sO(3) for negative energies, e(2) for zero energy, and 
sO (2,1) for positive energies. A transformation of coupling constants reveals that in parabolic 
coordinates this potential is the harmonic oscillator acted on by constant forces. This and 
another potential in the class may be considered as successive extensions of the Kepler 
potential. The analytic properties of these integrable systems in the complex time plane are also 
discussed. 

I. INTRODUCTION 

The study of integrable systems has witnessed a rapid 
growth in the past few years. Mostly study has focused on 
infinite-dimensional systems governed by nonlinear evolu­
tion equations. Oflate, the identification and study of finite­
dimensional integrable Hamiltonian systems has also 
proved to be of considerable interest. This has followed the 
realization that an arbitrary Hamiltonian system is likely to 
be nonintegrable and perhaps chaotic, the canonical exam­
ple of such a system being the Henon-Heiles system. I Inter­
est in integrable Hamiltonian systems has been partly moti­
vated by the practical need of realizing them in plasma 
physics and accelerators and partly by the desire to under­
stand what characterizes integrability. 

We will consider only two-dimensional, time-indepen­
dent, classical Hamiltonian systems here. Such a system is 
integrable if there exists an additional analytic, single-val­
ued, globally defined constant of the motion besides the en­
ergy. Darboux2 may have been the first to give a systematic 
method of constructing a constant (or invariant) for a Ham­
iltonian system. In this direct method one postulates the 
form of the invariant, usually polynomial in the momenta. 
Demanding that the Poisson bracket of the invariant and the 
Hamiltonian vanish leads to a set of equations whose solu­
tion gives both the integrable potential and the complete in­
variant. This method has been used by several authors3 to 
construct a variety of integrable potentials. Most of the re­
sults obtained up to now have been reviewed by Hietarinta.4 

All integrable potentials admitting invariants which are lin­
ear or quadratic in the momenta are known. At higher or­
ders our knowledge is much less complete. The majority of 
results at higher order have been found by restricting the 
form of the invariant or making a particular choice for the 
form of the potential. In this paper we continue that tradi­
tion and choose our polynomial invariant to be of a certain 
allowable form and construct a class of integrable potentials 
which admit this type of invariant. There do exist other 
methods of identifying integrable systems, in particular, the 
Lax pair method,5 and Painleve analysis.6 Indeed the latter 

a) Present address: Department of Applied Physics, Columbia University, 
New York, New York 10027. 

has proved to be a useful complement to the direct method in 
integrability studies. 

This paper is organized as follows. In Sec. II we intro­
duce the method due to Darboux and write the particular 
choice of invariant. Assuming that the invariant is of nth 
order in the momenta, we find the necessary general form of 
a potential for it to admit an invariant of this type. In Sec. III 
and IV we carry out an explicit construction of the integrable 
potentials at n = 3 and n = 4, respectively. The potential we 
find in Sec. III, 

V = az- 1/2 + /3Z-1/2 + y(iZ) -1/2, (1.1) 

is superintegrable and turns out to be closely related to the 
two-dimensional Kepler potential. One of the four potentials 
we construct in Sec. IV can be viewed as the next extension of 
( 1.1 ). In Sec. III we also look briefly at the quantum me­
chanics of ( 1.1 ) and obtain its energy spectrum by the use of 
its dynamical symmetry group. In Sec. V we perform a Pain­
leve analysis on the equations of motion of the integrable 
systems to test the nature of the singularities. Finally we 
conclude in Sec. VI with some remarks. 

II. AN ANSATZ FOR THE INVARIANT 

Consider the Hamiltonian to be of the standard form 

H = Hi; + p;) + V(x,y) (2.1) 

admitting a polynomial invariant (of nth order in the mo­
menta) of the general form 

n n 

1= L L aij(x,y)p~JIy, (2.2) 
i=Oj=O 

i+j<.n 

where i + j is either even or odd, according as n is even or 
odd.7 The coefficients aij (x,y) with total order i + j = n can 
be determined to be8 

p = O,l, ... ,n, (2.3) 

where the A t are constants whose values depend on the po­
tential. So far most of the invariants known4 with n > 2 are 
those where ap n _ p are constants for all p. Thompson9 and 
more recently Leach 10 and Sen II have considered invariants 
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with 

_ 1 )P ( n ) n - PHI' apn _ p - ( - X y, 
n-p 

(2.4) 

the invariant being 

1= (xPy - ypx)n + lower-order terms. (2.5) 

Here we concentrate on finding those integrable potentials 
for which 

apn _ p = (-1)p[(: =;)xn-p~-2 

+( n-2 )xn-p-2~], (2.6) 
n-p-2 

i.e., the invariant is of the form 

1= (xPy - YPx )n - 2 (p; + p;) + lower-order terms. 
(2.7) 

For I to be an invariant, its time derivative or equivalently its 
Poisson bracket with H (since I is explicitly time indepen­
dent) must vanish. This condition results in a system of 
equations, the complete solution of which proceeds in two 
steps. First, we find that the potential V must obey an nth­
order linear partial differential equation (PDE). The solu­
tion of this PDE determines Vas a sum of n arbitrary func­
tions of known arguments. Next, these arbitrary functions 
are subject to certain nonlinear equations. Solving these non­
linear equations in the second stage of the analysis is consid­
erably simpler if we choose an appropriate coordinate sys­
tem. This choice of coordinate system is indicated by the 
arguments of the functions appearing in the first step. For 
our choice of invariant (2.7), these natural coordinates are 
the complex coordinates. Complex coordinates were also 
used by Kaushal et aZ. 12 but no new integrable systems were 
found. 

We now make the point transformation to complex co­
ordinates and perform the analysis from the beginning in this 
system. The Hamiltonian (2.1) is now of the form 

H = 2pzpz + V(z,z) 

and the invariant (2.7) is 

I(z,z,pz'Pz) = (zpz - zpz)n - 2pzpz 

n-2n-2 

(2.8) 

+ L L cij(z,z)p~Pz· (2.9) 
;=0 j=O 
;+j<.n -2 

Here the coefficients cij (z,z) of total order i + j = n are 
(p = 1, ... ,n - 1), 

= ( _ 1) n - p - 1 ( n - 2 ) zP - 1= - p - 1 
Cpn _ p n-p-l z (2.10) 

and 

CnO = 0 = COn. (2.11 ) 

The condition that the Poisson bracket of I and H vanish 
results in a system of equations (i,j = O,I, ... ,n - 1), 

2(azCij_l + aZC;_lj) 

= (i + l)c;+ Ij az V + (j + l)cij+ 1 az V, (2.12) 

obtained by equating the different powers of pzpz to o. One 
must recall here the stipulation cij = 0 if i,j <0 or i + j> n. 
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The solution to this set of equations at a particular n deter­
mines the integrable potentials and the complete invariants. 

Consider the following set of n equations 
(j = O,l...n - 1): 

2(aZCn_j_lj_l +aZCn_j_2j) 

= (n-j)cn_jjazv+ (j+ 1)cn - j - 1j+l azv 

(2.13 ) 

obtained from (2.12) by setting i + j = n - 1. The nth-or­
der linear PDE for V is obtained by eliminating the coeffi­
cients of order (n - 2) on the left-hand side from this system 
of equations. Some of these PDE's and their solutions (ob­
tained by the method of characteristics) are 

n = 3 (z a; az - z az a;) V = 0 

:::} V(z,z) =A(z) + B(z) + C(zz), (2.14) 

n = 4 [ra;az -razaj + 5(za;az -zaza;)] V= 0 

:::} V = A(z) + B(z) + C(zz) + (l/zz)D(zlz), 

(2.15 ) 

n = 5[ (z3a:az +rza;a; -zra;aj -z3aza:) 

+ 12(ra;az -razaj) 

+ 30(za;az - zaza;)] V = 0 

:::} V = A (z) + B(z) + C(zz) 

1 (z) 1 (z) +-Dl - +---D2-
ZZ Z (ZZ)3/2 Z' 

(2.16) 

whereA,B,C, ... are arbitrary functions of their arguments. It 
can be shown that at nth order the solution of the linear PDE 
is 

V = A (z) + B(z) + C(iZ) + L _ k12 Dk ~ • 
n-2 1 (-) 
k=2 (zz) z 

(2.17) 
This only completes the first stage of the analysis. At the 

second stage we find that these n arbitrary functions in 
(2.17) are also subject to [nI2] - 1 additional nonlinear 
equations ([nI2] is the smallest integer;;;onI2). The solu­
tions to these nonlinear equations (which must be found at 
each value of n separately) determine the exact forms of the 
integrable potentials. In the following two sections we carry 
out this process at n = 3,4. 

III. CUBIC INVARIANT 

The invariant in complex coordinates is 

1= (zpz -zPz)pzpz +clOPz +COIpz· (3.1) 

The equations determining C IO and COl are [from (2.12)], 

2 azclO =zaz V, 

2 azclO + 2 azCOI = 2(z az V - z az v), 

2 azCOI = - z az V 

and 

(3.2) 

ClOaz V + COl az V= o. (3.3) 

Eliminating C IO and COl from (3.2) we get the PDEin (2.14). 
We now choose to write the solution as 

V = A '(z) + B '(z) + C(zz). (3.4) 
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The derivatives (denoted by primes) are taken for later con­
venience. The equations in (3.2) can now be solved for C lO 

and COl' The general solution is 

2clO = 2zA '(z) - A(z) + zB '(z) + zC(u), (3.5) 

2col = - [ZA '(z) + 2ZB '(z) - B(z) + zC(zz)], 

where we have absorbed three arbitrary constants, one each 
inA,B, and C. The potential must also satisfy (3.3). This is a 
nonlinear compatibility condition that will determine the 
functional forms ofA,B, and C. Substituting from (3.5), this 
equation can be written as 

f(z) - g(z) + h(z,z) = 0, 

where 

(3.6) 

f(z) = (2zA' -A)A", g(z) = (2ZB' - B)B", 

h(z,z) = [z(zA' -A) -z(zB' -B)]C' (3.7) 

+ [zA" -zB"]C+zB'A" -ZA 'B". 

To solve (3.6), setl3 

f(z) = a, g(z) = b, h(z,z) = b - a, (3.8) 

where a and b are constants. The firsttwo equations in (3.8) 
are used to determine A andB, respectively, and then the last 
can be used to find C. The general solution of 

f(z) = (2zA' -A)A" = a, 

where a#O can only be given in the parametric form 

A (z) = z(t - alt) + kilt, 
(3.9) 

z=t2exp(~) {:I d:-I [~e1~)] +k2}, 

where t is the parameter, k I and k2 are arbitrary constants. A 
similar solution holds for B(z) with b #0. The last of (3.8) 
can be written in the form 

az[(zA' -A)(B' + C)] 

- az [(zB' - B)(A' + C)] = b - a. ( 3.10) 

This equation together with the above solutions for A (z) and 
B(z) has not proved tractable when either of a, b or both are 
nonzero, nor even in the case b - a = O. The question 
whether there do exist solutions to (3.8) under the above 
conditions is left open. However, it can be shown that there is 
no solution with A, B, and C analytic in their arguments, 
which is compatible with (3.10) and the solution for A(z) 
and B(z) obtained above. 

With a = 0 = b, A (z) and B(z) are given by 

A (z) = az1/2, B(z) = pz1/2, (3.11) 

where a, {3 are arbitrary constants, complex in general. [We 
can ignore the cases A "(z) = 0 = B " (z) since they lead to a 
potential with spherical symmetry.] The equation for C now 
reduces to 

2zzC' + C= 0, 

with the solution 

C(zz) = Y(ZZ)-1/2, 

(3.12) 

(3.13) 

where y is an arbitrary constant, complex in general. The 
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integrable Hamiltonian is 

H = 2pzpz + az- 1/2 + Pz-1/2 + y(zz) -1/2 (3.14) 

(after rescaling a,/3) and is complex in general. As we will 
see, this system turns out to be closely related to the Kepler 
potential. Most real integrable systems remain integrable 
under complex extension but complex integrable potentials 
by themselves have also been considered before (see, e.g., 
Hietarinta I4

). Physically we will be interested only in the 
real versions but for the purpose of studying integrability we 
work with the general complex potential. To complete the 
determination of the invariant, the coefficients c lO and COl 

may be found using (3.5). The complete invariant is 

1= (zpz - zPz )pzpz + Hpz-1/2 + y(zz) -1/2]ZPz 

- ![az- 1/2 + y(zz) -1/2]Zpz. (3.15) 

Before we discuss the system (3.14) in detail, let us con­
sider the possibility of other solutions to (3.6), with 
a = 0 = b. If A and B both vanish then C can be arbitrary. 
The potential is spherically symmetric and the Hamiltonian 
admits a linear invariant, the angular momentum. In all oth­
er cases, e.g., if only one of A, B, C vanishes, then it is 
straightforward to show that the only possible solutions are 
special cases of (3.14). 

The Hamiltonian (3.14) reduces to the two-dimension­
al Kepler system when a = 0 = {3. That system has the an­
gular momentum and the two components of the Runge­
Lenz vector as invariants. Checking for lower-order invar­
iants we find that the above system also admits two quadrat­
ic invariants 

II = (zpz - zPz )pz 

+ ~[pzI/2 _ az- l /2z _ yz-I/2Z1/2] , (3.16) 

12 = (zPz - zPz )pz 

+ H{3zz-1/2 - azl/2 _ yzl/2Z-I/2] . ( 3.17) 

Thus this system has four invariants including the energy. 
For an autonomous system with s degrees of freedom there 
may exist only 2s - 1 independent invariants for the system 
to be able to evolve in time. The invariants constructed here 
are related by the algebraic equation 

(3.18) 

where the cubic invariant has been relabeled 13, With 
a = 0 = {3, II and 12 reduce to the two components of the 
Runge-Lenz vector and 13 to the product of the angular 
momentum and the energy. The existence of the quadratic 
invariants implies that the Hamilton-Jacobi equation sepa­
rates in one of the orthogonal coordinate systems. The sys­
tem above separates in parabolic coordinates tl,t2: 
z = (tl + it2)2; in which the Hamiltonian is 

H- 1 [1 2 2 
-tf+t~ T(p,,+p,,> 

+(a+{3)tl+i({3-a)t2+Y]' (3.19) 

This is real valued if we take {3 = a* and it turns out to be 
one of the four potentials found by Winternitz et al. 15 for 
which the Hamilton-Jacobi equation separates in two coor­
dinate systems (here two parabolic coordinate systems mu-

TanajiSen 2843 



                                                                                                                                    

tually perpendicular to each other) and thus admits two in­
dependent quadratic invariants. Consider the physically 
more interesting case of the real potential. Define the follow­
ing real-valued invariants: 

J I = ;(E/2H) 1/2[11 + 12 + (1I2H)(a2 - a*2)], 

J2 = (EI2H) 112[11 - 12 - O/2H)(a2 + a*2)], (3.20) 

J3 = - (2iIH)13, 

where E = sgn H. The Poisson bracket relations between 
them are 

(3.21) 

Thus the Poisson algebra is isomorphic to the Lie algebra of 
SO ( 3) for negative energies, to E (2) for zero energy, and to 
SO (2,1) for positive energies, respectively. This of course is 
also true for the two-dimensional Kepler potential. The real­
ization of a dynamical symmetry group (energy dependent) 
by the invariants singles out this potential from the other 
three potentials found by Winternitz et al. 15 These potentials 
are 

(i) V = a(x2 + y2) + P IX- 2 + p,}),-2 

= ar + (lIr) [PI sec2 0 + P2 csc2 0], 

(ii) V = a( 4x2 + y2) + px + yy-2 

= [lI(n + tD] [4a(t~ + t~) + P(ti 

-t~) + (yI4)(tl- 2+t2- 2)], 

(iii) V = !!-. + _1_ [PI sec2!!.... + P2 csc2!!....] 
2r4r 2 2 

ti ~t~ [a+Pltl-
2

+P2t2-
2

], (3.22) 

where (r,O) are the polar coordinates and (tl,t2) are para­
bolic coordinates. The configuration paths in each of the 
four potentials are closed periodic trajectories. Further­
more, potential (iii) also reduces to the Kepler potential 
when PI = 0 = P2' However, for these three potentials, the 
invariants do not close under the Poisson bracket operation 
to give a finite-dimensional algebra. Classically at least, 
these potentials do not admit a symmetry group even though 
their motions are completely degenerate. 

Besides the harmonic oscillator, the Kepler potential, 
and the four-potentials mentioned above, at least three other 
potentials are known to be superintegrable (i.e., admit three 
algebraically independent invariants) in two dimensions. In 
an arbitrary number of dimensions N the known superinte­
grable potentials, admitting 2N - 1 independent invariants, 
are again the harmonic oscillator and the Kepler potential. It 
would be interesting to check ifthe higher-dimensional ana­
logs of the potentials listed in (3.22) and in particular of 
(3.19), are superintegrable or not. 

The close connection of the system (3.19) to the Kepler 
system can also be seen in the following way. It is well known 
that under the time coordinate transformation 

t-s; ~; = (ti + t~) -I, 
the Kepler potential is transformed into the harmonic oscil-
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lator when expressed in parabolic coordinates. 16 We have 

dtl _ dt2_ 
Ts- P;" Ts- P;" 

and the energy equation (3.19) for the real potential can be 
written as 

-y= (!p~, +!p~) -E(ti +t~) +Kltl +K~2' 
(3.23) 

where KI = a + a*, K2 = i(a* - a) are real constants. 
Here - y can be interpreted as the Hamiltonian for a two­
dimensional isotropic harmonic oscillator (with coupling 
constant - E) acted on by a constant force. This noncanoni­
cal time transformation also serves as an example of a cou­
pling constant metamorphosis between two integrable sys­
tems. 17 

One may try to look for a geometrical reason behind the 
degeneracy of the system (3.19), given that it is so closely 
related to the Kepler sytem. The Kepler potential is of 
course spherically symmetric but in addition, the equations 
of motion resulting from it are invariant under the transfor­
mation 

where c is an arbitrary constant vector. This invariance has 
been shown to lead to the conservation of the Runge-Lenz 
vector. 18 No such invariance transformation (i.e., a point 
transformation in space) exists here. Again, unlike the 
Kepler potential, the equations of motion of (3.19) do not 
admit any finite, nontrivial (i.e., besides time translation) 
space-time symmetry transformation. See the Appendix for 
the proof. Alternatively one might try transforming to mo­
mentum space, as was done for the hydrogen atom by Fock 
who reduced the motion by a stereographic projection to free 
flow on a hypersphere (for bound states) or on a hyperbo­
loid (for scattering states). The reason why this works is that 
the invariants for the Kepler potential involve the space co­
ordinates only linearly or have lIr whose Fourier transform 
is simple. In our case, the nonlinear terms occurring with a, 
pin (3.15 )-( 3.17) would appear to rule out such a simple 
picture in momentum space. Thus the realization of the 
space on which the motion of the system (3.19) would be a 
free flow is still left open. 

Let us look briefly at the quantum mechanics of this 
system. The presence of the quadratic invariants implies that 
the quantum version of this potential is integrable too. 19 The 
quantum invariants can be calculated from (3.15)-(3.17) 
by use of either of the symmetrization, Born-Jordan, or 
Wigner-Weyl correspondence rules20 to get 

II = (zpz - zPz )pz - (i/2 )pz 

+ !({JZ1/2 - az- 1/2z _ yz-I/2z1/2), 

12 = (zpz - zpz)Pz + (i/2)pz 

+ !(pzz- 1/2 _ azl/2 + yzI/2Z-1/2), (3.24) 

13 = (zpz - zPz )pzpz + Wn-1/2 + y(zz) -1/2)zpz 

- !(az- 1/2 + y(zz) -1/2)Zpz 

+ (i/S)(az- 1/2 _(JZ-1/2). 
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The relation (3.18) between the invariants is altered to 

(j112 + il3 + If)H + !(a2f1 - {32f2 ) + ~a{3r 
= 2(j~ - -hH2). (3.25) 

For the real potential the same expressions as in (3.20) 
A A A 

can be used to define the quantities JI> J2, J3• Now the com-
mutator algebras of these invariants yields the same Lie alge­
bras as in the classical case. Following Pauli's derivation of 
the hydrogen spectrum, the bound state energy spectrum of 
this model can be obtained by using the Casimir operator for 
SO(3), 

......... 2 ........ 2 ........ 2 
C=J I +J2 +J 3 

= _(! + ~(f+ 2/~2r + ~/:)) (3.26) 

[using (3.25)]. Equating this to the eigenvalues of C, viz, 
j(j + 1) where j = 0, !, 1, ... we get the energy eigenvalue 
equation (n = 2j + 1 = 1,2,3 ... ), 

n2E3 + 2fE2 + lal 2yE + 21a/ 4 = 0, (3.27) 

a result also obtained by Wintemitz et al. 15 by solving the 
Schr6dinger equation. 

Analogous to the classical result, the commutator alge­
bra of the quantum invariants for the potentials in (3.22) 
does not close. However, the symmetry group SU(2) [or 
o ( 3), locally isomorphic to it] can be realized at the quan­
tum mechanical level by defining appropriate ladder opera­
tors. 15 

IV. QUARTIC INVARIANT 

The invariant is 

1= (zpz -Zpz)2pzPz +c20 P; +cllpzpz + CO2 pi + coo' 

(4.1 ) 

The system of equations (2.12) at n = 4 reduces to 

and 

2 azc20 = r az V, 

2 azc20 + 2 azC II = 3z2 az V - 4zz az V, 

2 azc l1 + 2 azC02 = - 4zz az V + 3r az V, 

2 az C02 = r az V 

2 azcoo = 2c20 az V + cll az V. 

(4.2) 

(4.3) 

Differentiating thrice to eliminate the coefficients on the left­
hand side of ( 4.2) we find that the potential obeys the linear 
PDE (2.15). As before, we write the general solution for Vas 

V(z,z) = A '(z) + B '(z) + C(zz) + (l/zz)D(Zlz). 
(4.4 ) 

The coefficients at order 2 may be obtained by integrating 
( 4.2) to get the general solution 

C20 = ![3rA ' - 2zA + z2B' + z2C + zD rz + k 2], 

CI1 = - [z(2zA' -A) +z(2ZB' -B) +zzC+ 3D + kd, 

CO2 = HrA ' + 3rB' - 2ZB + z2c + (z/z)D + ko], 

(4.5) 

where ko, k I' k2 are arbitrary constants. Two other constants 
have been absorbed in A and B. The nonlinear compatibility 
condition on V can be obtained by eliminating Coo from 
(4.3). It is 

[2c2oa; - 2c02a i + (2azc20 - azcll )az 

+ (azcll - 2 azC02 )az ] V = O. (4.6) 

As was the case for the cubic invariant, this can be written in 
the form 

fez) - g(z) + h(z,z) = 0, 

where 

(4.7) 

fez) = (3z2A' - 2zA + k 2)A In + 3 (z2A II + 2zA ' -A)A ", g(z) = (3rB' - 2ZB + ko)B"' + 3(rB II + 2ZB' - B)B", 

h(z,z) = [2Z2(rA' - zA) - 2r(z2B' -zB) + k~ - kor]C" + 3 [z(z2A II +zA' -A) -z(z2B" + zB' - B) ]C' 

+ [rA II' + 3zA II -z2B"' - 3zB "]C +~ [2Z(zA' -A) - 2z(zB' -B) + k2~ - ko~]D"' 
Z4 z z 

(4.8) 

+~[_~(3Z2AII-5ZA'+5A)- ~ (3z2B"-zB'+B) + 4k2 _2ko]D II + ~[~(z3AIn+zA'-A) r z z r r zzz 

- ~ (z3 B In + zB ' - B) + k2 - kO]D + (r A '" + 3zA I/)B ' - A ' (Z2 B"' + 3zB "). 
Z Z2 r 

On the grounds of tractability, we solve (4.7) by setting each off, g, and h to 0 and look for powerIaw solutions for A(z) and 
B(z). This also requires k2 = 0 = ko. The power law solutions obtained fromf(z) = 0 are 

A(z) = Z, ZI/2, ZI/3, 

and similarly for B(z). Writing A (z) = azr, B(z) = {3Z', wherea,pare arbitrary complex constants, the equationh(z,z) = 0 
reduces to 

[2a(r-1)z'+Iz' -2{3(S-1)fl+1 ]C" + 3[a(r-l)(r+ l)z'z-P(s-l)(s+ l)zZS]C' + [ar(r-l)(r+ l)zr-I 

- {3s(s - l)(s + 1)ZS- I] C + z-4[2a(r - 1 )zrz - 2{3(s - 1)zZS]D" + Z-2[ - a(r - 1 )(3r _ 5)z'- I 

- P(s - 1 )(3s - 1)ZS - I ]D' + Z-IZ-I [a(r - 1 )3zr- I - P(s - 1)3zs - I ]D - aprs[ (r - l)(r + 1) 

- (s-l)(s+ 1)]z'- IZS-1 =0. (4.9) 
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This is a linear equation for the two functions C(zz) and 
D(Zlz). It will be solved by the method of separating vari­
ables. There are six distinct values for the pair (r,s): (1,1), 
(l,P, (1.1), (M), (~,!>, (M)· Withr = I,A '(z) reducestoa 
constant and can be dropped from the potential, i.e., we can 
put a = 0 for r = 1. Similarly for s = 1, set{3 = o. 

Consider first (r,s) = (l, 1). In this case (4.9) is satis­
fied identically so C and D can be completely arbitrary. The 
Hamiltonian is 

H = 2pzPz + C(zz) + (l/zz)D(z/z) 

== ~ (p; + ~ p~ ) + F(r) + ~ G({}), (4.10) 

where r, {} are the polar coordinates. For this system the 
Hamilton-Jacobi equation separates in polar coordinates, 2 I 
thus there exists an invariant quadratic in the momenta. The 
quartic invariant found here is just the product of that invar­
iant and the Hamiltonian. 

We give as an example, the method of solution for one of 
the other cases, (r,s) = (H). On separating variables, (4.9) 
reduces to 

85 2C " + 185C' + 3C=A5 -I, 

8(a1]I/2 - {3)1]2D" + 2(7a1]I/2 - {3)1]D' 

+ (a1]1/2 - {3)D = - A(a1]1/2 - {3), 

where 5 = zz, 1] = z/z, C = C(5), D = D(1]), and A is the 

TABLE I. Integrable potentials with quartic invariants. 

Potential 

1=14 + 12 

separation constant. These equations have the solutions 

C = f.l15 -1/2 + f.lzS -3/4 + 11,5 -I, 

D = (1]112 - D) -2 [VI1]I/4( 1]1/2 + D) + V21]1/2] - A, 

where 15 = {3/a andf.lI,f.l2' VI' V2 are arbitrary complex con­
stants. The potential is 

V(z,z) 

= az- 1/2 + pz-I/2 + f.l15 -112 + f.lzS -3/4 

+ 5 -I (1]112 - D) -2[ VI1]1/4( 1]1/2 + D) + V21]1/2]. 

(4.11 ) 

The A terms cancel out and we have rescaled a, {3. 
For the case (~,j) it is easy to show that there exists no 

solution to (4.9). In the other three cases the analysis pro­
ceeds similarly. 

Thus we have four new and distinct cases of integrable 
potentials with quartic invariants 

(I) V(z,z) =pz-1I2 + f.l15 -1/2 + f.lzS -3/4 + 5- 1 

X [V I1]1/4 + V21]1/2], 

(II) V(z,z) = pz-2/3 + f.l15 -113 + f.lzS -2/3 + 5- 1 

X (VI1]1/3 + V21]2/3), 

(III) V(z,Z) = az- 1/2 +pz-1/2 + f.l15 -1/2 +f.lzS -3/4 

+ 5 -1(1]1/2 - 15)-2 

X [VI1]1/4( 1]1/2 + D) + V21]1/2], 

Invariant 

14 = (ZPz - ZPz)2pzPz 

S=zZ, 7J=Z/Z 12 

(I) Pi- I12 + J.LIS -112 + J.LzS -3/4 

+ S -1(VI7J 1/4 + V27J
(12

) 

(II) Pi- 2/3 + J.LIS -113 + J.LzS -2/3 

+ S -1(VI7J 1/3 + V27J2/3) 

(III) az- 1/2 + Pi- 1/2 + J.LIS -112 + J.LzS -3/4 

+S-I(7J1/2_6)-2 

X IV17J1/4(7J1/2 + 6) + V27J 1/2 ] 

(IV) a 2z-2/3 + (3CZ- 2/3 + J.LIS -1/3 + J.LzS -2/3 

+ S -171
1/3 1 VI (71 113 - 6) -2 + V2( 71 1/3 + 6) -2] 

6=(3/a 
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!(H' + C+ s-ID)z'p; - (C + 3s- ID)spzPz +!( -H' + C+ S -ID)rp; 

- {( VI + V27J (/4 ) I J.LIZ-3/4Z-1/4 + V~-IZ-1/2 + Z-3/CZ-1/2( VI + V27J (/4 )] 

+ «(3/4)( J.L27J- 1/4 - VIS -1/4 + (3z)} 

!(H' + C+s-ID)z'p; + (H' - C- 3s- ID)spzPz +!( - 3H' + C+ s-ID)rPi 

- {(VI + V27J(/3) I J.L IZ-2/3 + J.L2Z-IZ-I/3 + z-51'Z1/3(VI + V27J I/3)] 

+ (3z'13( J.LzS -1/3 + V~-4/3 + (37J- 1/3 )} 

!( -A' +H' + C+ S -ID)z'p; - (C+ 3s -ID)spzPz + !(A' -H' + C+ s-ID)rPi 

+ ! J.L2(a7J1/4 + (371- 1/4 ) - ! VIS -1/4 + !(azI/2 - (3z1/2)2 _ (71 1/2 _ 6) -2Z-1 

X I VI (J.L17J- 1/4 + J.LzZ-1/2)(7J1/2 + 6) + v2( J.LI + J.LzS -1/4) 1 
- (71 1/2 _6)-4Z- 2IVI7J-1/4(7J1I2 +6) + V2 ]2 

!( - 3A' +H' + C+ s-ID)z'p; + (A' +H' - C- 3s- ID)spzPz + !(A' - 3H' + C 

+ S -ID)rPi + J.L2(a27J113 + (32 71 -1/3) + zz-I13(a27J2/3 - (32)2 - I J.LI(VI + v2 ) 

- 2a(3(vl - V2)]Z-2/3 + VI (71 1/3 - 6) -21 (2(32 - J.L (6)(2S -1/3 _ &-213) 

- J.L~-IZ-1/3] + J.L2(7J 1/3 + 6) -21 (2(32 + J.L 16)(2S -1/3 + &-213) - J.L~-IZ-1/3] 

- z-51'Z-1/31 VI (71 113 - 6) -2 + V2( 711/3 + 6) -2]2 
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where IS =/3la, 

(IV) V(z,z) = a 2z- 2/3 + /3 2z-2/3 + Illt -113 

+ Il~ -2/3 + t -11]113 [VI (1]1/3 - 1S)-2 

+V2(1]1/3+1S)-2], (4.12) 

where IS = /3 la, along with those obtained by z++z. 
To complete the determination of the invariant, the 

equations in (4.3) must be integrated to find Coo for each of 
the potentials. The potentials together with their invariants 
are listed in Table I. With a and /3 equal to 0, the quartic 
invariants reduce to products of a quadratic invariant and 
the Hamiltonian. 

Now some comments may be made on the nature of the 
potentials. All the integrable potentials constructed here 
(including the one in the previous section) are discontin­
uous along the positive real axis because of terms like z- 112, 

etc. Potentials I and II in (4.12) are complex valued for all 
choices of /3. Potential III is real valued under either of the 
following choices: (i) a = /3 and all coefficients are real; (ii) 
/3 = a* and ~/vr2 = v2Iv!= a*2Ia2; Ill' 112 are real. Po­
tential IV is real valued under either of the following choices: 
(i) a = /3 and all coefficients are real; (ii) /3 = a* and vl/vT 

= V2/v! = a*2/a2; Ill' 112 are real. 
Potential III can be considered as an extension of the 

potential in (3.14) which itself was an extension of the 
Kepler potential. Do there exist extensions of these poten­
tials with invariants at higher order? At fifth and sixth order, 
with power law solutions for A (z) and B(z), no integrable 
potentials exist. Such is likely to be the case at higher orders 
as well. Thus there would appear to be no extensions to 
(3.14) and (4.11) along the lines considered here. With A 
andB set to 0, the solution (2.17) of the linear PDE for the 
potential reduces to 

V = C(zz) + ni2 -\/2 Dk(!) 
k=2 (zz) z 

n -4 1 
=.F(r) + L -Gk (8). 

k=O ~+2 
(4.13) 

It has been found (Sen 11) that this is precisely the neces­
sary general form of a potential for it to admit an invariant of 
the form given in (2.5) but of order (n - 2). Thus if the 
potential is not to admit a lower order invariant both A and B 
must not vanish. The possibility of solutions other than pow­
er law for A (z) [or B (z)] at fifth and sixth order has not 
been investigated. Even at fourth order our results are in­
complete and there might well exist other solutions to (4.7) 
besides those found here. The complexity of the forms of 
f(z),g(z), and h(z,z) in (4.8) would appear to indicate that 
construction of other solutions may not be straightforward. 
It should also be noted that the quantum integrability of the 
potentials in (4.12) is not assured but must be checked for 
each case by computing the Moyal bracket of I and H. How­
ever, that question is not considered here. 

At this stage one might well question the utility of con­
structing invariants at high orders. Certainly from a practi­
cal point of view, the behavior (in say, configuration space) 
of an integrable potential with a high-order invariant might 
appear to be little different from that of a nonintegrable po-
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tential. However, the existence of the invariant permits one 
to make global statements about the system. For instance, if 
the motion is bounded and a periodic solution is known to 
exist, then there must in fact be a one-parameter (or d - 1 
parameter for d-dimensional integrable systems) family of 
periodic solutions. Moreover, many systems can be approxi­
mated by integrable ones and it is useful to understand the 
kinds of behavior exhibited by a variety of integrable sys­
tems. If one's interest is more in the mathematical question 
of what determines integrability, then explicit examples of 
integrable potentials can be used to test any proposed inte­
grability criteria. We do precisely this in the next section. 

V. PAINLEVE ANALYSIS 

The original conjecture that integrable systems should 
possess the Painleve property, i.e., their only movable singu­
larities in the complex time plane must be poles, was made by 
Ablowitz, Ramani, and Segur22 for nonlinear partial differ­
ential equations. This has been extended to discrete dynami­
cal systems and has proved to be useful in identifying various 
integrable cases.6 There is, however, no general proof as of 
yet that integrable systems must satisfy this property and the 
relation between this analytic property and the existence of 
an invariant is still unclear. In this section the integrable 
potentials constructed in the previous two sections are tested 
for this property, 

V = az- 1/2 + /3Z-112 + y(zz) -1/2. (5.1) 

This is the potential in (3.14). The second-order equations 
of motion are 

z = /3Z-3/2 + yz-1/2z - 312, Z = az-3/2 + yz-3/2Z-1/2. 

(5.2) 

Assume that the dominant behavior of z and z as 
r = (t - to) ..... O is z-a-r' , z-br". Balancing the most sin­
gular terms, one finds the two possibilities: (i) p = q =~. 
The resonances are r = - q, -!, -~; (ii) P = q = j. The 
resonances are r = 0, - 1, j, -!. 

Besides - 1,0 the other values of r should be positive in 
order to get the complete four-parameter solution. Since that 
does not hold in either case, the leading order behaviors ob­
tained above cannot describe the general solution. However, 
we know that for this potential, the Hamilton-Jacobi equa­
tion separates in parabolic coordinates leading to two one­
dimensional problems. The trajectories can be obtained ex­
actly. This was done by Winternitz et al. IS and we quote their 
result (for the real potential /3 = a*), 

Ki (K: ai )I12. 
r. =-+ --- sm(~ -lEr+bi ), 
!oJ 2E 4E2 E 

i= 1,2, 

(5.3 ) 

where ~I are the parabolic coordinates, E is the energy, r is a 
time parameter, and KI = a + a*, K2 = i(a* - a). Here ai' 
bl are the four arbitrary parameters. Clearly this does not 
show any singular behavior. 

Now consider the potentials with quartic invariants giv-
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en in (4.12). in order. 

V =pz-1/2 + fJ-15 -1/2 + fJ-£ -3/2 

+ 5 -1(VI1]1/4 + V21]1/2). (5.4) 

The equations of motion are 
Z = pz-3/2 + fJ-IZ-I/2z-3/2 + ~ fJ-z.Z-3/4Z-7/4 

+ ~VIZ-5/4Z-7/4 + Vz.Z-3/2Z-3/2. 

Z = fJ-IZ-3/2z-1/2 + ~ fJ-z.Z-7/ 4
Z-3/4 + ~VIZ-9/4Z-3/4 

+ 3Vz.Z-512z-1/2. (5.5) 

Assuming z-ar'. z-b'T'l as r = (t - to) -+0. we have the 
following possibilities: (1) p = q =!. The resonances are 
r = -1. - 1.l,!. This gives a three-parameter solution. (ii) 
p = 2 = - q. The resonances are r = - 1.0.1.2. This gives a 
four-parameter solution. (iii) p = - 3. q = 5. The reson­
ances are r = - 2. - 1.0.1. This gives a three-parameter so­
lution. Thus only (ii) can describe the general solution. The 
expansions for z. z read 

z=ar+ .... z= (v2/2)2/3a-5/3r-2+.... (5.6) 

Potential (II) in (4.12) shows similar behavior. Now con­
sider potential (III). 

V(z.z) = az- 1/2 + pz-1/2 + fJ-15 -112 + fJ-£ -314 

+ 5 -I (1]112 - 8) -2[ VI1]1/4( 1]1/2 + 8) 

+ V21]1/2]. (5.7) 

where 8 = (3la. It was remarked earlier in Sec. IV that this 
potential can be considered as an extension of the potential in 
(3.14) and indeed the singularity analysis shows similar be­
havior. The equations of motion for this potential are 

Z = pz-3/2 + fJ-IZ-1/2Z-3/2 + ~ fJ-z.Z-3/ 4Z - 7/4 

+ (Z-II2Z1/2 _ 8) -3 [~VIZ-9/4Z-3/4 + 3Vz.Z- 2Z- 1 

+ 8(3vlz-7/4z-s/4 _ Vz.Z-3/2Z-3/2 

- ~8vlz-s/4z-7/4)]. 

Z = az- 3/2 + fJ-IZ-3/2z-1/2 + ~fJ-z.Z-714z-3/4 
+ (Z-I/2z1/2 - 8) -3 nVIZ-13/4z1/4 + Vz.Z- 3 

- 8(3vlz-1l14z-1/4 + 3Vz.Z-512z-1/2 

+ ~8vlz-9/4Z-3/4)]. (5.8) 

With z - aT" • z - b'T'l • none of the various possibilities for p 
and q give a four-parameter solution. The most we get are the 
three-parameter solutions with either (i) p = 5. q = - 3. 
Resonances are r = - 2. - 1.0.1; (ii) p = - 3. q = 5. The 
same resonances as above. 

We argue that the leading order behavior is not expected 
to be singular because of the following reason. For p = 5. 
q = - 3 the most singular terms on the right-hand sides of 
(5.8) arise from the term vlz-3/4z-s/4in the potential (5.7). 
Now Z-3/4Z-SI4 = r-2e i912 • where (r.O) are the polar co­
ordinates. With a potential of the form V = r-2j(O) the 
Hamilton-Jacobi equation separates and the coordinates are 
expressible in terms of periodic functions of time. A similar 
argument holds for case (ii). Thus the potential (called here 
the second extension of the Kepler potential) shows similar 
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nonsingular behavior as the potential in (5.1) (the first ex­
tension of the Kepler potential). 

Potential (IV) in (4.12) shows similar nonsingular be­
havior as the previous one. Thus it is seen that the equations 
of motion for the integrable potentials constructed in Sec. III 
and IV either do not exhibit nonsingular behavior or else 
have the Painleve property. 

VI. CONCLUDING REMARKS 

In this work we have constructed examples of two-di­
mensional integrable Hamiltonian systems which admit an 
invariant of the chosen form (2.7). The potential in (3.14) 
reveals itself to be a close relative of the Kepler potential. 
Under the same time transformation which turns the Kepler 
potential into the harmonic oscillator in parabolic coordi­
nates. the system (3.14) is transformed into the harmonic 
oscillator acted on by a constant force. The system (3.14) is 
also superintegrable and its invariants provide a representa­
tion of the Lie algebra sO ( 3) for negative energies and 
sO(2.1) for positive energies. Unlike the Kepler potential 
however. its equations of motion do not admit any finite 
symmetries. The potentials in (4.12) admit a quartic invar­
iant of the form (2.7) and of them. potential (III) can be 
considered as an extension of (3.14). Recently it was shown 
by Yoshida23 that potentials of the form 

V = air + bxn + cyn. (6.1 ) 

where a. b. c. n are constants are integrable only if (i) n = 1. 
b. c arbitrary. (ii) n = 2. b = c. and (iii) n = 2. b = 4c (or 
c = 4b). Other perturbations to the Kepler potential ofthis 
form do not lead to an integrable system. In this context one 
may view (3.14) and potential IIIin (4.12) as perturbations 
ofthe Kepler potential which do preserve integrability. One 
should bear in mind that all potentials of the form 

V=alr+ (11,-2)/(0). (6.2) 

where / is an arbitrary function. are integrable and admit a 
quadratic invariant. In other words. the Kepler system may 
also remain integrable under a whole class of perturbations 
unlike the cases mentioned above where integrability is pre­
served with only specific perturbations. 

The analytic structure of the integrable systems con­
structed here has been studied and it was found that they 
either do not show singular behavior or else their movable 
singularities are indeed poles. thus verifying the Painleve 
conjecture. 

Let us indicate possible extensions to this work. Using 
(2.3) we can rewrite the general form (2.2) of an invariant 
as 

1= C ~L n + (C ~o- Ipx + C ~I- Ipy )L n - I 

+ (C~0-2p; +C~I-2pXpy +C~2-2p;)Ln-2+ ... 

+ C~oP~ + C~_llp~-lpy + ... + cgnp; 

+ lower-order terms in the momenta. (6.3) 

where C ~ are constants and L = XPy - YPx . In this work we 
took C ~o- 2 = 1 = C ~2- 2 and all others a while in Sen. II in­
variants with C ~ = 1 and all other constants 0 have been 
studied. Clearly one must try to establish similar results or 
show the nonexistence of integrable potentials for other 
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choices of coefficients. In addition to polynomial invariants, 
Darboux's method can also be used4 to treat invariants 
which are rational or transcendental in the momenta. This 
extension needs to be studied in depth. 
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APPENDIX: LIE SYMMETRIES OF (3.14) 

Prince and Eliezer4 have shown that the Kepler poten­
tial admits three point Lie symmetry generators. They also 
claim that as a consequence the Runge-Lenz vector is con­
served but this has been disputed.2s We follow the notation 
of Prince and Eliezer and show that the system (3.14) (the 
first extension of the Kepler system) admits only the trivial 
time translation generator. 

A system of second-order differential equations, 

F(t,x,i,i) = 0, (AI) 

admits a point Lie symmetry ifit is invariant under the infin­
itesimal point transformations 

t I = t + ES(X,t), x; = Xi + E'TJi (x,t) (A2) 

s.zz = 0; s.zZ = 0; S.U = 0, 

'TJI.zz = 2S.z,; 'TJI.zZ = S.z,; 'TJI.zz = 0, 

( E is an infinitesimal parameter) generated by the operator 

U = s(x,t)a, + 'TJj (x,t)ax ,. (A3) 

The condition of invariance is 

U"F=O, (A4) 

where U" is the twice extended operator 

U" = sa, + 'TJiaX/ + 'TJ;ax, + 'TJrax" (A5) 

with 

k • (k» _ d k - I (k) d 1:' 
'TJi (x,x, ... ,x ,t =- 'TJj - Xi -~, 

dt dt 
(A6) 

where X(k) == (dk /df )x. The equations of motion for the 
system (3.14) are 

Z = {3i-3/2 + rz-I/2z-3/2, Z = az-3/2 + rz-3/2z-1/2. 

(A7) 

The infinitesimal symmetry generator is 

and its twice extended form is 

U" = sa, + 'TJlaz + 'TJ2az + (iII - zt)az + (i12 - zt)az 

+ (771 - at -zt)az + (i'h - tit -zt)a'j' (A9) 

Applying this to (A 7) and equating the coefficients of differ­
ent powers of Z, z to 0, we get (s.zz ==a ;5, etc.), 

(AlO) 

(All) 

..., = O· ..., - = 1:'. ..., _ = 21:' _ 2..., = 3 ({3z-3/2 + yz-1I2z-3/2)1:' + (az- 3/2 + yz-3/1::z -1/2)1:' _ + 1:' 
·/2,zz ,·/2.zz ~z" ·/2,zz ~.z" ·,I,zt ~.z ~.z ~,tt' 

..., _ = (az- 3/2 + yz-I/2z-3/2)1:' _ ..., = (az- 3/2 + yz-3/2z-1/2)1:' 
·/l,ZI ,..,~ ~,z' ·/2,ZI ~.z' 

2..., _ = (az- 3/2 + yz-I/2z-3/2) 1:' + 3(az- 3/2 + yz-3/2z-1/2) 1:' _ + 1:' 
·'2,zl ,..,~ ~.z ~.z ~.tt' (A12) 

'TJI.z ({3i-3/2 + rz-I/2z-3/2) + 'TJI.z (az- 3/2 + rz-3/2z-1/2) + 'TJI.tt + !'TJlr(ZZ) -3/2 

+ ~'TJ2({3i-S/2 + rZ-I/2z-S/2) - 2 ({3i-3/2 + yz-I/2z-3/2)S., = 0, 

..., ({3i-3/2 + yz-I/2z-3/2) +..., _ (az- 3/2 + yz-3/2Z-1/2) + ..., + 1..., r(ZZ) -3/2 ·12.z ·12.z ·12.tt 2'12 

+ ~'TJI (az- S/2 + yz-S/2z-1/2) - 2(az-3/2 + rZ-3/2z-1/2)S., = O. (A13) 

It is straightforward to check that the only solution of these 
equations when a=l=O=l={3 is 

5 = const, 'TJI = 0 = 'TJ2' 

giving the Lie symmetry generator 

u=a,. 

(A14) 

(A15) 

This time translation symmetry that exists for all time-inde­
pendent potentials is associated only with the conservation 
of energy. The importance of Lie symmetries arises by virtue 
of Lie's theorem that the infinitesimal point transformations 
can be integrated to give a finite continuous group of trans­
formations. This is usually not the case for other kinds of 
local symmetries. The lack of any finite space-time symme­
try transformations for this completely degenerate potential 
shows that there is no direct connection between such sym­
metries and degeneracy. 
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The transformation properties of determined, autonomous systems of second-order ordinary 
differential equations, identified as vector fields on the tangent bundle of the space of 
dependent variables, are derived and studied. The inverse problem of Lagrangian dynamics is 
studied from this transformation viewpoint as well as the problem of alternative Lagrangians. 
In particular, regular Lagrangians which are analytic as functions of the first derivatives are 
considered. Finally, the inverse problem for second-order systems corresponding to the 
geodesic flow of a symmetric linear connection is investigated. 

I. INTRODUCTION 

The inverse problem of Lagrangian dynamics asks for 
necessary and sufficient conditions that a given system of 
second-order ordinary differential equations are the Euler­
Lagrange equations corresponding to a regular Lagrangian 
function. Allied to the inverse problem is the question of 
when two Lagrangian functions, which are not trivially 
equivalent (a term which will be explained in Sec. 111), de­
termine the same second-order system, the so-called prob­
lem of alternative Lagrangians. There has been a certain 
amount of progress made recently in answering these impor­
tant questions, which have all sorts of theoretical and practi­
cal ramifications, but a complete solution is, for the moment 
at least, not in sight. 

The main aim ofthis paper is to make a thorough study 
of the transformation properties of systems of autonomous 
second-order ordinary differential equations and apply the 
results obtained to the inverse problem. For the sake of sim­
plicity, throughout this paper I shall only consider autono­
mous systems, though for the most part this is not an essen­
tial restriction. In Sec. II I consider the correspondence 
between such systems and certain kinds of vector fields 
known as second-order equation fields. This correspondence 
leads in a natural way to a "transformation law" for second­
order systems, several simple consequences of which are pre­
sented. The material of Sec. II (and Sec. III) is not intended 
to be simply an exercise in mathematical erudition: a modern 
approach to a system of differential equations (even in the 
context of Euclidean space) is to consider two such systems 
as being equivalent, if one can be transformed into the other 
using a change of coordinates belonging to some specified 
pseudogroup of coordinate transformations. This pseudo­
group is chosen at the outset and is dictated by the signifi­
cance attached to the independent and dependent variables. 
A set of differential equations then is more properly regard­
ed as an equivalence class of systems, any two representa­
tives of the class being related by a coordinate transforma­
tion of the given pseudogroup. 

The other theme of the paper, in Secs. III-V, is a study 
of a restricted class of second-order equation fields, namely, 
those corresponding to second-order systems analytic in the 
first derivatives. In particular, the inverse problem for such 

systems is investigated. In Sec. III the inverse problem is 
introduced and some basic points concerning it are made. In 
Sec. IV some simple consequences of a direct approach to the 
inverse problem are derived. This approach is an alternative 
to the Helmholtz equations which provide necessary and 
sufficient conditions for the existence of a regular Lagrang­
ian, whose Euler-Lagrange field is the given second-order 
equation field. 1.2 In Sec. V I consider the inverse problem for 
second-order equation fields which are the geodesic sprays 
of symmetric linear connections. It is shown that the condi­
tions for the existence of a Lagrangian have a simple geomet­
ric interpretation. These conditions are used to exhibit sever­
al examples of sprays which admit alternative Lagrangians. 

Sections II and III employ some geometric machinery 
of the tangent bundle, a comprehensive treatment of which 
can be found in Crampin,3 whereas Secs. IV and V are analy­
tical in character. As regards notation, M consistently de­
notes a "smooth," that is class ceo, manifold. The tangent 
bundle submersions from TM to M and TTM to TM will be 
denoted by 'IT and II, respectively, and the tangent mapping 
of 'IT from TTM to TM is denoted by T'IT. The second-order 
tangent bundle to M, that is, equivalence classes of (germs 
of) curves on M which agree to second order, is denoted by 
T2 M. If (Xi) is a system oflocal coordinates on M, there is a 
naturally induced system (Xi, ui ) on TM which I refer to as 
an adapted coordinate system. Similarly (Xi,Ui,/,Vi ) denotes 
a coordinate system on TTM induced from (Xi, ui ) on TM. 
The notation of classical tensor calculus is used with a re­
peated index denoting summation. For a (covariant) tensor 
field of valence n whose components areA i "'i , its symmet-
ric part is denoted by A (i,.. 'i.) • ' • 

Finally, I mention two lifting constructions on the tan­
gent bundle. First, a one-form a on M defines in a natural 
way a real-valued function on TM, denoted by a. If uETM 
and 'IT ( u) = X, a (u) is defined as the result of pairing u with 
a(x) (as elements of TxM and T-:M, respectively). In an 
adapted coordinate system (Xi, ui ) on TM if locally a is 
represented by a i dxi , a is given locally by (Xi, Ui)t--+CXiUi. 

Second, if A is a tensor field on M of type (1, n) which is 
symmetric in its covariant arguments, it determines natural­
ly a vertical vector field on TM written AV . If (Xi, ui ) is an 
adapted coordinate system and A is represented locally by 
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A{"'in(alxi)®dxi'dxi2"'dx\ A V is given locally by 

A! .... Ui'Ui2 .. 'uin(a lall). This vertical lift construction is 
" In 

the natural generalization of the usual vertical lift construc-
tion in which a vector field on M is lifted to a vertical field on 
TM which is "constant on fibers."3.4 

II. FOUNDATIONAL REMARKS ON SECOND-ORDER 
EQUATIONS 

A second-order equation field (SOEF) r on an m-di­
mensional manifold M is a section of TTM over TM with 
respect to both the submersion maps T1T and II. In other 
words, r is a vector field on TM such that for all u in TM, 

(2.1) 

A SOEF provides a convenient geometric description of a 
regular, determined, autonomous system of second-order 
ordinary differential equations. To say the system is "deter­
mined" is to say that there are as many independent equa­
tions as there are dependent variables and by "regularity" I 
mean that the second-order derivatives can always be solved 
for as functions ofthe first-order derivatives and dependent 
variables. If (Xi, ui ) is a local coordinate system on TM 
adapted to the tangent bundle fibration, r assumes the form 

r - i a +fi a -u- -
axi aui' 

(2.2) 

where thefi 's are functions of Xi and ui . The second-order 
system corresponding to r is given by 

(2.3 ) 

where the dot denotes differentiation with respect to the in­
dependent variable t. Setting ui = Xi is the well-known de­
vice which effectively converts (2.3) into (2.2). 

The second-order system (2.3) is amenable to a some­
what different geometric interpretation which at once ex­
plains the significance of the regularity condition and en­
ables one to interpret (2.3) in terms of the second-order 
tangent bundle T 2M. In fact consider T 2M as a bundle over 
TM. (One should note carefully that T2 M naturally has the 
structure of an affine rather than a vector bundle over TM; 
for more about affine bundles see Crampin and Thomp­
son.5 ) If (Xi, ui, Vi) is an adapted coordinate system on T2M, 
then one may consider (2.3) as defining (locally) a codi­
mension m submanifold, l:. say, of T 2Mby the conditions 

vi=Ji(xj,u j). (2.4) 

In fact l:. actually defines a section u of T2M over TM and 
thus may be identified with TM. Notice that it is precisely 
the regularity condition which guarantees that l:. defines a 
section of T 2M over TM. 

I shall explain next how the considerations of the pre­
vious paragraph lead naturally to the definition of a SOEF as 
given above starting from the second-order system (2.3). 
Note first of all that T2M is naturally an embedded submani­
fold of TTM. If (Xi, ui, /, Vi) is a coordinate system on TTM 
consonant with the adapted coordinate system (x i,U i,y i,V i) 
on T2M, T2M is locally the submanifold given by the condi­
tions ui = /. Let the submanifold map from T 2M to TTMbe 
denoted by j. Notice thatj( T2M) is invariant under the ac­
tion of the canonical involution I on TTM. It follows that the 

2852 J. Math. Phys., Vol. 28. No. 12. December 1987 

map jou defines a section of TTM over TM with respect to 
both the submersion maps T1T and II, in other words is a 
SOEFonM. 

I next introduce the notion of isomorphism SOEF's, 
which makes the collection of SOEF's on manifolds diffeo­
morphic to a fixed manifold into a groupoid. Suppose that r 1 

and r 2 are SOEF's on MI and M 2, respectively. Then r 1 and 
r 2 [or more accurately (r I' M I) and (r 2' M 2 ) ] are isomor­
phic or equivalent, if there exists a diffeomorphism ifJ of MI 
with M2 such that at each point of TM1, 

(TifJ).r l = r 2• (2.5) 

Equation (2.5) enables us to define what it means for 
two second-order systems to be equivalent (at least second­
order systems corresponding to SOEF's). It is important to 
appreciate that this is the appropriate categorical meaning of 
equivalence of second-order systems; one could envisage 
other notions of equivalence, but these will either destroy 
some property which is characteristic of such systems or 
preserve some uncharacteristic property. 

We can ask what (2.5) means locally. To this end, let 
(Xi, Iii ), (Xi, Iii) be two adapted coordinate systems on TMI 
and TM2, respectively, and suppose that 

. a . a r l =u'-+/'-., 
ax' au' 

r - -i a +f-i a -u- -. 
2 axi alii 

If now the transformation TifJ is described locally by 

Xi = xi(x j) , 

-i _ axi j 
u --.u, 

ax' 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

we find (2.5) gives the following transformation law of sec­
ond-order equations: 

f- i-fa axi + -a-b a 2xi axc ax' - - u u -------. 
axa axcax' axa axb (2.10) 

Equation (2.10) may be interpreted in the spirit of clas-
sical tensor analysis; it says, assuming that r 1 and r 2 are 
analytic in the fiber u, that every term transforms tensorial­
ly, except the quadratic one, which transforms according to 
the transformation law for Christoffel symbols. Thus, for 
n =1=2, the term of degree n in fa, A j, ... jnuj,·· 'u jn say, arises 
from the type (I,n) tensor field A j, .. )n on M and 

A j, .. )n II" . . In(a laua) is just its vertical lift in the sense of 
Sec. I. We can therefore decompose a given SOEF r, which 
is analytic in u, into a sum of a spray together with various 
vector fields which are vertical lifts. Thus I shall write 

(2.11) 

where A is the spray associated to r and A : is the vertical lift 
field corresponding to the terms of degree n in u and which is 
invariantIy associated to r. It is worth noting too that the 
notion of a spray, which is by definition a SOEF in which the 
P's are homogeneous quadratic polynomials in u j

, is well 
defined in virtue of (2.10); this is not obvious a priori. 

I shall present next some applications of (2.5). I shall 
make use of the well-known result in connection theory 
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which asserts that if the curvature of a torsion-free (linear) 
connection vanishes, one can always introduce local coordi­
nates relative to which the Christoffel symbols of the connec­
tion are zero.6,7 

Proposition 2.1: Suppose that r 1 and r 2 are two SOEF's 
analytic in the fiber variables. Suppose further, that r 1 has a 
nonzero term of degree n (# 2) in u but that r 2 does not. 
Then r 1 and r 2 are not equivalent. 

Proposition 2.2: Suppose we are given a second-order 
system oftype (2.3) with corresponding SOEF r. Then we 
can find a local representation as 

ji =PCx j
) (2.12) 

iff (i) r = A + A r, that is, the/i's are even quadratic in u, 
and (ii) the curvature of the connection corresponding to A 
vanishes. 

Proposition 2.3: Suppose we are given a second-order 
system of type (2.3) with corresponding SOEF r. Then we 
can find a linear representation 

Xi =A i + BJXi + cJXi, (2.13) 

where A i is a constant m vector and B J and C 5 are constant 
m Xm matrices iff (i) r = A + A r + A r, that is, the / i,S 
are quadratic in u; (ii) the curvature of the connection V 
corresponding to A vanishes; and (iii) VA 1 = 0 and 
V2AO =0. 

Condition (ii) says that we can remove the term qua­
dratic in u and thereafter, according to (2.10), we must only 
consider transformations which are affine linear in x. (Any 
other transformation would reintroduce terms quadratic in 
u.) Condition (iii) then guarantees that the term of degree 0 
in u is affine linear in x. 

Thus for autonomous systems of second-order ordinary 
differential equations there is a complete characterization of 
those systems that are equivalent to linear systems. More­
over, this characterization yields an effective practical test 
for determining whether a given second-order system can be 
linearized. This is in stark contrast to the situation for even 
scalar nonautonomous second-order equations. (See Ref. 8 
for some recent results on this subject.) 

III. THE INVERSE PROBLEM OF LAGRANGIAN 
DYNAMICS 

In this section I shall briefly review the geometrical ap­
proach to Lagrangian dynamics and describe the inverse 
problem in the light of the material of Sec. II. This is intend­
ed to put the inverse problem into some kind of perspective, 
prior to the more specific analysis in Secs. IV and V. 

To formulate Lagrangian theory invariantly, we shall 
have to investigate the geometry of the tangent bundle TM in 
greater detail. In particular we shall need the canonical 
Liouville vector ll. and the 1-1 tensor field S, the so-called 
vertical endomorphism. The vector field !:J. arises out of the 
action of the multiplication group of nonzero reals on each 
fiber of TM; specifically, if F is any real-valued function on 
TM and u an arbitrary point in TM, 

(ll.F)(u) = !!.- (F(tu») I . (3.1) 
dt 1=0 
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The tensor S is defined as follows. Let ueTM and 
XeTu (TM); then S(X)u is ll.( 1T .X), which makes sense be­
cause 1T. X is an element of TM. In an adapted coordinate 
system (Xi, ui) on TM, ll. and S assume the form ui(a laui) 
and (8lau i) ®dXi, respectively. 

Now suppose that L: TM ..... R is a regular Lagrangian. 
This means that in the adapted coordinates (Xi, ui), 

det( a
2

L .)#0. (3.2) 
au' ai' 

Now sinceSis a 1-1 tensor, it can be applied to the one-form 
dL to produce another one-formSodL. It follows from (3.2) 
that the two-form OJL = d(SodL) is a symplectic form. The 
Euler-Lagrange field A determined by L is the unique vector 
field which satisfies 

i(A)OJL = - d(ll.L - L) . (3.3) 

One may readily check that A so defined is indeed a SOEF on 
M. The inverse problem of Lagrangian dynamics asks for 
necessary and sufficient conditions that a given SOEF is the 
Euler-Lagrange field corresponding to some regular La­
grangian function on TM. For more on the invariant formu­
lation of Lagrangian dynamics the reader can refer to Refs. 
3,9, and 10. 

Now consider all pairs (.M, I) consisting of a manifold 
M diffeomorphic to M and a regular Lagrangian function I 
on TM. The collection of all such pairs forms a category, 
indeed groupoid, in the obvious way. We can now describe 
the assignment of a SOEF corresponding to a regular La­
grangian as a functor .7 from this groupoid to the groupoid 
of SOEF's on manifolds diffeomorphic to M. The inverse 
problem is then precisely that of characterizing the image of 
.7 and the problem of alternative Lagrangians is essentially 
that of describing the extent to which .7 fails to be injective. 

Concerning the problem of alternative Lagrangians, it is 
well known that there are several rather trivial ways in which 
a given regular Lagrangian may be modified and yet still 
yield the same Euler-Lagrange vector field. Specifically, let 
L be such a regular Lagrangian; then the Lagrangian L, 
where 

I=AL+a+c, (3.4) 

A,ceR, and a is a closed one-form on M (a denoting the 
corresponding real-valued function on TM which is linear in 
u) does indeed determine the same Euler-Lagrange vector 
field as L. The term a is known usually as a "gauge term" 
and is the global, autonomous version of the addition of a 
total time derivative of a function on M to the Lagrangian. 
Two Lagrangians L and I related as in (3.4) will be called 
trivially equivalent; the problem of alternative Lagrangians 
is to be solved modulo this equivalence relation. 

An important and basic question relating to the inverse 
problem is whether the property of a SOEF being a Euler­
Lagrange field is invariant under transformations of the 
form Trp, for rp a diffeomorphism of M. This fundamental, 
conceptual point is usually not addressed in the literature, 
though the answer to the question just posed can hardly be 
said to be obvious, given the definitions of a SOEF and the 
Euler-Lagrange field. In fact, let us apply the diffeomor­
phism Trp to either side of (3.3), noting that since ll. and S are 
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natural objects on TM they are certainly preserved by Tt/J, 
that is, /:1. Tt/J = /:1 and S' Tt/J = S; one obtains 

i(Tt/J);IA)(()L'T~ = -d(/:1(L'Tt/J) -L·Tt/J). (3.5) 

Equation (3.5) says precisely that (Tt/J); IA is the Euler­
Lagrange vector field corresponding to the regular Lagran­
gianL·Tt/J. 

In terms of an adapted coordinate system (Xi, ui
) on 

TM, thep's in a Euler-Lagrange field [see (2.3)] are deter­
mined in terms of the Lagrangian L according to the condi­
tions 

a
2

L .Ii = aL. _ II a.
2
L .. 

au' au' ax' ax' au' 
(3.6) 

The reader may care to give a proof in local coordinates of 
the result derived in the previous paragraph using (3.6). 
[One has to check that thep's defined by (3.6) transform 
according to (2.10).] Perhaps the most obvious and direct 
approach to the inverse problem is to consider (3.6) as a 
system of m second-order partial differential equations for 
the unknown L; one has to give necessary and sufficient con­
ditions on thep's for there to exist a solution L which also 
satisfies the transversality condition (3.2). Of course this is a 
highly nontrivial problem. Now an answer of sorts to the 
inverse problem, as is well known, is provided by the Helm­
holtz conditions. 1.2 However, this "solution" is no more an 
answer than that which says that a Lagrangian exists, if and 
only if there is a regular solution to (3.6). Indeed, the Helm­
holtz conditions, as given by Crampin 1 for example, are real­
ly only a way of recasting (3.6) as a first-order system of 
differential equations in terms of the intermediate variables 
gij =a 2Llaui au j (together with some purely algebraic 
conditions on theg/s). 

Theone casein which (3.6) can be analyzed completely 
is when m = 1 so that (3.6) reduces to a single equation. In 
that case the existence of a Lagrangian L follows, at least if 
one assumes that the single function/is analytic in x and u, 
from the Cauchy-Kowalewski theorem. Furthermore, L 
can be found such that aL 21 au2 i= 0, at least on an open set in 
TM, and so L is a regular Lagrangian. As to the problem of 
alternative Lagrangians, it is easy to verify the following: if L 
is a regular solution of (3.6) (with m = 1), and the energy 
HL is defined by HL = u(aL lau) - L, then up to trivially 
equivalent Lagrangians, every other Lagrangian is given by 
r where F is an arbitrary smooth function of H Land 

-- J F(HL)du 
L -u 2' 

U 
(3.7) 

[Of course in (3.7) an arbitrary function of x enters because 
of the integration with respect to u, but this simply results in 
the addition of a gauge term to the Lagrangian.] 

The case of m = 1 is of fairly limited interest in its own 
right of course; however, it is useful for checking that results 
conjectured for arbitrary values of m reduce to a correct 
result for m = 1. Furthermore, if one is given a Lagrangian 
system with m arbitrary, one may always take the "direct 
product" (in the obvious informal sense) of it with a one­
dimensional Lagrangian and the resulting Lagrangian sys­
tem will be one which admits alternative Lagrangians. Any 
attempt to solve the problem of alternative Lagrangians 
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then, has to incorporate some way of detecting when this 
situation occurs; indeed it begs the question of whether alter­
native Lagrangians always arise in this way. 

IV. LAGRANGIANS ANALYTIC IN u 
The notion of equivalence of SOEF's introduced in Sec. 

II, namely, an equivalence that preserves the structure of 
tangent bundles, suggests that we consider systems of sec­
ond-order equations like (2.3) in which the/ k 's are analytic 
functions of u. For a diffeomorphism of two tangent bundles 
which is lifted (or "prolonged") from a diffeomorphism of 
the corresponding manifolds, preserves all such notions as 
(real-valued) functions being "polynomial or analytic in the 
fiber." (On the other hand, it has to be admitted that this 
assumption of analyticity is a significant restriction; it would 
exclude, for example, the interesting families of alternative 
Lagrangians for a particle moving under a spherically sym­
metric potential given by Henneaux and Shepley 11 ). 

In this section I investigate what the implications are of 
expanding the ji 's in powers of u and using the decomposi­
tion given by (2.11). I shall begin by deriving some simple 
consequences of (3.6) in the shape of the following proposi­
tion. 

Proposition 4.1: Let r be an SOEF on M. Then if there 
exists a Lagrange function L on TM such that r is the Euler­
Lagrangian vector field of L and if L is analytic in U· ( about 
the zero section of TM), r is analytic in u. Furthermore, if L 
and theji 's are polynomial [in u and ui 

, respectively, where 
(Xi, ui ) is an adapted coordinate system], then the/j's are 
at most quadratic polynomials. Finally, ifit is assumed sim­
ply thatL is quadratic in u (and regular), the/j's are neces­
sarily at most quadratic in ui 

• 

Proof: The proof of the first statement is quite straight­
forward. [One may show that the matrix (a 2 L I aui au j) - 1 

consists of functions analytic in u, the coefficients of which 
are determined in terms of the coefficients in the series ex­
pansion of L; I shall return to this point below.] 

The proof of the second statement is clear from (3.6), 
because if L is of degree, say n, in u, the right-hand side of 
(3.6) is of degree at most n. Thus the left-hand side is of 
degree no more than n, which evidently means that theji 's 
can be at most quadratic. 

To prove the third assertion, differentiate (3.6) fiber­
wise three times assuming that L is quadratic in u. One easily 
obtains 

(4.1 ) 

Now (4.1) implies that the/j's are quadratic in ui because 
the matrix a 2L laui au} is nonsingular. 

It is important to appreciate that the converse of each 
assertion made in Proposition 4.1 is false. Counterexamples 
can be obtained by considering a free particle (when theji's 
are identically 0) in one dimension and noting some of the 
remarks made in Sec. IlIon one-dimensional systems. Simi­
larly it is easy to generalize to appropriate counterexamples 
with an arbitrary number of dependent variables. 
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To return to the proof of the first assertion in Proposi­
tion 4.1, let us suppose that L is developed as a power series 
in u. Specifically, let (Xl, u l) be an adapted coordinate sys­
tem and suppose 

. . . . . k 
L =A +Alu' + (l/2!)Aiju'u J + (l/3!)AijkU'UJU 

(4.2) 

where A,A;.Aij, Aijk,Aijkl' etc., are functions of Xi only. 
Then one may show from (3.6) that the first three terms in 
fj are given explicitly by 

+ ~[ _ (A _1)aj(aA la + aA ka _ aAkl) + ((aAa _ aA I )Aikm + (aAa _ aAk \ Aum)(A -1)ij(A -I)am 
2 axk axl axa axl axa axk axa r 

+ ::)(AikmAlnp +AumAknp) (A -1)ij(A -1)mp(A -I)an -Aiklm (A -1)am(A -1)ij)]UkUI + ... . (4.3) 

The terms injj of degree 3 and higher can be determined, in principle, in a similar manner, the term of degree n depending on 
the coefficients corresponding to terms in L of degree up to and including n + 2. 

There are some other points worth noting about (4.3). First, if in (4.2) A is constant and the term Ai u l corresponds to a 
closed one-form on M, that is, is a pure gauge term, the zeroth- and first-order terms in the expansion (4.3) are O. Conversely, 
suppose that one is given a SOEF and that in the expansion of the correspondingp's, the zeroth- and first-order terms are 0; 
then if there is a regular Lagrangian L such that r is its Euler-Lagrange vector field, in the expansion (4.2), A must be 
constant and A I ui must be a gauge term. In other words, in looking for such a Lagrangian, one may assume without loss of 
generality that its lowest-order terms are quadratic in u. 

The second point about (4.3) concerns the spray associated to SOEF r which is the Euler-Lagrange vector field of a 
regular Lagrangian L. Suppose that in an adapted coordinate system (Xi, u i ) the Christoffel symbols of this spray are r~, so 
that (4.3) gives 

r{, = - ~ [(A -1)aj(Ala,k +Aka,I-Akl,a) + (A',a -Aa,I)Aikm + (Ak,a -Aa,dAum)(A -1)ij(A -I)am 

+ aA(A. A +A. A )(A -1)ij(A -1)mp(A -1)an_A. (A -1)am(A -I)ij)] axa ,km Inp ,1m knp 'kim' (4.4) 

Thus if we interpret Aij as a Riemannian or pseudo-Riemannian metric on M (A ij must be nonsingular if L is to be regular on 
the zero section of TM), we see that the spray associated to r is the Levi connection of A ij if either L is quadratic in u or is triv­
ially equivalent to a Lagrangian whose lowest-order terms are quadratic (and possibly in other cases, too). By performing 
maniupulations similar to these in Riemannian geometry,6 one can derive from (4.4) 

Abk,l = Abjr~l + Akjr{b + Bbkl> 

where 

(4.5) 

Bbkl = ! [(Aa,k - Ak,a )Ablm + 2(Aa,1 - AI,a )Abkm + (Aa,b - Ab,a )Ak1m ] (A -I lam 

+ !A,a (AblmAknp + 2AbkmAlnp + A kim A bnp )(A -1)mp(A -I)an - A,aAbklm (A -I)am. (4.6) 

Equation (4.5) can also be written in the form 

Abk;1 = B bkl , (4.7) 

where the semicolon denotes the covariant derivative with 
respect to the connection whose components are r~" Differ­
entiating (4.7) covariantly again and invoking Ricci's iden­
tities which measure the extent to which iterated covariant 
derivatives fail to commute,6 one obtains the following inte­
grability conditions: 

AbsR ~/k +AksR ~/b = Bbkr;1 - Bbk;lr' (4.8) 
where R ~/k are the components of the curvature tensor de­
termined by the r{I's. 

It follows amongst other things from (4.8) that if the 
right-hand side is 0 (again if L is quadratic or its lowest­
order terms are quadratic, for example), that the curvature 
of the connection associated to r has a Ricci tensor which is 
symmetric. 
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I 
V. THE INVERSE PROBLEM FOR SPRAYS 

I shall consider in this section what is in effect a special 
case of the inverse problem, but one which is of considerable 
interest in its own right, namely, when the given SOEF is a 
spray. We have already seen in Sec. II, that thep's being 
(not necessarily homogeneous) quadratic is an invariant 
condition, whereas thefj's being independent of ui

, for ex­
ample, is not. The special status of quadratic systems is 
further reinforced in Lagrangian theory by Proposition 4.1. 
The reason for considering sprays first, as opposed to more 
general quadratic systems, is that sprays are the most natural 
kinds of SOEF's from the geometric standpoint. In particu­
lar, given a spray on M, one may ask if it is the geodesic flow 
of the Levi-Civita connection of some Riemannian or pseu­
do-Riemannian metric on M. This is indeed a special case of 
the inverse problem because one is asking for a quadratic 
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Lagrangian for which A is the associated Euler-Lagrange 
vector field. 

Suppose then that A is a spray corresponding to the 
second-order system 

Xi = - r~bXaxb. (5.1 ) 

If we look for a Lagrangian analytic in u, by a previous re­
mark we may assume that A = OandA; = Oin (4.2). Insert­
ing the remaining terms in (4.2) into (3.6) with thep's 
given by the right-hand side of (5.1), one finds the following 
conditions for n = 2,3, ... : 

nAk(,· ... ,. ,. ) - A; ... i k = n (n - 1) ri(;; A; ... ; ).Ik· 
I II l' n I II' 12 3 n J 

(5.2) 

Thus, for a spray and indeed essentially in that case alone, 
(3.6) decouples by degree. In other words, (5.2) are precise­
ly the conditions that there should exist a Lagrangian, which 
is a homogeneous polynomial of degree n in u (n>2), and, 
for different values of n, these conditions are independent of 
each other. 

From (5.2) it follows by symmetrization that 

(n - I)A(,. ···1 k) = n(n -1)p(·u Ai ... j k)j, (5.3) 
I IJ' J:2 3- n 

which in turn, by choosing k as a distinguished index in the 
symmetrization in the left-hand side of (5.3), implies that 

[lI(n + 1)]A; .... ln.k + [nl(n + l)]A k(i, ... ln_l.in l 

= nri(j j Ai ···1 k)j. 
1:2 3 n 

(5.4 ) 

From (5.2) and (5.4) we easily obtain 

(5.5) 

Equation (5.5) can be rewritten as 

which in turn is equivalent to 

(5.7) 

where the semicolon denotes the covariant derivative with 
respect to the connection defined by the r;k'S. Conversely, 
since (5.7) is equivalentto (5.5) and also implies (5.3), itis 
clear that (5.7) is equivalent to (5.2). I summarize the pre­
ceding discussion in the following theorem. 

Theorem 5.1: Given a spray A on M, a function I on TM 
analytic in u is a regular Lagrangian for A iff I satisfies the 
following conditions: I is trivially equivalent to a Lagran­
gian L which has an expansion of the form (4.2) in which 
A = 0 and A I = 0, A ij is nonsingular and each nonzero term 
in (4.2) corresponds to a symmetric, covariant tensor field 
on M parallel with respect to the parallel transport defined 
by the connection associated to A. 

A number of observations about Theorem 5.1 are in or­
der. First of all, given a spray A, if there is to be a regular 
Lagrangian whose Euler-Lagrange field is A, (5.7) must be 
satisfied for some nonsingular A ij in the case n 2. In other 
words, A must be the geodesic spray of the metricAij. Sup-
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pose that such a metric Aij exists; then L = !Aiju l U j is a 
regular Lagrangian for A and we may enquire whether an 
alternative Lagrangian exists. In fact, such a Lagrangian will 
exist if either one can find another metric compatible with 
the connection defined by A or else there is symmetric tensor 
AI, ... ;. of valence n parallel with respect to parallel transport 
defined by that connection. Condition (5.7) is very restric­
tive; despite this, when a metricAij exists, all tensor powers 
ofAij satisfy (5.7). Thus A (ijAkl) satisfies (5.7) withn =4 
because 

[A(ijAkl) L .. = A (ij [Akl);m] + A (kl [Aij);m ] 

= 2A(ijA kl);m 

=0, 

since Ak1;m = O. So for a spray A compatible with a metric 
Aij' there are always many (nontrivial) alternative Lagrang­
ians obtained by adding to the Lagrangian L functions on 
TM corresponding to symmetric tensor powers of the met-
ric. 

Another somewhat different way in which solutions to 
(5.7) arise is in the context of locally symmetric spaces.7 A 
manifold M with a metric Aij is said to be locally symmetric 
if the curvature tensor R Jkl is parallel with respect to the 
parallel transport of the Levi-Civita connection defined by 
Aij' in other words, if 

RJkl;m = O. (5.8) 

Equation (5.8) implies of course that 

R~kl;m = 0, (5.9) 

that is, the Ricci tensor R kl = R ~kl is parallel. Since we are 
dealing with a manifold with a metric, the Ricci tensor is also 
symmetric and thus satisfies (5.7) with n = 2. Of course it 
may be that Rkl is a constant multiple of Aij in which case 
(M,Aij) is said to be an Einstein manifold. Furthermore, 
there is no reason to suppose in general that R ij is nondegen­
erate and so may not serve as an alternative metric compati­
ble with the connection V. 

Again suppose that A is a spray on M which is given in 
an adapted coordinate system (Xi, ui ) by 

. a .. k a 
A = u'- - r'o uJu -. (5.10) ax; Jk au; 

Then one may readily show that the necessary and sufficient 
condition that a polynomial homogeneous of degree n in u, 
Bi ... j ui

, •• ·ui
• say, is a first integral of A is 

, n 

(5.11) 

A symmetric, covariant tensor field B;' .. 'I. which satisfies 
(5.11) is said to be a Killing tensor field of the connection V 
corresponding to A. 12.13 [The notion of a contravariant Kill­
ing vector on a manifold with metric is extremely well 
known. The Killing condition on the corresponding covar­
iant object is precisely (5.11) with n = 1, so that (5.1l) is 
the natural generalization of this condition.] Equation 
(5.11) is of course a weaker condition than (5.7). In particu­
lar, when looking for Lagrangians L corresponding to A, 
each term in the expansion (4.2) of degree 2 or more is a first 
integral of A. This shows how restrictive (5.7) is: to the 
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knowledge of the author, there are no known examples of 
manifolds with a metric that have a homogeneous first inte­
gral of degree n in u, which is notrivial when n > 2. [A Kill­
ing tensor of degree n is said to be trivial if it consists of a 
(finite) sum of symmetrized products oflower-order Killing 
tensors.] For n = 2, however, a limited number of examples 
are known such as the Kerr metric12 and the Ricci tensor in 
locally symmetric spaces as described above. 

The conditions given in Theorem 5.1 for a spray to ad­
mit a Lagrangian are easily extended to systems in which the 
P 's are quadratic in ui 

, though the geometric interpretation 
becomes somewhat more contrived. Indeed, instead of (5.1) 
consider the following system: 

(5.12) 

where r j
, r~, and r~b are functions of Xi only. Then if one 

seeks a Lagrangian of the form (4.2), one finds by modifying 
(5.2)-(5.7) that the following conditions are necessary and 
sufficient for the existence of such a Lagrangian: 

(5.13 ) 

A k · -A· k = -A .. Pk·, ,'4 lj 
(5.14) 

2857 J. Math. Phys., Vol. 28, No. 12, December 1987 

A 1 rj A n (n + 1) rj . A. . . 
i,.· ·i.;. = n _ 1 jki,···i. + 2(n _ 1) (I, ,,···,.k)] 

- (nI2)rju,Ai, ... i.)kj (n;;;.2). (5.15) 
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A s~ft. triaxial ellipsoid, of unknown semiaxes and orientation, is excited into secondary 
radlatlOn by a plane acoustic wave of a fixed low frequency. It is proved that one measurement 
ofthe leading low-frequency coefficient and exactly six measurements of the second low­
frequency coe~cient of the real part of the forward or the backward scattering amplitude are 
enough to speclfy completely both the semiaxes, as well as the orientation of the ellipsoid. 
Ther~fore, only the first two low-frequency coefficients of the real part of the scattering 
amphtude are nee~ed in order to solve the inverse scattering problem for the soft ellipsoid. For 
the case of spherOlds, the number of measurements is restricted to one for the first and three 
for the second coefficient. Finally, the sphere is specified by a single measurement of the 
leading coefficient. The special cases where the orientation or the semiaxes are known are also 
discussed. 

I. INTRODUCTION 

The problem of scattering of a plane acoustic wave of 
fixed frequency by a soft body has a history of approximately 
one century. Its complete mathematical analysis can be 
found in Ref. 1, where also the low-frequency approximation 
of the wave problem has been reduced to certain potential 
problems through Neumann series expansions. Sleeman2 

has applied Kleinman's method 1 to the case of an ellipsoid 
and he evaluated the low-frequency coefficients up to the 
second order in terms of elliptic functions. In Ref. 3, a differ­
ent technique has been used to evaluate the four leading coef­
ficients of the scattering amplitude, using also Lame prod­
ucts but in their algebraic form, which simplifies the final 
results considerably. In fact, the scattering amplitude is giv­
en explicitly in Ref. 3, in terms of the three semiaxes of the 
ellipsoid, the directional cosines of incidence, the directional 
cosines of observation, and four well known elliptic integrals 
connected through two algebraic relations. The actual ge­
ometry of the scatterer is implicit in the values of these ellip­
tic integrals, while the directions of incidence and orienta­
tion, which are at our disposal to control, specify the relative 
orientation of the ellipsoid. It is in fact the simplicity of the 
expression of the fourth low-frequency coefficient of the 
scattering amplitude that allows for an exact solution of the 
corresponding inverse problem. 

In order to solve completely the inverse problem, all we 
need to specify are the three semiaxes as well as the three 
Euler angles that fix the position of the principal axes of the 
ellipsoid. Therefore, we need to excite ("see") the ellipsoid 
from six different angles and for each one of them to measure 
the forward or the backward scattering amplitude, which 
conveys all the information about the scatterer that can be 
"seen" from the particular direction of incidence. It turns 
out that these six measurements give rise to a highly nonlin­
ear system involving four elliptic integrals. Therefore, we 
need one more piece of information to effectively solve the 
inverse problem. The choice of the six directions of incidence 

aJ This work was done while the author was visiting the Department of 
Mathematics, University of Tennessee at Knoxville, Knoxville, Tennes­
see 37996. 

should be such as to make an optimum use of the symmetry 
inherited in the ellipsoid. We note that our technique de­
pends crucially upon the inversion symmetry, as well as on 
the particular form that the scattering theorem assumes for 
scatterers having inversion symmetry.4 

We remark that as long as we are in the low-frequency 
realm no measurement of any frequency is necessary. 5 Also, 
only the expression of the zeroth- and fourth-order low-fre­
quency coefficients of the normalized scattering amplitude, 3 

or equivalently, the first two nonvanishing terms of its real 
part are needed for the complete solution of the inverse prob­
lem. 

As it is well known,5 the inverse scattering problem is 
intrinsically nonlinear. In the case of the ellipsoid the nonlin­
earities enter the problem via the elliptic integrals, the sec­
ond and fourth powers of the values of the semiaxes, and the 
quadratic expressions of the components of the directions of 
incidence and observation. To a large extent, the worst part 
of these nonlinearities has been eliminated by algebraic ma­
nipulations and the use of the seventh measurement. Never­
theless we cannot avoid dealing at least with one standard 
elliptic integral for the determination of the semiaxes. The 
effect of nonlinearity in finding the orientation is reflected 
upon the nonlinear expressions providing the three Euler 
angles. 

Angell and Kleinman have reduced the inverse scatter­
ing problem for an ellipsoid to a constrained optimization 
problem. 6 They have considered all the physically important 
boundary conditions in acoustics as well as in electromagne­
tism except the scalar Dirichlet problem explored in the 
present paper by a completely different method. 

After giving all the necessary information from the solu­
tion of the direct problem in Sec. II, we proceed to Sec. III 
where the solution of the inverse scattering problem is given 
in its generality. The special cases of known orientation of 
geometries with higher symmetry are discussed in Sec. IV. 

II. THE DIRECT PROBLEM 

Let S be the ellipsoid 

xi /ai + x~/a~ + xUa~ = 1, (1) 
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whereO<a3<a2<a, < + CfJ are the three semiaxes and XI' 
X2, X3 are denoting the unit vectors of the orthogonal Carte­
sian system that coincides with the principal axes of the giv­
en ellipsoid. Suppressing the harmonic time dependence 
exp{ - imt}, the direct scattering problem for ( 1 ) consists in 
finding a solution u of the Helmholtz equation 

(2) 

in the region V, exterior to S, which assumes the values 

u= _eik•r , (3) 

on S and the asymptotic form 

{~~ - ikU) = 0(1) (4) 

as r -+ + CfJ. The vector k determines the direction of propa­
gation of the incident wave exp{ik-r}, while its magnitude k 
is the wave number. Far away from the scatterer, the scat­
tered field U has the asymptotic form 

u(r) =g(r,k)h(kr) +O(1/r), (5) 

where hex) = eix fix and g(r,k) is the normalized (dimen­
sionless) scattering amplitude which describes the response 
of the scatterer in the direction r to plane wave excitation of 
direction k. Due to the symmetry of the ellipsoid the scatter­
ing amplitude satisfies the following relations4: 

g(r,k) =g(k,r) (6) 

and 

A Ali A A 12 d A A) _ Reg(k,k) =- Ig(p,k) u(p. 
411' Ipi = I 

(7) 

As a consequence of (6) and (7) if the amplitude g has the 
low-frequency expansion3 

g(r,k) = ikA I (r,k) + k 2A2 (r,k) 

+ik 3A3(r,k) +k 4A 4 (r,k) +O(k s) (8) 

as k -+ 0 +, and if the leading two coefficients of the 
1m g(r,k) are known, then the leading two coefficients of 
Re g(r,k) can be found from7 

A
2
(r,k) = __ 1_ r A,(p,r)A,(p,r)d!l(p) (9) 

411' Jlpl = I 

and 

A4 (r,k) 

= __ 1_ r [A,(p,r)A
3
(p,k) 

41T JIIII = I 

+A2 (p,r)A2 (p,k) +A3 (p,r)A I (p,k)]dO(p) . 

(10) 

The actual coefficients of g(r,k) for the case of the soft ellip­
soid are given by3 

A,(r,k)= -1/1, (11) 
A A 2 A2 (r,k) = - 1/1 , (12) 

A 3 (r,k) = 1/r- (1/3I)(af +a~ +a~) 

+ (1/3I2)(ai II + a~I2 + a;I3) 

_ ..!..(iIOl + i20 2 + i30 3) 
3 II 12 13 

+ (1/61) (if af + i~ a~ + i~ a~ ) 
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+ (1/6I)(of af + O~ a~ + o~ aD , (13) 

A4 (r,k) = 1/J4 - (5/9I2)(ai + a~ + a~) 
+ (2I3I 3)(aiI, + a~I2 + a;I3) 

+ (1/6I2)(i~ ai + i~ a~ + i~ a;) 

+ (1/6I2)(oi af + oi ai + o~ ai), (14) 

where k = (i1,i2,i3), r = (0 1,02,03) , 

1 ,+cO dx 

1="2 Jo ~x + af ~x + ai ~x + a~ , (15) 

1 (+cO dx 

In ="2 Jo (x+a~)~x+af~x+ai~x+a~' 
n = 1,2,3. (16) 

The four elliptic integrals I,!,,!2,!3 are related via the formu­
las 

a,a2a3(/' + 12 + 13) = 1 , 

aUI +a~I2 +a~I3 =1. 

In particular, 

- Reg(k,k) 

(17) 

= k 2/12 + k 4 [ T - (1/312) (ii of + i~ ai + i~ a~ )] 

+O(k 6
), k-+O+, (18) 

where 

T= - 1/14 + (5/9I2)(ai + a~ + aD 

- (2I3r)(aiI, + a~I2 + a;I3) . (19) 

The parameter T depends only on the semiaxes of the ellip­
soid and it is independent of its orientation. The reason why 
we choose to work with the real, instead of the imaginary, 
part of g is due to the fact that the coefficient A4 has only one 
nonisotropic term connecting the directional cosines of k to 
the corresponding semiaxes, while the coefficientA3 involves 
two such terms connecting k to the elliptic integrals In' 
n = 1,2,3. Then the only really "bad" partinA4 is theexpres­
sion Twhich is evaluated by introducing one more measure­
ment. 

Furthermore, expression ( 14) and hence also ( 18) pro­
vide the same value independently on whether one measures 
the forward or the backward scattering amplitude. 

III. THE INVERSE PROBLEM 

The question we try to answer in this section is the fol­
low~n~. Suppose yvc;. have a ~~y to measure the coefficients 
A2 (k,k) and A4(k,k) of g(k,k), how many measurements 
(corresponding to different k's) are needed in order to effec­
tively specify the ellipsoid (1) as well as its orientation? 

As is shown in the sequel we need to know A2 for a fixed 
k andA4 for six different directions ofk. 

In fact, let 

(20) 

and 

mj = -A4 (kj ,kj ), j= 1,2,3,4,5,6, (21) 

be the values obtained by the corresponding measurements. 
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Let k' be an arbitrary direction, 

k; = x;, j= 1,2,3, 

and 

k~ = (1/~)(x; + x;) 

k; = (1I~)(x; + x~), 
k6 = (1/~)(x~ + x; ) , 

(22) 

(23) 

where {xi ,Xl ,x~} form an orthonormal base of an arbitrary 
chosen Cartesian system whose origin coincides with the 
centroid of the ellipsoid. 

Let P be the orthogonal matrix that transforms (by ro­
tation) the arbitrarily chosen primed system xi ,Xl,x~ to the 
unprimed system XI' X 2' X3 determined by the principal di­
rections of the ellipsoid, i.e., 

r=Pr' . (24) 

Of course, the matrix P is not known, since the orientation of 
the ellipsoid is not known, but its existence and its unique­
ness within the orthogonal group is ensured by the orthogo­
nality of both the chosen unprimed system and the system of 
principal axes of the ellipsoid. The knowledge of the matrix 
P will provide the exact orientation of the ellipsoid. The ele­
ments P ij ofP are expressed via the three Euler angles qJ, (), y 
(Ref. 8) as follows: 

P l1 = cos qJ cosy - cos () sin qJ siny, 

Pl2 = sin qJ cosy + cos () cos qJ siny, 

P13 = sin () siny ; 

P2l = - cos qJ siny - cos () sin qJ cosy, 

P22 = - sin qJ siny + cos () cos qJ cosy, 

P23 = sin () cosy; 

P3l = sin () sin qJ , 

P32 = - sin () cos qJ , 

P33 = cos (). 

(25) 

(26) 

(27) 

Therefore, the orientation of the ellipsoid is known when­
ever the three Euler angles, qJ, (), yare known. 

Since the form (18) for the scattering amplitude is re­
ferred to as the principal axes system it follows that (18) 
holds true after the transformation P has been applied to the 
directions of incidence k, i.e., 

kj = Pk;, j = 1,2,3,4,5,6. (28) 

Consequently, 

mo = 1II2 

and 
2 A A 

mj = T- (1I3I )(kj)tAkj 

forj = 1,2, ... ,6, where 

o 
~]. 
a~ o 

In view of (28) and (29), Eqs. (30) take the form 

3(T-mj )/mo= (kj)tptAP(kj), 

forj = 1,2, ... ,6. 

(29) 

(30) 

(31) 

(32) 

Substituting (22) and (23) into (32) we obtain the fol­
lowing nonlinear system of equations for the unknown quan­
tities qJ, (), y, al,a2,a3: 

Pil ai + P~l a~ + P;l a~ = 3(T - ml)/mO ' 

Pi2 ai + P~2 a~ + P;2 a~ = 3(T - m2)/mO ' 

Pi3 ai + P~3 a~ + P;3 a; = 3( T - m3)/mO ' 

(Pl1 + Pu> 2ai + (P2l + P22)2a~ 
+ (P3l + P32)2a; = 6( T - m4 )/mO , 

(P12 + P13)2ai + (P22 + P23)2a~ 
+ (P32 + P33)2a; = 6( T - ms)/mo , 

(Pl1 + P13)2ai + (P21 + P23)2a~ 

(33) 

(34) 

(35) 

(36) 

(37) 

+ (P3l +P33)2a~ =6(T-m6 )/mO • (38) 

By virtue of (33)-(35), Eqs. (36)-(38) can be written as 

PllP12ai + P2lP22a~ + P3lP32a; 

= 3(ml + m2 - 2m4 )/2mo , (39) 

Pl2P13ai + P22P23a~ + P32P33a~ 
= 3(m2 + m3 - 2ms)/2mo , (40) 

PllP13ai + P2lP23a~ + P3lP33a~ 
= 3(m3 + m l - 2m6 )/2mo . (41) 

Equations (33), (34), (35), (39), (40), and (41) can be 
combined in the following matrix form: 

ptAP= (3T/mo)I+M, (42) 

where M is the real symmetric matrix of measurements of 
the A4 coefficient given by 

m l +m2-2m4 

-2m2 
m2 + m3 - 2ms 

m3 +ml -2m6] 

m2 +m3 - 2ms . 

- 2m3 

(43) 

The matrix M has the real eigenvalues A l.A2.A3 and its eigenvectors form an orthonormal basis in R3. 
Equation (42) is also written as 

A - (3T /mo)l = PMpt . (44) 

Since the left-hand side of (44) is a diagonal matrix, M is a real symmetric matrix, and P is orthogonal, it follows that the 
eigenvalues of M are given by 

Ak =a~ - 3T/mo, k= 1,2,3, (45) 
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while the columns of pt are the corresponding orthonormal eigenvectors. Therefore, the squares of the three semiaxes are 
given by 

o~ =,1,k + 3T /mo , k = 1,2,3. (46) 

The value of the expression T can be calculated from (29), which in view of ( 15) is written as 

l+ 00 .Jx +,1.1 + 3T Imo .Jx + ,1,2~ 3T Imo .Jx +,1.3 + 3T Imo = _.Jiilo_2-o 
(47) 

The transformation 

x = (AI - ,1,3)/t 2 - (AI + 3T Imo) (48) 

brings the elliptic integral in (47) to its canonical form 

F(rpo,ao) 

[
iO <Po -;:::::==::;;-;;:d=t :::;;::::;:::::;;== 

= 0 ~.Jl-t2sin2ao 

=~, -V mo 
(49) 

where F(rpo,ao) denotes the incomplete elliptic integral of 
the first kind,9 with amplitude 

rpo = sin- 1 .J(,1,1 - ,1.3)/(,1.1 + 3T Imo) 

and modular angle 

a o =sin- I .J(,1,I-,1,2)/(,1,I-,1,3) . 

From (50) we obtain the value of T as 

(50) 

(51) 

T= [mo(,1,I-,1,3)/3]cot2rpO-moA.3/3. (52) 

Putting everything together the steps we need to follow in 
order to evaluate the semiaxes and the orientation of the 
ellipsoid are the following: (a) we measure, in the forward 
direction, A2 for any k and A4 for the six directions given by 
(22) and (23); (b) we write down the matrix of measure­
ments M as it is given by (43); (c) we evaluate the eigenval­
ues ,1,1,A.2,A.3 (this involves the solution of a cubic equation) 
and the eigenvectors (PW P12,P13 ), (P21,P22,P23)' and 
(P31'p32'p33) of M; and (d) using tables, or a numerical 
procedure, we evaluate T from (49)-(52). Then, the 
semiaxes are given by 

oi = (,1,I-,1,3)C0t2rpO+ (,1.1-,1.3)' (53) 

o~ = (AI - ,1,3)C0t2 rpo + (,1.2 - ,1.3) , (54) 

o~ = (,1,I-,1,3)C0t2rpO' (55) 

while the orientation is given by the Euler angles 

rp = sin- I (P31/.Jl - P~3 ) , (56) 

0= sin- l .Jl - P~3 , 

y=sin- I (P13/.JI-P~3)' 
which are derived from (25)-(27). 

IV. DEGENERATE CASES 

(57) 

(58) 

The case of a spheroid corresponds to O2 = 0 3, while the 
rotational symmetry reduces the number of independent pa­
rameters for the determination of the orientation to 2. There­
fore, we only need to evaluate the two semiaxes a I' a2 and the 
two Euler angles rp, 0 that fix the axis of the spheroid. As-
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sumingy = 0, the orthogonal transformation that brings the 
arbitrarily chosen primed system to the system of principal 
axes of the spheroid, takes the form 

[

COS rp 

Po= -cosOsinrp 

sin 0 sin rp 

sin rp 

cos 0 cos rp 

- sin o cos rp 
Si~ 0]. 
cosO 

(59) 

Then, the m l,m2,m3 measurements provide us with the sys­
tem 

aicos2rp +a~sin2rp=3(T-ml)lmo' (60) 

ai sin2rp +a~ cos2rp=3(T-m2)lmo, (61) 

a~ = 3(T - m3)lmO' (62) 

which has the solution 

ai =3(T-ml - m2+ m3)lmo , 

a~ = 3(T - m3)lmo , 

(63) 

(64) 

sin2 rp = (m2 - m3)/(ml + m2 - 2m3) . (65) 

Therefore, the three measurements along the axes are 
enough to determine both semiaxes as well as the first Euler 
anglerp. Using (59) into Eqs. (39)-( 41) we confirm thatthe 
measurements m4,mS,m6 are not independent any more and 
they can be expressed in terms of m I' m2, and m3. 

Note that any rotation around the axis of the spheroid, 
which is fixed by the angles rp,O, leaves the spheroid invar­
iant. Therefore, the measurements ml>m2,m3 will be invar­
iant under any rotation by the third Euler angle y. In particu­
lar, if y = 1T 12, then the elements of the first column of P 11'12 
are given by 

P1T12•11 = - cos 0 sin rp, 

P1T12•21 = - cos rp, (66) 

P11'12.31 = sin 0 sin rp , 

and since the value of m l is still the same, Eq. (33) yields 

oi cos2 0 sin2 rp + a~ (cos2 rp + sin2 0 sin2 rp) 

=3(T-ml )lmo , (67) 

or, in view of (63) and (64), 

(68) 

The value of T is obtained from (29) where the elliptic inte­
gral (15) can be evaluated in this case and its value is given 
by3 

(69) 

Therefore, 

T= [(0 + l)m3 - m l - m2 ]1(0 - 1) , (70) 
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where 

8= {COSh2[v'3(2m3-m1-m2)lmo] , a1>a2, 

cos2 [v'3(m 1 + m2 - 2m3)lmO] ' a1 <a2· 
(71) 

Consequently, rotational symmetry reduces the number of 
necessary measurements by 3. 

The case of radial symmetry reduces the number of mea­
surements by another 3. In fact, for a sphere the only quanti­
ty we need to evaluate is its radius a and this comes out from 
the mo measurement, since I = a -1 and a = v'Ino. 

Of course, the reduction of the total number of measure­
ments, from seven for the ellipsoid, to four for the spheroids, 
and to one for the sphere assumes a priori information about 
the actual shape of the scatterer. Ifthere is no such informa­
tion at our disposal then we have to perform all seven mea­
surements and then decide whether the scatterer is an ellip­
soid, a spheroid, or a sphere by looking at the number of 
equal eigenvalues of the matrix of measurements M. 

Finally, we discuss the case where the orientation or the 
semiaxes are known. In particular, if the orientation is 
known, then by choosing the coordinate system along the 
principal axes the three Eqs. (33 )-( 35) take the form 

(72) 

In this case every measurement determines a semiaxis and of 
course T is evaluated as before via (29). Hence, as it is ex­
pected, if the orientation is known the number of measure­
ments is reduced by three (the three Euler angles). 
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On the other hand, if the three semiaxes are known then 
mo is readily evaluated from ( 15) and (29). Also T is known 
from its expression ( 19), via ( 16). Hence, the eigenvalues of 
M are known, which in tum implies that the elements of the 
matrix M are connected through the known values of the 
three invariants ofM, i.e., the trace A1 + A2 + A3, the deter­
minant A 1A~3 and the second invariant A 1A2 + A~3 
+ A01' Consequently, only three out of the six measure­

ments mk' k = 1,2, ... ,6, convey independent information 
about the orientation of the scatterer. 
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Using a Hamiltonian framework with complex canonical variables allows for the 
determination of irreducible forms, which serve as building blocks for polynomial invariants. 
All the independent invariants in involution are thus obtained for the restricted mUltiple three­
wave interactions, where all triads are coupled through a common pump (or daughter) wave, 
in the case of equal coupling strengths in all triads. The mixed, common pump/daughter 
wave case is not integrable. 

I. INTRODUCTION 

Nonlinear interactions between coherent waves or cou­
pled oscillators can take place in many different physical 
systems, such as plasma physics, nonlinear optics, ocean 
wave dynamics, and many more. In the last decade, atten­
tion has been focused on the integrability or nonintegrability 
of the Hamiltonian equations describing the interactions 
between several wave triads, where each triad of coupled 
waves interacts with the other triads via one or possibly two 
common waves. 1-7 

As shown already elsewhere,8 the sets of coupled-ampli­
tude equations usually originate in complex notation and 
they can be studied with great advantage by using a Hamilto­
nian formalism, in which the complex conjugates of the wave 
amplitudes are also their canonically conjugated variables. 
The Hamiltonian remains a real quantity, in contrast to the 
recent study of integrable multiwave systems by Wojcie­
chowski et al.,7 who also use complex canonical variables. 

Not only is the algebra greatly simplified, but one can 
use with great advantage the concept of irreducible forms to 
find in a rather systematic way the real invariants in involu­
tion needed to prove complete integrability, and this without 
having to resort to Lax operators, as was done by Menyuk et 
al.5

•
6 or Wojciechowski et af.? These irreducible forms are 

the simplest combinations possible of wave quantities which 
remain constant on the fast oscillation time scale, and hence 
they can serve as building blocks in the construction of poly­
nomial invariants on the slow modulation time scale. 9 

II. BASIC EQUATIONS FOR MANY COUPLED TRIADS 
WITH A COMMON PUMP WAVE 

The nonlinear interaction between 2N + 1 waves is ob­
tained by using a multiple time scale analysis 10 that separates 
the fast oscillations of each wave or oscillator from the slow 
modulation of its amplitude due to the nonlinear coupling 
between the different waves. 

For simplicity, we will start from selection rules for the 
wave or oscillator frequencies, where the wave common to 
all triads is a so-called pump wave, 

Wo = Wm + Om + 15m (m = 1, ... ,N), (1) 

with analogous relations for the wave vectors, if need be. 
Other cases of selection rules will be discussed further on. 

In (1), 15m is a small frequency mismatch or detuning. 
The complex amplitudes of the waves with frequencies wo, 
W m' and Om (m = 1, ... N) are denoted by c, am' and bm 

(m = 1, ... ,N), and their slow-time variations are given by 

am = iAmcbm, am = - iAmcbm, 

N N 

i: = i L Amambm, C = - i L Amambm. (2) 
m=l m=l 

A different scaling on the wave amplitudes can put the fre­
quency detuning into these equations in various ways, but 
(2) is about the simplest possible form. The dot refers to a 
derivative on the slow modulation time scale, and the bar to 
complex conjugation. 

The set (2) is derivable from the Hamiltonian 

N 

H = L (Am (ambmc + ambmc) + Dmbmbm}, (3) 
m=1 

provided Hamilton's equations are written as8 

. . aH b . aH . .aH 
am = 1 aii

m
' m = 1 ab

m
' c = 1 Oc ' (4) 

-'- . aH -b' . aH -'- . aH am = -1--, m = -1--, C= -1-. 
aam abm ac 

The analysis of Menyuk et al.5
•
6 showed that (2) is ge­

nerically nonintegrable for arbitrary initial conditions and 
arbitrary frequency mismatches, except when all coupling 
constants Am are equal, in which case one can rescale all 
amplitudes so as to get Am = 1. 

Menyuk et al.,5 using the Painleve criteria, also found a 
second case in which (2) would be integrable for arbitrary 
initial conditions, namely when 

AI = ... =AM =2A.M + 1 = ... =2A.N , 
(5) 

15 1 = ... =DM = 215M + I = ... =2DN • 

However, in this case the direct proof of integrability via a 
complete set of independent invariants in involution has so 
far eluded all efforts. 

Finally, with perfect frequency tuning, one can select 
special initial conditions, making the value of H zero, and 
then the system described by (2) is integrable for arbitary 
Am (Ref. 3). 

Here we will look at the restricted multiple three-wave 
interactions (2) with all Am = 1. The coupling is also re­
stricted in the sense that the different triads share only a 
common wave, the same common wave in each triad. 
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III" IRREDUCIBLE FORMS AND INDEPENDENT 
INVARIANTS IN INVOLUTION 

In the Introduction, the irreducible forms have been de­
scribed as the simplest real polynomial combinations of 
a", expi(km"x-UJmtrast), bm expi(Km"x-Omtfast)' 
c exp i(ko"X - UJotrast ), and their complex conjugates re­
maining invariant on the fast time scale. For a system such as 
(2), governed by selection rules (1), the irreducible forms 
are 

ambma)ip + ambmapbp. 
(6) 

All other real polynomial forms remaining constant with 
respect to the fast time scale (or the space scale, for that 
matter) are necessarily combinations of those mentioned in 
(6). 

Irreducible forms as in (6) are usually not constant on 
the slow time scale, but suitable combinations can be invar­
iant. Such invariants can be found by taking a closer look at 
the slow time derivatives ofthe irreducible forms and seeing 
how these can cancel. 

The irreducible forms of the first line in (6) yield pre­
cisely N + 1 independent Manley-Rowe relations or invar­
iants, say one for each triad, 

amam = bmbm + Cm' 

besides a global one, 
N 

CC+ L bmbm =E. 
'" = I 

(7) 

(8) 

Through the correspondence between invariants or first in­
tegrals and symmetries of Hamiltonian systems, II these 
Manley-Rowe relations generate the following (N + 1)­
parameter group of transformations: 

am = am exp iEm , 

(9) 

c = c exp iE, 

which leave the set of equations (2) invariant. Since the 
N + 1 Manley-Rowe relations are already in involution, one 
could attempt to extend them to a complete set of 2N + 1 
first integrals in involution. If this can be done, the addi­
tional first integrals will automatically have to be invariant 
under the (N + I)-parameter transformation group (9). 

Real polynomials invariant under this group are precisely 
the irreducible forms given in (6) or combinations thereof. 
So it is entirely natural to look upon the irreducible forms as 
building blocks for additional polynomial invariants in invo­
lution. 

Returning now to (6), one sees that the irreducible 
forms of the first line combine to the Hamiltonian (3). 

Thus one starts for the other invariants from the irredu­
cibleformsamb",apbp + ambmapbp. To see how we proceed, 
let us call 

Hm = ambmc + amb",c + 5",bmbm, 

so that 
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( 10) 

(11 ) 

with 
N 

H", = i L (apbpfimb", - a",bmopbp). (12) 
p=1 

Similarly, setting 

Ump = Ilamap - bmbp ll 2 

= amamapap + bmbmbpbp - ambmapbp 

- apbpambm, (13) 

which contain the last set of irreducible forms, one sees that 

ifmp = i(5p - 5m )(ambmopbp - ombmopbp). (14) 

If all 5m are different from each other, one gets immediately 
a set of N additional invariants. 

N 

1m =Hm + L Ump (5p -5m)-I. (15) 
p=1 
p7fm 

These correspond essentially to the invariants found ear­
lier6

,7 by use of the Painleve analysis and the Lax operator 
framework. However, as 

N N 

H= L 1m = L Hm, (16) 
m= 1 m= 1 

the Hamiltonian is functionally dependent upon the 1m' The 
system (2) is thus completely integrable, as we have 2N + 1 
invariants (Cm ,E,l m) in involution, meaning that their 
Poisson brackets vanish. This last point can easily be 
checked. 

If all 5m are equal, it is clear from (14) that the Ump 
themselves are ~ N(N - 1) additional independent invar­
iants, besides the Manley-Rowe relations. Notice that 

Umm = C~. (17) 

However, as the Ump are not all in involution, it becomes 
necessary to group them in a proper way. This can be done in 
various equivalent ways, one of them being 

N 

Km = LUmp' (18) 
p=m+1 

There are N - 1 of these combinations, and now the 2N + 1 
independent invariants in involution are (Cm ,E,H,Km ). 

For the intermediate cases, where some but not all fre­
quency mismatches are equal, we proceed as follows. 

Suppose first, to fix the ideas, that 51 and 52 are equal, 
but all the others mutually different. One cannot then use II 
or 12 as given in ( 15), but can take instead UI2 and 

N 

1\2 =HI +H2 + L (UIP + U2p )(5p - 51)-1 
p=3 

= lim (II +12), (19) 
c52 -61 

and similarly for every pair of equal detunings. 
Were three frequency mismatches to be equal, say 

51 = 52 = 53' then one replaces 12, 12 , and 13 by 

1123 =HI +H2 +H3 
N 

+ L (UIP + U2p + U3p )(5p -51)-1, (20) 
p=4 

K; = Ul2 + U13, K; = U23. 
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All possible choices of equal and unequal detunings can be 
dealt with in an analogous way. The new invariants in (19) 
or (20) are independent and in involution, with each other 
and with the others, with H as a dependent invariant. 

IV. OTHER CASES AND FINAL REMARKS 

In the above discussion we treated multiple three-wave 
couplings, where the one common wave was a pump wave in 
each triad. 

The case of a common daughter wave in each triad is 
governed by the selection rules 

Om = £Uo + £Um + 8m , (21) 

but runs entirely on analogous lines and will not be given 
here explicitly. Such systems have been proposed as models 
for internal ocean waves or plasma turbulence and are de­
tailed elsewhere1

•
6

•
7 via different methods. 

Rather surprisingly, the mixed case where the common 
wave is a pump wave in some triads [with selection rules of 
type (1)] and a daughter wave in the others [with rules of 
type (21)] is qualitatively quite different, but seems to have 
been overlooked in previous studies.6

•
7 For N = 2 it seems 

already nonintegrable, even when A 1 and A2 are equal, and 
the addition of more triads will not improve matters. 9 

It is hoped that the above given treatment of restricted 
mUltiple three-wave couplings amply demonstrate the pow­
er of the combined method of a complex Hamiltonian for­
malism and irreducible forms. Although it was not detailed 
further for lack of space, the use of irreducible forms also 
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directly points out that alUm have to be equal ifintegrability 
is to exist. 

The fact that the other case, where the couplings and the 
detunings obey (5) and which was also surmised by Menyuk 
et al.5 to be integrable, so far seems intractable could perhaps 
be an indication that its missing invariant (or invariants) 
cannot be a simple polynomial. 
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Two different approaches to a characterization ofthe degree of (in)compatibility of quantum 
observables are investigated. First, recent examples of the (partial) commutativity of spectral 
measures of incompatible observables are proved to be generic. The analysis is extended to the 
case of compatible or incompatible unsharp, or stochastic observables, leading to a general 
criterion for commutativity of position and momentum effects. Further, a recently proposed 
information theoretic quantification of the (in) compatibility of noncommuting observables is 
generalized, and the relation between "maximal information," "minimal uncertainty," partial 
commutativity, and strict correlation is further clarified. Both approaches are illustrated in a 
number of examples. 

I. INTRODUCTION 

This work contributes to a more refined understanding 
of the operational content of noncommutativity of quantum 
observables. It is well known that noncommutativity is e­
quivalent to incompatibility in the case of sharp observables 
represented by projection-valued (PV) measures.! On the 
other hand, the so-called unsharp, or stochastic observables 
[represented by effect-valued, also called positive-operator­
valued (POV) measures] may be compatible, or coexistent 
(that is, admit joint observables) without being commuta­
tive.2 Recent investigations have shown that the degree of 
noncommutativity can be quantified; for example, the in­
compatible sharp position and momentum observables pos­
sess pairs of spectral projections which are either totally non­
commutative, or partially commutative, or even 
commutative.3 The underlying characterization of the de­
gree of (non)commutativity can be extended to the case of 
stochastic observables. This is the subject of Sec. II where the 
most general criterion for the commutativity of position and 
momentum effects is given. We show that the introduction 
of unsharpness does not necessarily change the degree of 
noncommutativity. Thus all POV measures representing 
(unsharp) position and momentum have different choices of 
arguments (Borel sets) for which they partially or totally 
commute, for other choices do not commute, and still are 
coexistent in the sense of having joint observables. We con­
clude that commutativity is not an ideal characterization of 
compatibility (simultaneous observability) of observables. 
We turn to an alternative quantitative measure concerning 
simultaneous measurability, namely a quantification of the 
indeterminacy of the simultaneous measurement of any ob­
servables. 

Noncommuting observables cannot be simultaneously 
determined with arbitrary accuracy; there must in general be 
a certain amount of indeterminacy, no matter what measure 
of the spread is used. This fact raises the question as to how 
much information can simultaneously be available about 
those observables. In Ref. 4 several functionals 

ff[t,6] = f( (E)", ,(F) '" ) expressible as functions of the ex­
pectation values of effects E, F in state t,6 were studied as 
potential measures of (maximal) information. Here (Sec. 
III) the maximization of a general class of functionals will be 
investigated in some detail, leading to a clarification of the 
relation between "maximal information" and "minimal un­
certainty." In particular, maximal information in whatever 
sense requires the vanishing of the expectation of the com­
mutator and equality in the uncertainty relation, that is, 
strict correlation for that maximal information state. Thus 
commutativity in the expectation value arises as a conse­
quence of a general information analysis. 

In Sec. IV the main conclusions will be summarized. 

II. DEGREE OF NONCOMMUTATIVITY 

For pairs of Hilbert space projections P, Q the degree of 
noncommutativity can be described in terms of the "com­
mutativity projection" 

com(P,Q) = (PI\Q)V(PI\Q!) 

(1) 

(P 1\ Q, PV Q denoting the projectors onto the intersection, 
union of the ranges of P and Q, respectively, p! = 1 P, 
etc.). The operator com(P, Q) is the projector onto the sub­
space of vectors on which P and Q do commute. This formu­
lation can immediately be extended to the class of effects E, 
F (O<,E,F<,I, that is, EandF have spectra within the inter­
val [0, 1]): com (E, F) projects onto the subspace of states 
on which E and F are commutative, that is, 

com(E,F)H = {t,6EH I (EF - FE)t,6 = [E,F]t,6 = O}. 
(1') 

Then one may call E, F commutative if com (E,F) = 1, par­
tially (non)commutative if 0 =I: com (E,F) =I: 1, and (totally) 
noncommutative if com (E,F) = O. In Ref. 3 examples of 
pairs of position and momentum spectral projections 
E2 (X), EP (Y) were given for each category. Here Q and P 
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may be introduced as any (irreducible) representation of the 
Weyl commutation relation; that is, Q, P may be any Fourier 
couple. For technical reasons, such as the use of Fourier 
transformations, one employs the Schrodinger representa­
tion. Then the results of Ref. 3 can be extended to unsharp 
position and momentum observables, defined as POV mea­
sures through the following: 

a~(X) = i dv(q)EQ(X + q) 

= L dEQ(q)(v*Xx )(q) = (v*Xx )(Q), 

(2) 

a~ (Y) = i dv'(p)E P( y + p) 

= Sa dEP(p)(v'*Xy )(p) = (v'*Xy)(P), 

where v, v' are normalized, positive confidence (Borel) mea­
sures, X,YeD(R). Thus 

C(X,Y) == [a~(X),a~ (Y)] = I L2dv(q)dV'(P) 

X[EQ(X+q),EP(y+p»). (3) 

Now one may readily translate some of the results obtained 
in Ref. 3 for the spectral projections. 

It has been shown in Ref. 3 that ~ (X), E P (Y) may be 
(i) totally noncommutative, e.g., for X, Ybeing half-lines; 
(ii) partially commutative, e.g., for X, Y being bounded 
Borel sets; (iii) commutative for (X, Y) being a-periodic, 
that is, (X, Y) = (X + a, Y + 21r / a) for some positive con­
stant a. 

From the above expression for C(X,y) it is seen that 
commutativity holds for arbitrary measures v, v' if (X, Y) is 
a-periodic: in that case also (X + q, Y + p) is a-periodic for 
arbitrary q, p. Now let us assume v, v' to have bounded sup­
ports [- a,a] and [- b,b], respectively. Let X 
= [ - xo,xo], Y = [ - yo,yo] and define X" = [ - Xo 
- a,xo + a], yt> = [ - Yo - b,yo + b). Then X + q ~X" , 
Y + p~ yt> for q e supp v,p e supp v', so 

E = EQ(R,XO) AEP(R,y b ) 

<EQ(R\X + q) AEP(R\ Y + p), 

for all q e supp v, p e supp v'; and all eigenvectors of E will 
be eigenvectors of all ~(X+q), EP(y+p). Thus 
C(X,Y)~ = 0 on the subspace EK, that is, a~(X) and 
a~ ( Y) are partially commutative. (We will argue below that 
these effects are not commutative.) Next, if X, Yare half­
lines, supp v and supp v' bounded, then a~ (X), a~ (Y) are 
totally noncommutative because ~ (X) and E P 

( Y) are: the 
supports of a~(X) and a~ (Y) are half-lines again so that the 
intersection of their ranges is {a}; this holds for all pairs 
(a~(Xi),a~(yj)1 with Xie{X,R\X}, yje{Y,R\Y} so 
that there is no common range at all. 

The last two examples rest on the assumption of com­
pact supports for v, v'; the introduction of more general kinds 
of unsharpness (confidence measures) seems to decrease the 
extent of partial commutativity. On the other hand, it is the 
introduction of unsharpness that opens the possibility of 
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compatible position and momentum observables,2,5 and it is 
necessary to avoid compact support of at least one of the 
measures v,v' for achieving compatibility. Take absolutely 
continuous measures dv(q) =f(g)dq, dv'(P) =g(p)dp, 
where f(q) = ItPo(qW, g(p) = ItPo(PW, for tPoeL 2(R). 
Then a~, a~ are marginals of the phase space observable 

ZI--+A(Z) = Ii dqdPltPqp>(tPqpl, ZeB(R2
), 

tPqp = exp[i( - qP + pQ) ]tPo, (4) 

and therefore are coexistent although they do not commute 
in general. The opposite will also occur: for compactly sup­
ported measures and bounded sets X, Y the effects 
a~(X), a~ (Y) possess no joint observable, but these effects 
do partially commute as was shown above. This confirms the 
conclusion of Ref. 2 that commutativity is not essential to 
coexistence (compatibility) in case of stochastic observ­
abIes. 

We now generalize the a-periodicity condition slightly 
to get a necessary and sufficient condition for commutati­
vity. For this we consider the following. 

Let v, v' be positive normalized Borel measures and de­
fine 

Vx = v*Xx, Vy = v'*Xy, for X,Y e B(R); 

that is, 

vx(q) = f dv(Y)Xx(q - y) a.e., etc. 

Then VX,V y eL"" (R,dq). If we also let Y (y-1) denote 
(inverse) FouriertransforminL 2(R,dq) and working in the 
Schrodinger representation for Q, P, we then have, for un­
sharp observables, 

C(X,Y)~== [a~(X),a~ (Y)]~ 

= vxY-1 [VyY(~)] 

_ y-1[ VyY(vx~)], (5) 

forall~ eL 2(R,dq). Since feL"", geL 2 implies fgeL 2, 

this defines C(X,Y) asamappingonL 2. Acompletecharac­
terization of C(X,Y) = 0 is given by the following theorem 
the proof of which can be found in the Appendix. 

Theorem 1: Letf,g e L"" (R,dq). Then 

(6) 

holds for all ~ e L 2 (R,dq) if and only iff and g satisfy one of 
the following: (a) at least oneofforgis constant a.e.; or (b)f 
and g are both periodic with minimal periods /3, a satisfying 
21r/a/3 e Z\ {a} ("generalized a-periodicity"). 

We remark that case (a) is oflittle interest here since we 
identifyf= vx,g = Vy. Ifwehaveeitherconstant, this leads 
to one of a~(X), a~ (Y) being a multiple of the identity. The 
case (b) with v, v' taken as point measures (delta measures ) 
generalizes the known results for sharp observables.3 For the 
general case, consider 

vx(q) = vx(q +/3) a.e. q 
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iff 

iff 

v( - X + q) = v( - x + q + /3) a.e. q 

iff 

v« -x I( -X +/3») + q) = v( -x +/3)IX + q) a.e. q, 

from which we see that periodicity of X leads to periodicity 
of Vx ' We therefore obtain a second derivation of commuta­
tivity of the unsharp observables from the (generalized) a­
periodicity of (X, Y). We also note that there are no solutions 
Vx ~O for X essentially bounded or essentially semi-infinite 
since this leads to a contradiction to v being a normalized 
positive measure. 

In view of the one-to-one correspondence between L 00 

functionsl,g and bounded operator functions of position and 
momentum, 

I(Q) = f!(q)dE'? (q), g(P) = ig(P)dEP(P), (7) 

Eq. (6) can be rewritten as 

[/(Q),g(P)] =0 (8) 

which holds in any Hilbert space representation of the ca­
nonical commutation relations if and only if one of the fol­
lowing is satisfied: (a) at least one of/(Q),g(P) is a mUltiple 
of the identity operator, and (b) I and g are both periodic 
with minimal periods/3,a satisfying 21Tla/3 E Z'\ {O}. 

III. INFORMATION MAXIMIZATION 

In Ref. 4 various measures of "joint information" for 
(expected values of) pairs of effects E,F have been studied 
with regard to their maximization. The first variation (in the 
sense of the Frechet differential6

) of the functional 
3' [4>] = I( (E ) ~ ,(F) ~ ) with respect to 4>eK is given by 

3'[4> + 154>] - Y[4>] = 153'[154>;4>] + e[I54>]' 
where 153' must be a continuous linear functional in 154> and 
limll~ll_o (e[l54> 1111154>11) = O. Here 3' will be locally extre­
mal on a vector 4> with 114>11 = 1 only if 

I5(Y +A (4)14>)) =0, 

which implies 

where h = (allax/)«E)~,(F)~) (i= 1,2). The La­
grange parameter is found by taking the expectation 

A = - II(E)~ - 12(F)~; 

therefore Eq. (1) can be written as 

0= (liE' + 12F')4>, 

E' =E - (E)~I, F' =F- (F)~ 1. 
( 10) 

Multiplying this equation either with E' or with F' and tak­
ing the expectation yields the system 
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o =/1(E'2)~ + 12(E'F')~, 
o =/I(F'E')", + h.(F'2)",. 

(11 ) 

Here/l and/2 are fixed as partial derivatives off; so in order 
to have local extrema for 3' one must have either/l = h. = 0 
or have the vanishing of the determinant, 

Var~(E)'Var~(F) -1(E'F')~12 =0. (12) 

In that latter case one solves (assumingh.~O) 

II = _ (E'F'),p = _ Var", (F) = ± [var~(F)]1/2. (13) 
h. Var~(E) (F'E')~ Var~(E) 

Here we have assumed/to be real. Ifh. = Otheneither/l = 0 
or Var", (E) = 0, i.e., E'4> = O. Therefore we may separate 
the "trivial" solutions corresponding to II = 12 = 0 (local 
extremum of I), or/l = 0, F'4> = 0, orh. = 0, E'4> = 0, or 
F' 4> = E' 4> = 0, and the remaining solutions of ( 10) have to 
satisfy (12) and (13). 

These connections can be generalized in several re­
spects, as we shall see in the following theorems. In particu­
lar, we shall consider functionals not only on the Hilbert 
space of pure states but also try to include mixed states. The 
most natural way of extending the above derivations to this 
general class of states turns out to be in terms of the Hilbert 
Schmidt class B 2 (H); the choice of the trace class B I (H) 
leads to trivial results only. 

We shall first prove the following. 
Theorem 2: Let 3' be a real-valued functional on B2 (H) 

such that Y[r] = I( (AI) p, ... ,(An) p ), A/ bounded self-ad­
joint operators,p = rr*, r E B 2(H) [sop is a positive element 
in BI(H)], (A/)p = Tr[pAtl = (r,A/r), I differentiable. 
Then Y is Frechet differentiable. In particular, if 3' has a 
local extremum on r = pl/2 under the constraint 
Tripi = (r,r) = 1, then the first Frechet variation vanishes, 
0= I5(Y + A Tr[p]), which implies 

0= Ih(A/ - (Aj)p 1) 'pI/2, (14) 
; 

where 

al h = -( (AI)p, .. ·,(An)p), 
ax; 

or, equivalently, 

0= Lh(A j - (A/)p 1)4>, for all 4> in the range ofp. 
; 

(15) 

Proof' The Frechet differentiability of 3' is shown by a 
straightforward but gory computation. The Frechet differ­
ential of Y is 

I5Y[I5r;r] = Ih [(r,A/l5r) + (I5r,A;r)]. 
; 

It is linear, i.e., 153'[h + k;r] = 153'[h;r] + I5Y[k;r], and 
bounded with respect to the B 2 (H) norm (IIrlb 
= (r,r)1/2 = {Tr[r*rJ}1/2): 

II5Y[l5r;r]I~{2+lhIIlAdl}lIl5rIl2' 
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Then for a local extremum of Y one has 

0= D(Y +A Tr[p]) = (Dr'{~hAi +Al }r) + C.c., 

which yields, due to the arbitrariness of r E B2 (B), 

0= {~hAi + AI} 'pl12. 

The Lagrange parameter A is found by evaluation of the con­
dition 1 = Tr[p] = (r,r): 

A = - 'Lh(Ai)p' 
i 

The remaining step is straightforward since for bounded A, 
Apl/2 = Ois equivalent toAp = o and also to A <,6 = o for all <,6 
in the range of p. This completes the proof. 

At first sight it appears surprising that all vectors in the 
range of the maximizing p satisfy the same equation (15). 
However, this simply means that the pure states maximizing 
the functional Y span a closed subspace which is an eigen­
space of the bounded linear operator 1:7= IhAi' 

Theorem 3: The coefficients a i in the (linear in <,6) equa­
tion 0 = (1:;a;A; + AI)<,6, or equivalently (in the nonlinear 
equation) 1:ia;A;<,6 = 0 (A; =Ai - (A;)",), are deter­
mined as functions a; = g; ( (A leA ;) '" ;rj ) of the (complex) 
covariances (A leA i) '" and r parameters rj where n - r is the 
rank of the matrix ( (A leA ;) '" ). A nontrivial set 
(at> ... ,an ) # (0, ... ,0) requires det( (A leA ;) ",) = O. 

Proof Multiplying the equation with A Ie, k = 1, ... ,n, 
and taking the expectation yields the system 

n 

'L a/(A leA ;)'" = 0, k = 1, ... ,n. 
/= 1 

The remainder is a simple application of linear algebra. 
The case n = 1 has a nontrivial solution 

iff Var", (A I) = 0; that is, <,6 is an eigenvector of A I' The case 
n = 2 has been solved completely in Ref. 7 with the following 
result. 

Theorem 4: In the uncertainty relation (Cauchy­
Schwarz inequality) for self-adjoint A, B, 

Varp (A) 'Varp (B) 

== (A ,2)p (B ,2)p>I(A'B ')p 12 

= 1~([A,B])pI2+ (!({A',B'}+)p)2 (16) 

equality is obtained if and only if Varp (B) = 0 or 
Varp (B) #0 and [A' - (B'A ')pIVarp (B»)B ']pI/2 = O. 
This latter condition is equivalent to 

or 

0= [A'-(B'A')pIVarp(B»)B']p, (17) 

0= [A'-(B'A')pIVarp (B»)B']<,6, 

for all <,6 in the range of p. (18) 

So we arrive at just the "linear" equation obtained earlier 
from the maximization of/( (E ) '" ' (F) ",) [cf. Eq. (10)]. 

We summarize and combine the above statements. 
Theorem 5: A real functional Y [r] 

=/( (AI)p, ... ,(An)p), P = rr*, rE B2(B), with/and self-
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adjoint bounded A; such that Y is Frechet differentiable 
will be locally extremal only on states p satisfying 

n 

'Lh(A; - (A;)pl)p=O (19) 
i=1 

and for (/I""'/n ) obeying 
,. 

'L h(A leA ;}p = 0, (20) 
;= 1 

where either/I = ... =/n = 0 or det( (A leA ;)p) = O. 
The solutions of these equations yield extrema of Y iff 

at (xl, ... ,x,.) = «AI)P, ... ,(An)p) the function/is extremal 
on the numerical range of A I'''',A,., 

num ran(AI, ... ,A,.) 

= {(xl, ... ,X,. ) Ix; = (A;) p' 

p any positive trace 1 operator}. 
Consequences: (i) For n = 1 the only possible solutions 

are (a/lax)( (A ) p ) = 0 or Varp (A) = 0, that is,p is an "ei­
genstate" of A. 

(ii) For n = 2, either p is a common eigenstate of A, B, 
or /1=/2=0 on p, or Varp(A) =0 and /2=0, or 
Varp (B) = 0 and/I = 0, or Varp (a) #0# Varp (B) and 

/1 (A 'B ')p Varp (B) [varp (B) ] 112 

/z=-Varp(A)=-(B'A')p =± Varp(A) 

(21) 

and 

Varp (A )Varp (B) =!( ({A ',B'} +~)2 = [covp (A,B)] 2. 

(22) 

In particular, the reality of/I'/z forces (A 'B') p to be real so 
that only the covariance term appears in (22), and 

([A,B L)p = 0 on any extremalizing statep. (23) 

Equation (22) tells that in such states p the observables A, B 
are strictly (anti- ) correlated, corrp (A,B) = ± 1. 

With these results we arrive at a generalization and a 
complete clarification of the relationships (9)-(13) re­
viewed in the beginning of this section which had been found 
earlier4 in some examples. Furthermore, we obtain a means 
for comparing the various possible measures of information 
insofar as different functions/(x,y) admit different solutions 
for possible extrema. This will be illustrated in a number of 
examples. First we consider pairs of projections P, Q, so that 
num ran (P,Q) ~ [0,1] X [0,1], and the unit square will be 
the natural domain of our functions /(x,y). 

Example 1: 

/(x,y) = x In x + (1 - x)ln(1 - x) + y Iny 

+ (1 - y)ln(1 - y). 

Here 

I",(Q) = (Q)", In(Q)", + (1- Q)", In(l- Q)", 

represents the (missing) information about Q in state <,6 in 
the sense of negative entropy, and 

I",(Q,P) =I",(Q) +I",(P) =/«Q)""(P),,,) 

is a measure of the information simultaneously available on 
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Q and P. Now/I = In[x/(l- x) ]./2 = In[y/(l- y)], and 
/1 =/2 = 0 if and only if x = y = ! which is known to yield 
the absolute minimum - 2 In 2 of / and thus of 
Y [t/J] = I¢> ( Q,P). The absolute maximum 0 of/is assumed 
on (X,y)E{(O,O), (0,1), (1,0), (1,1 )}, which can be realized 
by ( (P ) ¢>, (Q ) ¢> ) if and only if there exist joint eigenstates. 
Thus it depends on the degree of commutativity whether or 
not the information can be absolutely maximal or not. 

The variance of a projection is Var¢> (P) 

= (P)¢> - (P)/sothatcondition (21) on/I//2reads 

[x(1 - x)] 1/21n[x/(l - x)] 

= ± [y(l - y)) 1/21n[y/(1 - y)] 

or 

\{I(x) = \{I(y) ± I, \{I(x) = (x/(l _ x»)[XO-Xl]l/2 , 

where by continuity \{I(O) = \{I(1) = 1. Noting 
\{I(O) = \{I(!) = \{I(1) = 1 and that \{I has a minimum on 
XoE(O,!) and a maximum on XIE(P) and satisfies 
\{I (1 - x) = \{I (x) - 1, one obtains exactly four solutions 
y =X, Y = I-x, y =x*, andy = 1 -x*, where x and x* 
are the solutions of \{I (x) = u for u in the range of \{I (for 
x = Xo or x = x I it follows that x = x*, so in that case there 
are only two solutions). 

Example 2: /(x,y) =x+y. Here Y[t/J] = (P)¢> 
+ (Q)¢> is the sum of probabilities. Then h =!; = 1, so 
Eq. (21) yields 

1 =/1//2 = [y(1 - y)/x(1- x) p/2, 
which has y = x and y = 1 - x as the only solutions. 

Example 3:/(x,y) = X'y corresponds to the product of 
probabilities. Herefl = y,!; = x. The absolute minimum oc­
curs on x = 0 or y = O. Otherwise [Eq. (21)] 

fl/!; = y/x = [y( 1 - y)/x( 1 - x)] 112 

or 

[(1_X)/X]I/2= [(1_y)/y]1/2 

with y = x as the only solution. 
Example 4: f(x,y) = x(1'- x) .y(1 - y) corresponds 

to Y[t/J] = Var¢> (P)'Var¢> (Q). Here fl=(1-2x) 
xy(l- y),J2 =x(l-x)(l - 2y), and/I = 0 iff x = ~ or 

y E {O,l}. Thus the absolute minimum 0 off occurs on the 
eigenstates of P,Q, the absolute maximum on x = y = !. If 
neither is the case, (21) yields 

\{I(x) == [x (1 - x) P/2/(1 - 2x) = ± \{I(y) 

with \{I ( 1-y) = - \{I(y), \{I' (x) > o. So the only solutions 
arey=xandy= I-x. 

In all of these examples the solutions y = x (and 
y = 1 - x) lead to (local) extrema if the boundary points 
(x,y) ofnum ran(P,Q), satisfyingy = x (or y = 1 - x) be­
long to the set num ran(P,Q). We see that the number of 
possible extrema depends essentially on the degree of sym­
metry of the functions / (f(x,y) =/(y,x); f( 1 - x,y) 
=/(x,y), etc.) as well as on the shape of the (convex) nu-

merical range of P,Q. We remark that Lenard8 gives an ex­
haustive description ofnum ran(P,Q) so that in principle all 
extrema of functionals Y[t/J] =/( (P )¢>,(Q)¢» can actual­
ly be determined. 
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Example 5: The final example deals with a more compli­
cated functional, 

Y[t/J] = Var¢>(A)'Var¢(B) 

= «A2)¢> - (A )/)(B2)¢> - (B)/) 

= f( (A) ¢>,(B) ¢>,(A 2) ¢>,(B 2) ¢». 

Application of Theorem 2 yields for the extremal states, 

0= [Var¢> (B)(A 2 - 2(A ) ¢>A) + Var¢> (A)(B 2 

-2(B)¢>B) +AI]t/J; 

sinceA,2 - (A )~l =A 2 - 2(A )¢>A,etc., this equation can 
be brought into the form 

0= [Var¢>(B)A,2+Var¢(A)B'2 

- 2 Var¢> (A)' Var¢> (B)l ]t/J. 

Possible solutions are eigenstates of A or B; further solutions 
will be found by observing that this equation is precisely an 
instance of the case n = 2 in Theorems 4 and 5, leading to 
Eqs. (21)-(23). In particular, Eq. (23) reads 

([A '2,B,2L)¢> = O. 

If we insert for A,B the position Q and momentum P opera­
tors (although they are not bounded), then 

[Q'2,p'2L = 2iIi{Q',P'} + 

so ([Q,2,P,2L)¢> =0 if and only if ({Q',P'}+)¢> =0 
which singles out the coherent (Gaussian) states of minimal 
uncertainty. 

IV. CONCLUDING REMARKS 

In Sec. II we constructed examples of generalized, un­
sharp position and momentum observables whose effects 
a~(X),a~ (Y) may be either totally noncommutative, or 
partially commutative, or commutative. We established a 
characterization of the commutative case: 
[a~(X),a~ (Y)] = 0 whenever (X,Y) is a-periodic, 
(X,Y) = (X + a,Y + 21T/na) for some fixed a > O. For the 
investigation of partial commutativity the question of posi­
tive lower bounds9 a<a~(X),a~ (Y) may be of relevance, as 
it is in the case of projections. 

One possibility of introducing approximate measure­
ments of noncommuting observables A, B within conven­
tional quantum mechanics is in terms of joint measurements 
ofcommutingfunctionsf(A),g(B) ofA,B. Then Theorem 1 
tells that the only approximate joint measurements of Q, Pin 
this sense are those by means of (generalized) a-periodic 
functionsf, g (as long as only bounded functions are consid­
ered). In contrast, after introducing POV observables com­
mutativity is no longer necessary (though still sufficient) for 
coexistence so that much more flexiblity is gained. 

These results show that "commutativity" and "compa­
tibility" are quite unrelated in general from the mathemat­
ical standpoint. This is also true from the viewpoint of mea­
surement theory.2 There are compatible observables that do 
not commute; the "price" to be paid for Obtaining coexis­
tence "in spite" of noncommutativity is unsharpness, that is, 
lack of certainty inherent in the results of joint measure­
ments. 
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This lack of certainty can be estimated in the way indi­
cated in Sec. III, by searching for maxima of "information" 
functionals Y[tP] =/( (AI)~ , ... ,{An) ~ ). It turns out that 
optimal upper and lower bounds for the information are de­
termined by the extrema of / on the numerical range of 
(AI'"'' An). In particular, for n = 2 extrema occur only on 
strictly correlated states with vanishing expectation of the 
commutator. This means that on any state of maximal infor­
mation, in the sense defined here, the variances have to be 
finite. Thus at least in this respect the usefulness of the var­
iances as uncertainty measures is supported. 10 

According to Theorem 2, the information maximizing 
states tP satisfy an equation of the form [Eq. (15)] 
~~AjtP = AltP. In the context of U(n) representations with 
Aj being self-adjoint generators of infinitesimal unitary 
transformations, this equation generalizes the statement 
that tP is a highest weight state. 7 

For pairs of projections P, Q we found the locations of 
the solutions of the variational equations in the case of sever­
al functions! The examples show that functions of the form 
/(x,y) = g(x) + g(y) (examples 1 and 2) are more suitable 
for the description of uncertainty than /(x,y) 
= h (x) . h (y) > 0 (examples 3 and 4): in the latter type min­

imal uncertainty in the case of small h remains quite undeter­
mined since the minimum 0 occurs if only one factor is zero. 
The symmetry /(x,y) = /(y,x) appears natural since Q and 
P should be treated on equal footing. But this yields y = x as 
a natural candidate for maximal information (examples 1-
4). Ifinaddition/(1-x,y) =/(x,y) thenalsothecomple­
ments 1 - Q and I - P are treated equivalently, and further 
solutions may lie on the line y = 1 - x (examples 1 and 4). 

To conclude, there is again only a very limited connec­
tion between (non)commutativity and maximal informa­
tion. In Ref. 4 it was pointed out that for the totally noncom­
mutative spectral projections ~ (R + ), EP (R +) one may 
have information arbitrarily close to the supremum without 
reaching it. For bounded X, Y, maximal information is 
achieved on the states satisfying (E Q (R \X) 
AEP(R\Y))tP = tP or (EQ(X) + EP(y»)tP = IIEQ(X) 
+ E P

( Y) IItP; note that these ~ (X), E P (Y) are partially 
commutative. In general, both commutative and partially 
commutative projections admit absolutely maximal infor­
mation in the sense of example 1, but this last example indi­
cates that the measure of example 2 [without the symmetry 
/(x,y) =/(1 - x,y)] is more suitable since it points more 
directly to a characterization of the degree of "reality" of 
EQ (X) and EP ( Y): the larger the intervals X, Yare chosen, 
the larger the maximal probability sum II~ (X) + E P 

( Y) II 
will be. 
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APPENDIX: PROOF OF THEOREM 1 

Assume 

holds for all tPEL 2(R,dq) and for some nonconstant 
/,gEL 00 (R,dq). Fix / and let Gf denote the set of all 
hEL 00 (R,dq) such that (*) holds withgreplaced by h for all 
tPEL 2(R,dq). One sees that Gf is a nontrivial translation in­
variant subspace of L 00 (R,dq) which is closed in the weak*­
topology of Loo = (L 1)*. Let Wbe the weak*-closed sub­
space of L 00 (R,dq) spanned by g and its translates. Then 
W #{o}; hence W contains a character Vp (x) = exp(i/3x) 
ofR, by Theorem 9 of Dunford and Schwartz. II By Theorem 
16 of the same reference, W must contain a Vp with/3 i= 0; in 
fact, if Vo == 1 is the only character in W then g = const· Vo; 
i.e., g is constant. Since WCGf , we have VpEGf and hence 

/Y- 1
[ VpY(tP)] = Y- 1 [VpY(/tP)]; 

that is, /tPp =/ptPP' for all tPEL 2(R,dq), where 
hp (x) = h (x - /3) for functions h.1t follows that/ = /p a.e.; 
i.e.,/3is a nonzero period of! Conversely, if/3isa period off, 
then VpEGf . Since/is measurable and nonconstant,/ has a 
minimum period /30> O. We can now reverse the roles of/ 
and g; taking the Fourier transform of both sides of ( *) we 
see (*) is equivalent to 

gy[/y- I(¢)] = Y[/Y-I(g¢)], 

where ¢ = Y tP is again a general element of L 2(R,dq). We 
conclude that g must be periodic with minimum period 
ao > O. We may set/ = ~cn Vna where a = 21T"1/30' This im­
plies 

L cnY-J[gnaY ( VnatP)] = Y-fgy[ L Cn VnatP]J 

or, taking Y, 

or 

or 

Pick mEZ. For each NEZ, define tPNEL 2 by 

(Y tPN )(x) = {I, XE[ (N.- m)a,(N - m + l)a), 
0, otherwIse. 

Pick yER. Then there is a unique N such that 
yE[Na,(N + l)a). Thus [Y(tPN) ]na (y) = 0 unless 
m =n. Hence 

Cm (gma - g)(y) = 0, yE [Na, (N + l)a), a.e. 

Since the choice N was arbitrary, 
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Cm (gma - g)(y) = 0 a.e. 

Hence ifcm :f0, thengma =g a.e.; i.e., rna is a period for g. 
Since g has minimal period a o we must have the following. 

If (g,f) is a solution pair for (*) with minimal periods 
ao, Po, and for/written in the form 

then 

Cn :f0=> 3 integer z(n) such that 

n21TIPo = z(n)ao' 

Let K = {neZlcn :f0}. 
Let M be the subset of Z generated from the finite linear 

combinations of elements of K using integer coefficients. 
Here M is a closed subgroup of Z, so there is an noeZ/{O} 
with M = nol. Thus every element n of k can be written 
n = nor, some integer r. Then 

which hasf301no as a period. Sincef30 is the minimal period, 
we must have no = 1. Now the equation 

n21TIPo = z(n)ao, 

zen) some integer, holds for all neK and therefore for all 
neM. Thus there is an integer z:fO such that 

21Tlaopo = z. 
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Now we prove sufficiency. If either/or g is constant, (*) 
holds trivially. Thus suppose/. g are periodic L 00 functions 
with minimal periods po,ao, respectively. Then one has for 
a = 21TIPo 

Vnao7- 1 [go7 (r/J)] = 07- 1 [gna o7 (VnarP) ] 

= 07- 1 [go7( Vnar/J)] 

whenever na is a period of g. MUltiplying by the C n such that 
/= l:cn Vna we obtain (*) afterinvokinggeneralizeda-peri­
odicity. 
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Long ago, Moyal [Proc. Cambridge Philos. Soc. 45, 99 (1949)] formulated a moment 
problem in the context of the Wigner-Weyl phase-space formulation of quantum mechanics. 
The problem amounts to giving necessary and sufficient conditions for a sequence of numbers 
to be moments of a Wigner function. In this paper, that problem is solved, and so is a truncated 
version of it. 

I. INTRODUCTION 

My purpose in writing this paper is to give necessary and 
sufficient conditions for the solution of a quantum mechani­
cal moment problem first mentioned by Moyal in his seminal 
1949 paperl: Given a sequence of numbers mj.k' where j,k 
are the multi-indices 

j = (jl, ... ,jn)' k = (kl,. .. ,k,,) , (1.1) 

and n is some fixed positive integer, find necessary and suffi­
cient conditions for there to be a Wigner distribution func­
tionp{q,p), q = (ql, ... ,q,,), p = (PI'."'P,,), such that 

mj,k = J J pjqkp(q,p) d"qd"p. (1.2) 

Here p j and qk stand for these quantities, 

p j = P {'p 1 ... P ~, qk = q~' ... q~' . ( 1.3 ) 

In a recent paper, Z O'Connell and I gave a set of neces­
sary conditions for there to be a solution to this problem. 
While I will postpone any detailed discussion of that set, I do 
wish to make a few remarks about it. 

The conditions in it amount to the non-negativity of a 
hierarchy of quadratic forms, where a given quadratic form 
has moments up to some fixed, even order for its coefficients. 
The simplest of these involves moments of order 2 or less, 
and its non-negativity is equivalentZ

,3 to the position-mo­
mentum uncertainty relation. The conditions guaranteeing 
the non-negativity of other quadratic forms in the set place 
restrictions on the higher order moments analogous to those 
for the simplest case; these restrictions may thus be thought 
of as generalized uncertainty relations. 

The set of necessary and sufficient conditions that I will 
give here includes the set that O'Connell and I derived in 
Ref. 2; the relationship between the two sets will be discussed 
in the last section of the paper. For now, I will simply de­
scribe the set that I will later show to be necessary and suffi­
cient. This requires some notation and a word or two about 
the Wigner-Weyl phase-space formulation of quantum me­
chanics. 

Let z== (q,p) denote a point in phase space r, which is 
an X R" equipped with the symplectic form 

u{z,z') == (2i1i)(p· q' - q. p') (1.4) 

and the measure 

( 1.5) 

Here A{z), B(z), C(z), etc., will denote functions or tem­
pered (Schwartz) distributions defined on phase space, and 
A. A. A. 

A,B,C, ... will denote the operators associated with A,B,C, ... 
via the Weyl transform.4 The twisted product of A with B is 

AoB(z) == (1rli) - 2" J J A (z + Zl )B{z + Z2) 

xe- iU(Z,,z2) dZ
I 
dzz , (1.6) 

A.A. 

and is the Wigner transform4 of AB. Finally, let 

(A,B)== J A{z) B{z) dz. (1.7) 

I will bring in other notation as needed. For the most part I 
will use the same notation that I used in Ref. 4. (I also re­
mark that Secs. I and II of Ref. 4 contain a brief review of the 
phase-space formulation of quantum mechanics.) 

One can easily showS that if A and B are Schwartz func­
tions-i.e.,A,B are in Y{R2n), thenAoB is too. This allows 
us to define a notion of positivity on Y', the set of tempered 
distributions. A tempered distribution F will be said to be Ii 
positive if 

(F,AOA»O (1.8) 

for every AeY{R2n
). When this happens, I will write 

~ 

F> O. (1.9) 

In terms of operators, Fbeing Ii positive means that 
_ A.A.A. 

(F,AoA) = (21rli) " Tr[FAA ·]>0. (1.10) 
A. 

From this it follows that F is a positive operator, and 
conversely. 

Let P(z) be any polynomial in q,p, that is, let 

P{z) =) Cj,k pjqk. 
1t 

(1.11) 

Next, define the "moment functional" p, via 

p,{P) =: Cj,kmj,k . (1.12) 
1t 

Ifthemj,k are of the form (1.1), then it is easy to see that 

p,{P) = J P(z)p(z) dz= (P,p). (1.13) 
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Since p is a Wigner function, it is the Wigner transform of a 
non-negative tra~ cla~s operator; it thus has the form 
p = GoG. [Take G = (p) 1/2.] From (1.13), one gets 

f.l(P) = (P,GoG) , G = G . (1.14) 

If GEY (R2n), all of the manipulations I have made are cor­
rect. Examining (1.14), I find that f.l(P) >0 when Pis fz 
positive. 

To anyone with experience in classical moment prob­
lems, it should not come as a surprise that f.l being positive 
for fz-positive P is also a sufficient condition for a solution to 
the moment problem to exist. There is, however, a surprise in 
the kind of solution one gets. The main result of this paper is 
the following theorem. 

Theorem 1.1: A necessary and sufficient condition for 
there to exist an (unnormalized) Wignerfunctionp = GoG, 
with G real valued and in Y, for which (1.2) holds is that 
f.l (P) >0 whenever P is an fz-positive polynomial in q,p. 

The surprise is, of course, that the Wigner function one 
gets to solve the moment problem ( 1.2) not only decays fast 
enough to support integrals of all powers of p and q, but it is 
also infinitely smooth, a Schwartz function in fact. No such 
regularity arises in solutions to classical moment problems. 

I will prove Theorem 1.1 in two major steps. The first 
step is to extend the moment functional f.l to certain spaces 
that contain the polynomials and that consist of smooth 
functions which are themselves sufficiently nice that one 
may use them as symbols in the Weyl calculus; the exten­
sions that I get will be positive on the fz-positive elements of 
these spaces. The next step, which is the harder of the two, is 
to come up with a representation for certain elements in the 
dual of the extension spaces; these elements are just the con­
tinuous linear functionals that are positive on the fz-positive 
functions in the extension spaces. Putting the two steps to­
gether gives the theorem. 

The remainder of the paper is organized this way. In 
Sec. II, I will carry out the first step of the proof. That is, I 
will prove the existence of a continuous linear functional 
that is positive on the fz-positive elements of the extension 
spaces and that agrees with the moment functional f.l when 
restricted to the polynomials. In Sec. III, I will carry out the 
second step in the proof. In addition, I will also solve a trun­
cated version of the moment problem (1.2). Finally, in Sec. 
IV, I will discuss the connection between the set of necessary 
conditions that O'Connell and I gave in Ref. 2, and I will 
make a few concluding remarks. 

II. EXTENSIONS OF THE MOMENT FUNCTIONAL 

To carry out the "extension" step in the proof of the 
main result, I need an appropriate set of spaces to work with. 
It turns out that for the purposes I have in mind the symbol 
classes Sr introduced by Voros5 will do nicely. These are 
defined this way: Let rbe a fixed real number. The spaceS, is 
defined as the set of all C ~ functions A: r -+ C that satisfy 

IIA lIa,r=sup{laaA 1(1 + IzI 2 )(lal -r)/2}< 00. (2.1) 
zer 

Here, IzI2 = q. q + p. p, a is a multi-index, and a a is the 
partial derivative corresponding to a. The II lIa r's are 
seminorms on Sr' and they can be used in the usual' way to 
construct a topology on Sr. 
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There are several reasons for using the Sr's. First, every 
polynomial of degree less than or, possibly, equal to r is con­
tained in Sr. Second, the twisted product is defined for func­
tions in these spaces. Indeed, if AeSr and BeS", then5 

AoBeSr+". Third, functions in Sr are tempered distribu­
tions, for, when Izl is large, they behave like polynomials. 
The set of functions in S, that are also fz-positive tempered 
distributions is clearly a cone, which I will denote by S + . 

Finally, the relationship between these spaces and the W~yl 
calculus is well understood.5

•
6 

The space So plays an important role here. One can show 
that there is a linear topological isomorphism between So 
and S" and that this isomorphism associates the positive 
cones S 0+ and S'+ with one another. In a bit, I will discuss 
this isomorphism. For now, I want to take a close look at the 
properties of So itself. I will begin with this proposition. 

Proposition 2.1: LetAeSo and letA be real valued. There 
exists a continuous seminorm II . IIw' defined on So, such 
that 

(2.2) 

Proof: It is tedious, but quite straightforward, to show 
that the function 

(2.3) 

defines what Hormander terms a "slowly varying" metric on 
phase space (Ref. 6, Definition 18.4.1), and that the func­
tion 

(2.4 ) 

is "g continuous" for g defined by (2.3). Thus Hormander's 
symbol class (Ref. 6, Definition 18.4.2) S(m,,gz) is well 
defined. Inspection of its definition shows that it is a Frechet 
space identical with Voros's Sr. In particular, So coincides 
with S( l,gz ). 

On the other hand, S( l,gz) satisfies the conditions nec­
essary and sufficient for the L 2-operator norm of the Weyl 
transform of a symbol in S( l,gz) to provide a continuous 
seminorm on S( 1,gz)' [See Theorem 18.6.3, Ref. 6. Check­
ing that this is the case is again tedious. The reader should 
also be aware of notational differences between Ref. 6 and 
this paper. To compare the two notational systems, set h = 1 
here, and note that ()" defined in (1.4) here is two times the ()" 
Hormander uses in Ref. 6.] Specifically, ifu(q)El,2(Rn), 
and if AeS( l,gz)' then 

cAu)(q)=(21rll}-n f eiP.(q-q')/IiA(~ (q+q'),p) 

Xu(q')dnq'dnp (2.5) 

is the Weyl transform of A. The norm IIA II op is a continuous 
seminorm on the symbol space S(1,gz). I will denote this 
seminorm by 

IIA IIw=IIA lIop . (2.6) 

Let F(Z)EY)r), and recall that5.? the corresponding 
W ey 1 transform F is a trace-class operator. Moreover,? 

J A (z)(FOF)(z) dz = (21rlW tr(AFF*) . (2.7) 

If A is real, then A is self-adjoint and satisfies 
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A ,.. A A ,.. 

- IIA Ilop . 1 <A..; IIA Ilop . l. (2.8) 

This operator inequality is preserved if one premultiplies and 
A A 

postmultiplies by F * and F, respectively. Hence, one has that 
A AAAAA A AA 

-IIA IlopF*F";F*AF..;IIA IlopF*F. (2.9) 

Using the fact that taking the trace in (2.9) will leave the 
sense of the inequalities unchanged and rewriting (2.9) in an 
obvious way, one gets 

A A ,.. A A 

tr(F*[IIA Ilop . 1 ±A ]F»O. (2.10) 
AA AA 

From (2.6), (2.7), (2.1O),andtr(RS) =tr(SR),onefinal-
ly arrives at this: 

f (IIA Ilw ±A)FoFdz>O. (2.11 ) 

SinceS( l,gz) and So are the same Frechet space, (2.11) 
holds for all real AESo. From the definition of S 0+ , one sees 
that (2.11) implies (2.2). 

For possible future reference, I want to draw off a corol­
lary to the proof of Proposition 2.1. 

Corollary 2.2: Withgz defined by (2.3) and mr (z) given 
by (2.4), Hormander's symbol class S(mr,gz) is the same 
Frechet space as Voros's symbol class Sr. 

What needs to be done next is to construct a mapping 
that makes So and Sr topologically isomorphic and that asso­
ciates S 0+ with S,+ . To do this, first let 

(2.12) 

this is, of course, the classical Hamiltonian for n harmonic 
oscillators with all of the masses and frequencies taken to be 
1. Next, define 

A 

Hr (z) == Wigner transform of (H r). (2.13 ) 

(I will use a subscript and not a superscript because I want to 
avoid confusing powers relative to the twisted product with 
powers relative to ordinary multiplication.) These functions 
have the properties listed in the following. 

Lemma 2.4: If rand t are real, and if Hr is given by 
(2.13), then Hr is real valued, belongs to S2r' and satisfies 

HroH, =Hr+,· 

Proo/" Let /3 > 0; define the operator 

Op ==exp( - /3H) . 

(2.14 ) 

(2.15) 

Using standard functional analytic techniques, one can write 

H -r=__ /3r- 10 d/3 A 1 lOO A 

r(r) 0 p 
(2.16) 

for all r> O. Taking the Wigner transform of both sides and 
using the fact that the Wigner transform commutes with the 
integral in (2.16), one gets 

H_r(z) =_1_ roo /3r- 10 p (z)d/3, (2.17) 
r(r) Jo 

where Op (z), the Wigner transform of Op, is given by 

Op (z) = sechn(NJ 12) 

Xexp( - [2H(z)lh ] tanh(NJ 12)) . (2.18) 

The one-dimensional version of (2.18) is derived in Ref. 
8. To get (2.18), one need only take products of the one­
dimensional Wigner functions. 
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I now want to show thatH _ rES _ 2r' First, observe that 

aaH _r(z) = L zrg roo /3r-1 
Irl .. lal Jo 

x [tanh(;')] (Irl + lal)/2 Op (z) d/3; 

(2.19) 

here, cr depends on the multi-indices, a,y, on Ii, and nothing 
else. 

The integral in (2.19) is easy to estimate for large values 
of 14 Just break the interval of integration into [0,1] and 
[1,00). The part of the integral from [1,00) decays like 
exp ( - const Iz 12

). On the other hand, the part from [0,1] 
satisfies 

f /3 r - 1 [ tanhC-;) rrl + lai)/20p (z) d/3 

..;c 100 

/3 (2r+ Irl + lal)/2 - 1 exp( - /3H) d/3 , 

and so it decays like C Izl- 2(2r + Irl + lal). The whole integral 
thus decays like the power estimate for the [0,1] interval. 

By what I have just found concerning the integral in 
(2.19), I get that for Izl-+ 00 

laaH _ r (z) I..;Clzl- (2r+ lal) , 

from which it immediately follows that H _ rES _ 2r' To see 
that HrES2r for r>O, write r this way 

r= k - (k - r), 

where k is any integer strictly larger than r. Because of the 
operator identity 

A A A Hr=H r . H -(k-r), 

one has that 

Hr =HkoH_(k_r)' 

Since H = HI is in S2' because it is a polynomial of degree 2, 
Hk = HoHo" .oH (k times) is in S2k' The function 
H _ (k _ r) is, by the analysis above, in S2r _ 2k' The twisted 
productofHk andH_(k_r) isStheninS2k+2r_2k =S2r' 

The formula (2.14) is the phase-space version of the 
corresponding operator identity. That Hr (z) is real'is ob­
vious. 

Lemma 2.4 is the key to constructing the isomorphism 
between So and Sr that I mentioned earlier. To construct 
this, first observeS that the mapping A -+AoH _ r/4 takes S, 
continuously into S, _ r/2' and that B -+ H _ r/4 ° B takes 
S, _ r/2 continuously into S, _ r' Thus 

Tr(A) =H _r/4oAoH -r/4 (2.20) 

defines a continuous, linear map from S, to S, _ r for every 
r,tER. Moreover, T _ r inverts Tr , for 

T _ ,(Tr (A») = Hr/4 oH _ r/4 oAoH _ r/4oHr/4 

= HooAoHo 

= loAol =A . 

Similarly, T,(T _rCA») =A. Since T -r is a continuous lin­
ear map too, the mapping Tr sets up a topological isomor­
phism between the two Frechet spaces S, and S, _ r' 
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It is obvious that this isomorphism satisfies 

Tr(A) = Tra) , (2.21 ) 

so that real-valued functions are associated with real-valued 
functions. What requires a little more work, but is more im­
portant here, is that S t+ and S t~ r are associated via this 
isomorphism. To see that is so, one must show thatAESt is Ii 
positive if and only if Tr (A) is, too. 

I! 

Let A >0. For every BEY (r), one has that H _ r/4 oBis 

also in Y(r), and that 

J A(z)(H _r/4oB )o (H _r/40B ) dz>O. (2.22) 

Using the associativity of the twisted product and the identi­
ty 

J CoD dz = J C(z)D(z) dz, (2.23 ) 

which applies under fairly general conditions, among which 
are included one of C,D being in Y (r) while the other is in 
some S" one may justify these manipulations done on the 
right-hand side of (2.22), 

rhs of (2.22) = J AoH _ r/4 oBoEoH _ r/4 dz 

= J H _r/4oAoH _r/4oBoBdz 

= J Tr(A)OBoEdz 

= (Tr(A),BoJj). 

Hence, for all BEY (r), (2.22) implies that 

(Tr(A),BoJj »0, 
I! 

(2.24) 

(2.25) 

and so Tr (A) >0. A similar manipulation justifies the reverse 

implication, and proves the following theorem. 
Theorem 2.5: The mapping Tr : St -"St _ r defined in 

(2.20) is a continuous linear bijection for every r,tER. The 
inverse of Tr is T -r' Under Tr, Ii-positive functions in St 
correspond to Ii-positive functions in St _ r' and real func­
tions correspond to real functions. 

To complete the "extension step," I need one last result. 
Theorem 2.6: Let E be a self-adjoint subspace of Sr and 

suppose that Hr/2 (z)EE. If tPo is a linear functional that is 
defined on E, real on the real functions in E, and positive on 
Ens.+ , then there exists a continuous linear functional tP 
that is defined on Sr' that is non-negative on S r+ , and that 
agrees with tPo on E. 

Proof' I begin by noting that Ii-positive tempered distri­
butions are real valued. The easiest way to see this is to ob­
serve that the symplectic Fourier transform of one is a tem­
pered distribution of Ii-positive type,9 and that such a 
distribution satisfies a symmetry condition [Ref. 9, Proposi­
tion 3.1, (iii)] equivalent to the original distribution being 
real. 

The point is that I may work entirely with the spaces 
Re(E) and Re(Sr), which compromise, respectively, the 
real-valued functions in E and Sr. Doing so allows me to use 
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Krein's version 10 of the Hahn-Banach theorem to produce 
the extension tP. 

Let AERe(Sr)' and let 

D=Hr12 -A. 

Note that for Tr defined by (2.20) 

Tr(D) = 1 - Tr(A) , 

and that 

Tr(D) = 1 -IITr(A)llw + IITr (A)liw - Tr(A); 

(2.26) 

(2.27) 

(2.28) 

here, 11'lIw is the continuous seminorm that was mentioned 
in Proposition 2.1. Composing 11'11 w with Tr produces a con­
tinuous seminorm on Sr and, hence, on Re(Sr ). The A 's in 
Re(Sr) for which IITr(A) IIw < 1 clearly form a (real) neigh­
bor of 0 in Re Sr; call this neighborhood U. From Proposi­
tion 2.1, (2.28), and from the fact that positive constants 
belong to S 0+ , one sees that if A E U, then Tr (D) is in S 0+ • By 
Theorem 2.5, Tr (D)ES 0+ if and only if DES .+ . 

SincetheD 'sinS'+ corresponding to theA 'sin U forma 
neighborhood of H r/2 , the conditions of Krein's theorem 
(Ref. 10, Theorem 2.6.3, p. 136) are fulfilled. Hence there 
exists a continuous, positive linear functional tP that extends 
tPo from Re(E) to Re(Sr)' Simply by setting tP(f+ig) 
=tP(j) + itP(g) , for f,gERe(Sr), one gets the extension 
whose existence is asserted in the statement of the theorem. 

I can now finish the extension step. In Theorem 2.6, let 
Ebe the space of polynomials in q,p of degree 2k or less. The 
functional tPo is replaced by the moment functional p, defined 
by (1.12). The conclusion of the theorem then gives the fol­
lowing corollary. 

Corollary 2.7: For every integer k>O, there exists a func­
tional,uk that is defined and continuous on S2k' that is non­
negative on S 2t, and that agrees with f1- when restricted to 
the polynomials of degree 2k or less. 

I close by remarking that,uk will not usually be unique. 

III. REPRESENTATIONS OF fz-POSITIVE LINEAR 
FUNCTIONALS 

The next step in showing that the condition given in 
Theorem 1.1 is sufficient for there to be a solution of the 
moment problem that I discussed in the Introduction is to 
get representations for the functionals arising in Corollary 
2.7. These functionals have two properties that enable me to 
get representations for them. First, they are in the topologi­
cal dual of St, t>O, and, second, they are non-negative when 
applied to Ii-positive functions in St. I will call any functional 
that satisfies these two conditions an Ii-positive S functional. 

One can always restrict an Ii-positive S functional tP to 
functions in Schwartz space, for Y (r) is included in St for 
all real t. Moreover, because this inclusion is continuous,5 
tPly is a continuous linear functional on Y; that is, tPly is a 
tempered distribution. Finally, tP I y is an Ii-positive tempered 
distribution because it is non-negative on S / and, for every 
FEY, FoFEYnS ,+. In summary, I have obtained the fol­
lowing lemma. 

Lemma 3.1: Every Ii-positive S functional tP, when re­
stricted to Y, is an Ii-positive tempered distribution. 
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The restricted Ii-positive S functional ¢ being a tem­
pered distribution implies that its symplectic Fourier trans-

• form ¢ is, too. Here ¢ is defined in the usual way,l1,12 via 
transpose. The version of the symplectic Fourier transform 
used here is the same as the one in Ref. 4, 

A (a) = (1rli) -" f A (z)eiO"(a,z) dz, (3.1) 

wherea= (u,v) = (u" ... ,u",v" ... ,v"). As is the case with the 
ordinary Fourier transform, the symplectic Fourier trans­
form takes Schwartz functions to Schwartz functions, and 
tempered distributions to tempered distributions. 

The Ii positivity of ¢ is reflected in ¢'s being of Ii-positive 
type.9 This is easy to show. First, recall that13 

A~ =A XB, (3.2) 

where A XB is the twisted convolution of A with B and is 
given by 

A XB(a) = (1rli) -" f A(b)B(a - b)eiO"(b,a) db. (3,3) 

Second, note that 

pt(a) =F( - a) = F(a) . (3.4 ) 

Finally, observe that -- _....... - ~ -
¢(F xFt) = ¢(FoF) = ¢(FoF);;.O, (3.5) 

the last inequality on the right-hand side being a conse­
quence of ¢'s Ii positivity. 

So far, everything I have said would be true if ¢ were 
merely an Ii-positive distribution rather than an Ii-positive S 
functional. The main consequence of ¢'s being an Ii-positive 
S functional is that, for AESo, 

(3.6) 

because, by Proposition 2.1, IIA IIw ± AES 0+ • Clearly, (3.6) 
implies that ifalsoAEY(r), 

I¢(A.) I = 1¢(A)I<¢(1)IIA IIw' (3.7) 

Using a proof somewhat similar to that of Proposition 2.1, 
one may show that 

IIA Ilw <2"IIA ilL' , (3.8) 

and so 

I¢(A.) I <2"¢(1) IIA ilL' . (3.9) 

Finally, one may take limits in (3.9) to get that ¢ is a contin­
uous, linear functional on L I. Because L 00 is the dual of L " 
there is some function CPEL 00 for which 

¢(A) = J CP(a)A(a) da. (3.10) 

Since ¢ is an Ii-positive type tempered distribution that is 
given by an L 00 function, one has, by Theorem 3.1 and 
Theorem 5.2 of Ref. 9, that there exists a function G such 
that GEL 2, Gt = G, and 

CP(a) = G XGt(a) . (3.11) 

Unwinding the symplectic Fourier transforms then proves 
the following theorem. 

Theorem 3.2: If ¢ is an Ii-positive S functional, then 
there exists a real GEL 2 such that 
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¢(A) = J A (z)GoG(z) dz ( 3.12) 

for allAEY(r). 
I remark that examination ofthe proof of Theorem 3.2 

shows that one also has the following result. 
Corollary 3.3: If tP is an Ii-positive tempered distribution 

that satisfies 

(3.13 ) 

then, for allAEY(r), ¢ has the form (3.12). 
In a certain sense, Theorem 3.2 gives the representation 

that I need. The difficulty is that it does not contain enough 
information about G to be useful in getting sufficiency in 
Theorem 1.1. To overcome this difficulty, I will take a close 
look at the properties of G when the ¢ that gives rise to it is in 
S ~, the topological dual of St. Doing this requires looking at 
the Ht's introduced in Sec. II. 

The operator H corresponding to H(z), which is given 
by (2.12), is the Hamiltonian for a system of n harmonic 
oscillators. The spectrum of H consists of discrete positive 
eigenvalues, each being of finite multiplicity; 00 is the only 
limit point. The eigenvectors l/Ik' k = 0,1,2, ... , may be cho­
sen to be real-valued functions. Of course, they are Schwartz 
functions that comprise an orthonormal basis for L 2(R"). I 
will label the eigenvalue corresponding to l/Ik by Ak.(Since 
some eigenvalues are degenerate, one can have A k = A k for 
k =I' k '. This can happen for only a finite number of indices, 
however.) 

Using the l/Ik'S, one may form Schwartz functions that 
comprise an orthonormal basis for L 2(r). To do this, de­
fine'4 

A 

Bj,k =l/Ij ® l/Ik ; (3.14) 

these form an orthonormal basis for the space of Hilbert­
Schmidt operators. By virtue of the unitary equivalence15 

between the space of Hilbert-Schmidt operators and L 2 (r), 
the set {Bj,k}' where Bj,k is the Wigner transform of Bj,k' is 
an orthogonal basis for L 2(r). One may make it orthonor­
mal by dividing each Bj,k by (21rli)"12. That each Bj,k is a 
Schwartz function follows from the l/Ij'S being products of 
Gaussians and Hermite polynomials, together with a stan­
dard argument from harmonic analysis. 

My reason for introducing the Bj,k 's is that they diagon­
alize three different operators. First, define, for AEY(r), 

K+(A) =HoA, 

K_(A) =AoH, (3.15) 

Ko(A) = ~(HoA +AoH) = !(K+ +K_)(A) . 

Each of these operators has Bj,k as an eigenvector; indeed, 
this is obvious from the following lemma. 

Lemma 3.4: Let K+, K_, and Ko be defined by (3.15). 
Each operator is essentially self-adjoint on Y (r), non-neg­
ative, and satisfies the following: 

K + (Bj,k) = AjBj,k' K _ (Bj,k) = AkBj,k , 

Ko(Bj,k) = [(Aj +Ak )/2] Bj,k . 
(3.16) 

Proof: All three cases are so similar that only one of 
them needs doing. I will work with the statements involving 
K+, and I will begin by getting (3.16). 
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Using the definition of Bj,k' note that these hold: 
____ AA 

K + (Bj,k) = HBj,k 

=H(fh ®f/!k) 
A 

= (Hf/!j) ® f/!k 

= Ajf/!j ® f/!k = AkBj,k . 

Taking Wigner transforms gives (3.16) for K+. 
Next I will show that K + is Hermitian on JP (r). If A 

and B are Schwartz functions, then one has the following: 

(K+(A),B) = f HoABdz 

= J AoBoHdz 

= f Ao (HoB) dz 

= (A,K+(B» . 

I remark that if one sets A = B in the equations above, one 
also has that 

(K+(A),A) = f HAoA dz, 

which is non-negative because H is Ii positive. Thus K + is 
non-negative. 

All that remains is essential self-adjointness. This 
amounts to showing that ± i are not eigenvalues of K "'t­
(Ref. 16, pp. 98 and 99). If they were, one would have 
AeL 2(r) for which (K"'t- ± i)A ± = O. Thus 

0= (Bj,k,(K"'t- ± i)A ± ) , 

and so 

0= «K+ ± i)Bj,k,A ± ). 

Since K+ (Bj.k ) = AjBj,k' and since Aj is real, this equation 
implies that (Bj,k,A ± ) = O. Thus {Bj,k} being an orthogo­
nal basis then implies that A ± = O. Consequently, K+ is 
essentially self-adjoint. 

The essential self-adjointness of these operators is im­
portant, for coupling it with (3.16) and the orthogonality of 
the basis {Bj,k} yields the spectral resolution for all three 
operators. One may then use that spectral resolution to 
prove the next lemma. 

Lemma 3.5: LetK+ andK_ be defined by (3.15), letHt 
be given by (3.13), and let Up be given by (2.18). If A is a 
Schwartz function, then these hold for any real t and all 
/3>0: 

Kt+ (A) = HtoA , Kt_ (A) =AoHt , 

exp( - /3K+)A = UpOA , 

exp( -/3K_)A =AoUp ' 

(3.17) 

Proof: For each equation, simply compute the inner 
product of both sides with each of the Bj•k , and observe that 
the results from the two sides are equal. This is sufficient to 
establish the equations in an L 2 sense, which is all I really 
need. 

The operators K+, K_, and Ko all have fairly simple 
expressions in terms of partial differential operators. For ex-
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ample, if AEJP(r), then K+(A) = HoA. But HoA may be 
directly computed using Voros's Theorem 2.4.1,5 

If ~ {I 2 2 A iii (aA aA ) °A = £.. -( Pj + qj) + - qj - _ Pj _ 
j = I 2 2 apj apj 

_ li2(a 2A + a2A)} . (3.18) 
8 apJ aqJ 

UsingAoH = HoA, one also has 

A ~ {I 2 2 A iii (aA aA ) °H= £.. -(Pj +qj) -- qj --Pj-
j = I 2 2 apj aqj 

_ li
2 (a 2A + a2A)} . (3.19) 

8 apJ aqJ 

Putting these in vector notation and using them to compute 
!(AoH + HoA), one easily gets these expressions for K +, 

K_, andKo, 

K ± = ~lzl2 + ili(q . ~ _ p . ~) 
2 -2 Jp aq 

(3.20) 

Observe that Ko is the quantum mechanical Hamilto­
nian for 2n decoupled harmonic oscillators. Here K ± are 
both perturbations of Ko by an angular momentum term. 
While points in the spectrum of K ± have infinite multiplic­
ity, points in the spectrum of Ko have only finite multiplicity. 
Also, for every t > 0, the domain of K ~ is a compact subset of 
L2(r). 

With these comments about Ko in mind, the significance 
of my characterization of the G that appears in (3.12) will be 
apparent. 

Theorem 3.6: Let if> be an Ii-positive S functional in the 
topological dual of S2" t>O. If G is as in (3.12), then G 
belongs to the domain of K ~/2. 

Proof' Since H t ES2" and UP' which is given in (2.18), 
belongs to JP(r), H,oD.p also belongs to JP(r).5 By 
Theorem 3.2, one has 

(3.21) 

Using the associativity of the twisted product and (2.23), 
one may put (3.21) in this form, 

if>(Ht°D.p ) = (HtoUpoG,G). (3.22) 

I want to get a bound for if>(Ht0D.p ), a bound that is 
independent of /3. To do this, first note that one has the 
operator inequality 

Ht _ Hte-pH>O. 

In terms of phase-space functions, this inequality becomes 

Ii 

H t - H t oUp >0 . (3.23) 

Hence Ht - Ht oUpES 2i . The Ii positivity of if> then implies 
that 

(3.24) 
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which is the bound I was looking for. 
By approximating G with Schwartz functions, one may 

use Lemma 3.5 to show that 

H,oOpoG = K'+ e-K+P(G) , (3.25) 

which holds in an L 2 sense. Expand G in the basis {Bj•k }, 

G = L rj,k Bj.k , 
j.k 

rj.k = (21rli) -n(G,Bj,k)' 

Using (3.25), (3.26), and (3.16), one sees that 

(H,oOpoG,G) = (21rli)n(.?A; e-PAJlrj.kI2). 
J.k 

(3.26) 

(3.27) 

Putting (3.27) together with (3.22) and (3.24),onearrives 
at the inequality 

LA; e- PAj lrj.kI2«21rli)-n<,6(H,) , 
j,k 

from which it immediately follows that 

LA; Irj.k 12< (21rli) - n<,6(H,) . 
j.k 

(3.28) 

(3.29) 

The inequality in (3.29) is precisely the condition re­
quired for G to be in the domain of K '2; indeed, 

11K '~2G 112 = (21rli)n(.? A; Irj.k 12 ) <<,6 (H, ) . 
J,k 

(3.30) 

So far, I have not used the fact the G is a real-valued 
function. This reality is reflected in the rj,k 's obeying 

rj.k = rk,j . (3.31) 

To see this, first take the complex conjugate of both sides in 
the equation for rj.k' 

Yj,k = (21rli) -n(G,Bj,k) . (3.32) 

Since G is real, G = G. On the other hand, 

B' k = B *k = (tP· ® tPk)* , J, J. J 

from (3.14). But (x®y)* =y®x,I4 so 
A A 

Bj~k = tPk ®tPj = Bk.j . 

From (3.33) and (3.34), one gets that 

Bj,k = Bk,j . 

Hence (3.32) may be written 

YJ,k = (21rli) -n(G,Bk,) , 

from which (3.31) follows directly. 

(3.33 ) 

(3.34) 

(3.35) 

(3.36) 

In the sum in (3.30), use Irj,k I = IYJ.k I = Irk,J I, and 
then interchange summation indices; this yields 

11K '~2G 112 = (21rli)n(.? A ~ IrJ.k 1
2)<<,6(H,) . (3.37) 

J,k 
As before, this implies that G is in the domain of K '!...2, and 
that 

(3.38) 

The final step in the proof begins with the observation 
that if a> 0, b> 0, and t> 0, then 

2 - ,- '(a' + b ')«(a + b)/2J'<a' + b' . (3.39) 

Using (3.30), (3.37), and the right half of (3.39), one gets 
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(3.40) 

From (3.40), (3.16), and the argument that I just used, one 
again sees that G belongs to the domain of K ~/2. Indeed, 
putting together the various inequalities that one can arrive 
at from (3.30) and (3.38)-(3.40), I find that 

2 -, 11K '~2G 112< 11K ~/2G 112<211K '~2G II 2<2<,6 (H, ) . 

(3.41 ) 

In the course of proving the theorem, I have actually 
proved somewhat more than what was stated. I shall sum­
marize these additional results below. 

Corollary 3. 7: With the notation and assumptions of 
Theorem 3.6, one has that Gbelongs to the domains of both 
K'~2 andK'!...2. 

This corollary will be a help in answering the following 
natural and important question: To what extent does G de­
termine the functional <,6? Although I did not mention it in 
Theorem 3.2, G is unique if one also requires that it be ." 
positive, so, in a sense, <,6 uniquely determines G. The con­
verse is almost true. It will turn out that if <,6ES ~, then for all 
AES" r< t, <,6 (A ) is uniquely determined by G. To prove this, 
I need this lemma. 

Lemma 3.8: If AES" then for every {3>0, both AoOp 
and Op oA belong to Y (n. Moreover, for every E> 0, both 
AoOp and OpoA converge, in the topology of S,+o toA as 
{3-+0+. 

Proof: The first statement follows from Voros's theorem 
2.4.1.5 To get the rest of the lemma, all I really need to show 
is that, inSE, Op -+ 1 as{3-+0+; the statement about the con­
vergence of AoOp and OpOA is simply a consequence of 
Op -+ 1 and the continuity of the twisted product for Voros's 
symbols. 5 

To show that Op -+ 1 in SE' note that 

= L C
r

zr[tanh(fI{3)]<Irl+ la l
)/20p (Z) , 

Irl<lal 2 
(3.42) 

where cr depends on a, r, "', but not on Z or {3. (Here, r is a 
multi-index; it is not related to the rJ.k'S used earlier.) For 
R > 0, one may use (3.42) together with a little calculus to 
show that 

suplaa(op -1)(z)(1 + IzI 2)<lal-E)/21 
Izl>R 

<C(1 + R 2) - EI2 , (3.43) 

where C is independent of R, {3. Since, on compact subsets of 
r, aa(op - 1) converges uniformly to 0 as{3-+0+, one has, 
from (3.43) and (2.1), that 

lim-sup IIOp -lllaE<C(1 +R 2) -EI2. 
p-o+ ' 

(3.44) 

LettingR -+ 00 then yields that IIOp - llla,E -+0 for all multi­
indices a, and so Op --+ 1 in SE' 

I can now prove the assertion that I made just prior to 
Lemma 3.8. 

Proposition 3.9: Let t;;>O, r < 2t, and suppose that the .,,­
positive S functional <,6 is in S!,. If AES" then 
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¢ (A) = lim (fA 00/3 GoG dZ) . 
/3-0+ 

(3.45) 

Proof: By Lemma 3.8, AoO/3eY(r), and so (3.12) 
holds: 

¢(AoO/3) = J (AoO/3)(z)GoG(z) dz. (3.46) 

Again by Lemma 3.8, A 00/3 ..... A in Sr+ e for all E> O. With 
E = 2t - r, one sees that A oO/3 ..... A in S2t: 

lim ¢(AoO/3) = ¢(A) . (3.47) 
/3-0+ 

Combining (3.46) and (3.47) yields (3.45). 
Thus G uniquely determines ¢ on all of the Sr's with 

r<2t. Sad to say, G does notalwaysdetermine¢ onS2t . The 
reason for this is related to the existence of certain function­
als in the dual of the space of bounded operators on a Hilbert 
space. These functionals have the property that they are non­
negative, and they annihilate every compact operator; that 
is, they "live" on the Calkin algebra. 17 Although I do not 
need to deal with them here, I will say a bit more about their 
effects later. 

What I do need is to get an explicit formula for ¢ in 
terms of G when ¢ is restricted to Sr. Let AeY (r). For the 
present, also suppose that GeY(r). Under these assump­
tions, one has that 

J A (z)GoG(z)dz 

= J Ht/20H - t/2oAoH _t/2oHt/20GoGdz 

= J Ht/20T _2t(A)oHt12 oGoGdz 

= J T _2t(A)oHt/2oGo (Ht/20G) dz 

= J T _2t(A)oKt~2G(Z) Kt~2G(Z) dz 

= (T -2t (A)OKt~2G,Kt~2G) . (3.48) 

Here T _ 2t (A) is defined by (2.20). 
If G is merely in the domain of K t~2, one can show that 

(3.48) still holds. To do this, approximate Gby a truncated 
version of (3.26), 

GN =- L rj,kBj,k' (3.49) 
j<.N, k<.N 

Here G N is a finite sum of functions in Y, so it itself is in Y. 
Note that both GN and Kt~2GN converge in L 2 to G and 
K t~2G, respectively. Since the twisted product is L 2 contin­
uous, IS taking limits in 

J AGN°GN dz = (T _2t(A)OKt~2(GN)' Kt~2(GN» 
then yields (3.48) for any real G in the domain of K t~2, and 
for any A in Y. 

To get a formula for any A in Sr' r < 2t, just write (3.48) 
in terms of a trace; that is, recast (3.48) as 

f A(z)GoGdz 
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~~~ 
= ¢(A) = (21rlW Tr[T -2t (A) Kt~2(G) Kt~2(G)*]. 

(3.50) 

In (3.50), replace A byA oO/3' and use (3.45), Lemma 3.8, 
Theorem 2.5, and (1.7) to get the following proposition. 

Proposition 3.10: Let ¢, r, t, be as in Proposition 3.9. If 
AESr and G is as in (3.12), then 

¢(A) = (21rli) " Tr[1CJA) K0<G> K0<G>*] . 

( 3.51) 

One should note that the right-hand side of (3.51) de­
fines an Ii-positive S functional on S2t; I will denote this func­
tional by ¢a' Equation (3.51) shows that ¢ = ¢a on all of 
the Sr's, r < 2t. On the other hand, it is quite possible for 
¢#¢a on S2t' For example, if ¢c is a positive, continuous 
linear functional on the bounded operators on L 2 (R"), and 
if ¢c annihilates the compact operators, then 

-------¢(A) =¢c(T_ 2t (A»)+¢a(A) (3.52) 

defines an Ii-positive S functional that differs from ¢a only 
for functions in S2t; on S" r < 2t, they agree because -T _ 2t (A) turns out to be compact for AESr •

s 

Suppose that one has another Ii-positive S functional ¢' 
and that it satisfies the same conditions that I imposed on ¢ 
in Proposition 3.9. In addition, let G' be the functional that 
corresponds to ¢' via (3.12). Using (3.51) and few facts l4 

concerning the relationships among 1I'llop, Tr('), and Hil­
bert-Schmidt norm II'IIHS' one can show that for all AESr , 

r < 2t, one has this inequality, 

I¢(A) -¢'(A)I ---- -----< (21rli)"IIT -2t (A) lIop [UK t~2G IIHS ---- ~ + IIKt~2G'IIHS ]{IIKt~2(G - G')IIHS}' (3.53 ) 

Putting this in terms of phase-space quantities, i.e., 

1I'llop = 11'llw, (21rli)"12I1'IIHS = II'IIL" one has the follow­
ing result. 

Corollary 3.11: Let t;;;.O, r < 2t, and suppose that both ¢ 
and ¢' are Ii-positive S functionals in S 1t, and that G and G' 
are the corresponding functions given in (3.12). If AESr , 

then ----- .------::---I¢(A) - ¢'(A) I<IIT -2t (A)lIw [IIKt~2G ilL' 

+ 11K0G'IIL'] II~)IIL' . 
(3.54) 

What about the moment problem itself? I am now 
ready to finish proving that the conditions given in Sec. I are 
sufficient. 

Proof of Theorem 1.1: In Sec. I, I showed that a neces­
sary condition for the moment problem ( 1.2) to have a solu­
tion is that the moment functional be non-negative on every 
Ii-positive polynomial P. If I assume, on the other hand, that 
f.l (P);;;'O for each Ii-positive P, then by Corollary 2.7 there 
exists an Ii-positive S functional f.lkES1k such that 
f.lk (P) = f.l(P), when the degree of Pis 2k or less. Theorems 
3.2 and 3.6 imply that for eachf.lk there exists a function Gk 

such that Gk belongs to the domain of K~12. Since, for 
j = 0, ... , [k /2], S t ~S1k' Gk belongs to the domain of K ~ 
(which is obvious anyway), and, from (3.41), satisfies 
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IIKbGk lIi,<2Jlk (H2j ) . 

Because Hj is a polynomial of degree 4j<2k, this inequality 
may be rewritten as 

11K b Gk Iii, <2fl (H2j ) , (3.55) 

which shows that the bound on the right-hand side above is 
independent of k as long as k>2j. 

Recall that the operator Ko is the Hamiltonian for a 
system of 2n harmonic oscillators, and that K 0- I is a com­
pact operator. Since, for j = 0,1, (3.55) may be written as 

11K 0- I (KOGk ) IlL 2 <2fl ( 1), IIKoGk IlL 2 <2Jl (H2) , 

(3.56) 

and since an L 2 ball of fixed radius is weakly compact, one 
may extract from the sequence {KOGk } a weakly convergent 
sequence. Finally, since compact operators map weakly con­
vergent sequences to strongly convergent ones, the subse­
quence selected has the property that K o-IKoGk converges 
strongly in L 2 to some real-valued function G. The inequal­
ities in (3.56) imply 

IIGIIL,<2Jl(1). (3.57) 

Repeat the process for the subsequence {Gk ), only now use 

IIKo-IK~Gkll<2fl(H2)' IIK~Gkll<2Jl(H4)' (3.58) 

(It may be necessary to discard the first term of the subse­
quence. This will not affect the argument at all.) One may 
again extract a subsequence for which {K ~ Gk "} is weakly 
convergent, and so {Gk" } and {KOGk" } are strongly conver­
gent. A moment's reflection shows that again 

Gk" -+G, KOGk" -+KoG, 

and 

IIKoG IIL2 <2Jl(H2) . 

This process may be repeated indefinitely. Doing so 
shows that G is in the domain of K b for all j>O, and that 

(3.59) 

It is well known that this implies that G must belong to 
Y(n. ls 

I now want to show that p = GoG solves the moment 
problem. Define the functional 

fla(A) = f A(z)GoG(z) dz. (3.60) 

Since G is a real-valued Schwartz function, fla is an ii-posi­
tive S functional, and it belongs to S r for all t. From the way 
I constructed G, I can pick a subsequence {Gk ,} that has the 
property that {Gk,}, {KOGk,}, ... ,{KbGk'} all converge in 
L2 to G, KoG,,..,Kb+IGk" respectively. One may also re­
quire that 2k '>j + 1, for doing so merely discards a finite 
number of terms in the sequence. 

Let Pbe any polynomial of degree less than 2j + 2; obvi­
ously, P belongs to S2j+ I' In Corollary 3.11, put f/>' = flk' 
and f/> =fla, note thatflk' (P) =fl(P), and use the bounds 
(3.55) and (3.59) in (3.54). The inequality (3.54) then be­
comes 

Ifl(P) - fla (P) I 

2881 J. Math. Phys., Vol. 28, No. 12, December 1987 

<211T -4j-4 (P)II~fl(Hj+ I) 11K b+ I(G - Gk, )IIL 2 . 

(3.61) 

As k ' -+ 00 the right-hand side vanishes. The left-hand side is, 
however, independent of k ' and so is 0 to begin with. Thus 

fl(P) = fla (P) (3.62) 

for all polynomials of degree 2j + I or less. Finally, since the 
construction may be carried out for any j, one sees that 
(3.62) holds for all polynomials. If one sets p = GoG and 
takes P to be any of the monomials in ( 1.3 ), then one see that 
( 1.2) holds. [!remark that j above, unlike the j in (1.3), is 
just an integer; j in (1.3) is a multi-index.] This completes 
the proof. 

The methods used above also yield sufficient conditions 
for the solution of a truncated moment problem in which one 
knows moments up to some fixed order. 

Corollary 3.12: Suppose that one is given a set of 
numbers mj,k' with I jl + I k I <2v + 2, v being a non-nega­
tive integer. A sufficient condition for the mj,k's to be of the 
form (1.2) for I jl + Ik I <2v + 1 is that the moment func­
tional fl (P) be non-negative for every Ii-positive polynomial 
P having degree 2v + 2 or less. 

Proo!, Just apply Corollary 2.7, Theorem 3.2, and Prop­
osition 3.10 to get a G for which (1.2) holds, at least in the 
sense of (3.51), for all polynomials of degree 2v + 1 or less. 
One runs into difficulty with reproducing the highest order 
moments because the functional involved may have a term 
likef/>c in (3.52). 

IV. CONCLUDING REMARKS 

As I mentioned in Sec. I, O'Connell and I gave a set of 
necessary conditions for a sequence {mj,k} to be of the form 
( 1.2).2 If one examines that set, one easily sees that it is 
precisely the set of conditions obtained by requiring that the 
moment functional fl be non-negative on all Ii-positive poly­
nomials of the form POP. Whether this set is sufficient as well 
as necessary obviously hinges on whether every Ii-positive 
polynomial may be written as a sum of polynomials of the 
form POP. In the classical, one-dimensional Hamburger mo­
ment problem, the analogous question would be whether ev­
ery non-negative polynomial in one variable can be written 
as the sum of squares of polynomials. The answer is, of 
course, yes, and the set of conditions analogous to those of 
Ref. 2 are indeed sufficient. 19 For the classical, multidimen­
sional problem, the answer is no,20.21 and the corresponding 
set of conditions is not sufficient.22 On the basis of the answer 
in the classical, multidimensional case, I conjecture that the 
conditions given in Ref. 2 are not sufficient. I do so with some 
hesitation, for there are many differences between the quan­
tum mechanical moment problem treated here and the clas­
sical, multidimensional moment problem. 

The set of restrictions imposed on the moments by re­
quiring that the moment functional fl be non-negative for Ii­
positive polynomials has an interesting physical interpreta­
tion. If one sets 

P = Co + CI • P + C2 • q , (4.1 ) 

where Co is a complex number, and CI, C2 are in en, then 
fl (POP) >0 gives rise to a quadratic form. Applying the stan-
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dard conditions for this form to be non-negative results in 
the position-momentum uncertainty relations.2 If one re­
places P in ( 4.1 ) by an arbitrary polynomial, then 
p,(popr;;.o is a non-negative quadratic form in the coeffi­
cients of P. The restrictions imposed on the moments in this 
case form a set of generalized uncertainty relations.2 Should 
the conjecture I made above prove true, then there will be fz 
polynomials that are not sums of polynomials of the form 
pop. The moment functionalp, applied to such polynomials 
will give rise to additional restrictions on the moments, and 
so will augment that set of generalized uncertainty relations. 
In any case, one will arrive at a "complete set" of uncertainty 
relations for the moments. [By this I mean a set of restric­
tions satisfied if and only if the mj,k's are of the form (1.2). 
There are, of course, other uncertainty relations; see Breiten­
berger's paper23 for a discussion.] 

There are several interesting, unanswered questions 
concerning the quantum mechanical moment problem dis­
cussed here. The first is related to what polynomials are ac­
tually fz positive. Voros5 points out that every semibounded 
function in Sm gives rise to a semibounded operator on 
L 2(Rn). In particular, every non-negative polynomial in q 
and p can be made into an fz positive one just by adding a 
positive constant to it. Is the converse also true? Put another 
way, does every fz-positive polynomial differ from a non­
negative polynomial by a constant? If the answer is yes, then 
the difference between the quantum mechanical moment 
problem and the classical one is small indeed. The answer to 
this question might also shed light on the difference between 
states in quantum mechanics and in classical mechanics. 

In proving sufficiency in Theorem 1.1, I merely showed 
that an appropriate Wigner function p existed. Is this func­
tion unique? If it is, the moments would serve as a kind of 
"minimal set" of expectation values required to determine p. 
Also, whether the solution is or is not unique, is there any 
method-say, some kind of variational procedure-for con­
structingp? Finally, is there a way of constructing solutions 
to the truncated moment problem mentioned in Corollary 
3.12? 
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The natural composition of systems in quaternionic quantum mechanics is examined via their 
lattices of propositions and it is shown that the criticisms that have been made of such a 
composition are unconvincing. 

I. INTRODUCTION 

Complex quantum mechanics is at the center of much of 
modem physics but in spite of this there remain unanswered 
fundamental questions about why it is preferred above alter­
native quantum theories. The need for an understanding of 
this preference is made more pertinent because of the impor­
tant place phase invariance has taken in particle physics. 
Quaternionic quantum mechanics, the most prominent al­
ternative, is considered here. 

To quote Finkelstein et al. on quaternionic quantum 
mechanics, "The principal conceptual difficulty concerns 
the theory of composite systems where the ordinary tensor 
product fails due to noncommutativity."1 Many authors 
working in the field since have agreed.2

-
5 However, it is in 

response to this difficulty that Finkelstein et al. and the sub­
sequent literature have diverged. While Finkelstein et al. 
considered that a sensible theory could be arrived at despite 
the requirement that the composite Hilbert space be quater­
nionic, the rest of the literature has asserted either that one 
must give up quaternionic quantum mechanics2 or give up a 
quaternionic composite Hilbert space.3

,4 

What we hope to do here is to put forward a theory of 
composition in quaternionic quantum mechanics following 
Finkelstein et al. and then to show that the criticisms of such 
a program that are found in the literature are unconvincing. 

The notions of quaternionic Hilbert space used here will 
be those of Horwitz and Biedenharn.4 

II. QUATERNIONIC COMPOSITION 

Following Aerts,6 Zecca,7 and Finkelstein et al.,8 the 
composition of distinguishable quantum systems should be 
viewed as a lattice theoretic problem. Then we ask: given two 
quantum systems S I and S2 and their corresponding lattices 
of propositions and sets of states (.:t' I' .Y I) and (.:t' 2' .Y 2) , 
what quantum systems S, (.:t', .Y) may be considered as 
containing both S I and S2? That is, what does it mean for one 
quantum system to contain two others? In line with the 
above three authors we are going to say it means that if you 
could ask a question of system 1 (e.g., the particle, that sys­
tem 1 is, has a momentum p) as a system by itself then you 
can ask the same question of the composite system (e.g., that 
particle 1 has momentum p) and similarly for system 2. 
Mathematically this may be interpreted as the assertion that 
there exist mappings hi: .:t'i --- .:t', for i = 1, 2, sending prop­
ositions of the subsystems to the corresponding, "the same," 
propositions in the composite system. This sameness of the 
elements in hi (.:t'i) and the elements in .:t'i implies also 

that hi preserves the structure of .:t'i' We will call the exis­
ten~e of hi and the preservation of the structure of .:t'i by hi 
AXlOm 1. 

One might describe what has been done as finding a 
natural and directly interpretable axiom deductable from 
physically plausable assumptions, which is something that is 
always useful to do.9 

It may be that this axiom is too strong to include all 
systems that we might like to call composite. Composition 
could possibly be better, or more generally, described via 
states or via maps from .:t' to .:t'i' However, what we are 
trying to do here is develop a definitive notion of composi­
tion. Axiom 1 will suffice. 

Having asserted Axiom 1 we need to consider the rela­
tionship between h I and h2 that is the relationship between 
the two components inside the composite. If we were to de­
scribe two completely independent subsystems then we 
would be able to give very strong requirements governing the 
relationship between hi and h2 as do Aerts6 and Aerts and 
Daubechies. 1O However, we have traditionally considered a 
wide range of systems as composite. Systems such as two 
balls on a string, the hydrogen atom, and three quarks bound 
by gluons are all different from the sum of the components 
acting independently. 

If we follow wave mechanics where the position obser­
vables QI and Q2 are singled out as multiplication by XI and 
X2' respectively, then there is a natural composite Hilbert 
space and a natural relationship between h I and h2• For the 
case of one-dimensional particles the component Hilbert 
spaces are L ~ (R) I and L ~ (R) 2' the Lebesgue square inte­
grable functions from R to Q, and the natural Hilbert space 
for the composite system, a system with two degrees of free­
dom, is L ~ (R2

). The lattice mappings h I and h2 that Axiom 
1 requires become mappings of closed subspaces of L ~ (R) i 
to closed subspaces of L ~ (R2) for i = 1,2. Though it is not 
necessary it is both convenient and natural for these to take 
the form 

hi: Sd:;:L ~ (R) 1---{tPI'X2: (X I,X2) 

---tPl (XI )X2(X2) jtPlES'l, X2EL~ (R)2}' 

h2: S2kL~(Rh---{tP2'XI: (X I,x2) 

---tP2(X2)XI (XI) jtP2ES'2' XIEL ~ (R) I}' 
(1) 

Observables, as lattice-valued measures, of the component 
systems may be associated with observables of the composite 
system via h I and h2• If 0 an observable of system i maps E, a 
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Borel subset of R, to O(E) an element of !l" j> then the corre­
sponding composite observable mapsE toh;(O(E)). Now as 
the spectral theorem applies unchanged to quaternionic Hil­
bert spaces we may express this association in terms of Her­
mitian operators. To do this we must first note that for all ct> 
an element ofL~ (H2), ct>(X I,X2), may be written as a sum, 

I ¢:(XI )t!?(X2), 
i 

where ¢{EL ~ (H)j just as with the complex case. With this 
expression of elements of L ~ (R) 2 an operator A I of subsys­
tem 1 can be associated with an operator A of the composite 
system via 

(Act>)(X I,x2) = I (A I¢:)(XI )t!?(X2)' (2) 
; 

This operator association sends projections onto SI' a sub­
space of L t (H) I to projections onto hi (SI) so that it corre­
sponds to the association oflattice-valued measures given in 
Eq. (1). A similar association may be made between an op­
erator A2 of L t (H)2 and a composite operator A, 

(Act>)(X I,X2) = I (A2<P7)(X2)<P:(X I ), (3) 
; 

which agrees with h2, where 

I <P7(X2)<P: (XI) 
; 

is an expansion ofct>(x l ,x2) with elements of L t (H}z lead­
ing. In the composition given in Eq. (1) QI commutes with 
all the observables of system 2 and similarly Q2 with those of 
system 1. This is because both QI and Q2 send real functions 
to real functions: For i= 1,2 (Q;'II)(X I,X2) =x;¢(XI,x2)' 
On the other hand, the momentum observables PI and P2 do 
not in general commute with the observables of system 2 or 
system 1, respectively, in the way that QI and Q2 do. This is 
because PI is of the formJI (a lax l ) withJI an anti-Hermi­
tian unitary operator which commutes with (a lax l ) andJI 

defined from the time translation operator in system 1. And 
J2 is similarly related to P2 (Refs. 11 and 12). Here J I does 
not in general send real functions to real functions. This qua­
ternionic nature of J I will neither allow it nor PI to commute 
with all the observables of system 2. 

This whole discussion could have been carried out just 
as well with the component systems displayed in momentum 
space. II The Hilbert spaces would be the same function 
spaces but the association between Hermitian operators and 
physical observables would be different and h I and h2 would 
not be given by Eq. (1). Here momentum observables PI and 
P2 would have theform (P;'II)(PI' P2) = P; 'II (PI' P2) in the 
composite system. So PI would commute with all the obser­
vables of system 2 and similarly for P2• The two composi­
tions, one based on position and the other on momentum, are 
not equivalent. Finkelstein et al.3

,8 have indicated that each 
such representation of the component systems in terms of 
function spaces is a definition of what observables are real. 
So the choice of representation determines which observ­
abIes of system 1 commute with which observables of system 
2. So the choice determines the composite system. Which 
observables commute has direct physical consequences 
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when observables are measured simultaneously, So in situa­
tions without superselection rules the choice of composition 
is determined by experiment. 

We have shown in Ref. 11 that for quanternionic quan­
tum mechanics (QQM) to be consistent with the remark­
ably successful description of the world provided by com­
plex quantum mechanics (CQM) it must be that CQM is 
embedded in QQM. This has the effect that in the wave me­
chanics representation of system 1 (JI<PI)(X I ) =ql<PI(x I ) 
for all <PIEL t (H) I for some fixed ql a pure imaginary qua­
ternion of unit length. Similarly J2<P2 (x2) = q2<P2 (x2) for all 
<P2EL t (H) 2 for some fixed q2 a pure imaginary quaternion of 
unit length. With this restriction of the J's a complex quan­
tum mechanics can be seen to be contained in each of the 
component systems. II Complex is defined for observables, 
states, and scalars via commutation with ql and q2 in system 
1 and system 2, respectively. Similarly we expect that "com­
plex" may be defined for the composite system or may be 
induced from the components. The success of complex 
quantum mechanics, especially in its use of isolated systems, 
is strong evidence for the complex observables of system 1 to 
commute with the complex observables of system 2 at least 
when operating on complex composite states, which is suffi­
cient to ensure that they do commute. It might be, however, 
that the commutator of complex observables from different 
systems is not zero but just small when acting on complex 
states of the composite system. We believe it would need to 
be vanishingly small and will not consider the possibility 
here. 

The above requirement that the complex observables of 
different systems commute restricts the possible representa­
tions of the component systems. The wave mechanic repre­
sentations of systems 1 and 2 must be such that ql = q2 = q. 
Otherwise, in particular, [PI' Pz] #0. Similarly for the mo­
mentum representations where QI = ql (a lap I ) and 
Q2 = qz(a lapz) it must be that ql = qz = q. 

What is still left ill defined is the relationship between 
observables of the two systems when one of the observables is 
not complex. In particular, which if any complex observable 
of system 1 commutes with all observables of system 2. That 
this ambiguity remains is not so much the result of an ill 
defined composition procedure but the result of the hidden­
ness of quaternion quantum mechanics, since as we have said 
the choice of composition should be able to be determined by 
experiment. No measurement has ever been identified as be­
ing of a noncomplex observable nor of a noncomplex state. It 
is with such measurements that the precise nature of compo­
sition in quaternionic quantum mechanics must be deter­
mined. It also behooves quaternionic quantum mechanics to 
explain the lack of such experimental evidence, but we will 
avoid this issue here. 

III. ARGUMENTS AGAINST QUATERNIONIC 
COMPOSITION 

To our knowledge there have been two arguments given 
in the literature purporting to show that the composition of 
two subsystems described by quaternionic Hilbert spaces 
cannot in turn be described by a quaternionic Hilbert space. 
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One based upon lattice theoretic considerations is given by 
Aerts2

•
6 and the other, based on Hilbert space ideas which 

mirror Aerts's work somewhat, is put forward by Rembie­
linski.3 

Aerts describes a system S as composed of systems SI 
and S2 if the three following conditions are satisfied. 

( 1 ) The structure of S I and S2 is preserved when consid­
ered as parts of S. 

(2) A measurement on one of the systems S I or S2 does 
not disturb the other one. 

(3) When we know the state of SI and of S2 then we 
know also the state of S. 

He then interprets these as the following lattice theore­
tic conditions. 

(1') There must exist maps hi: .!L'I-+.!L' and h2 : 

.!L' 2 -+.!L', where h I and h2 conserve the structure of .!L' I and 

.!L' 2' 
(2') If alE.!L' I and a2E.!L'2' then hl(a l ) is compatible 

with h2 (a2 ). 

( 3') If a I is an atom of .!L' I and a2 is an atom of .!L' 2 then 
hl(a l ) I\h2(a2) is an atom of.!L'. 

Then in the language of generalized Hilbert spaces 
which represent .!L'I' .!L' 2' and .!L' Aerts proves some very 
general theorems asserting the existence of a bilinear (0'1,0'2) 
isometry from the component vector spaces to the composite 
vector space which preserves the composition provided by h I 
and h2 • These theorems have as their corollary that the Hil­
bert spaces representing each of the lattices may not all be 
over the quaternions. 

That Aerts should come to such a conclusion is clear 
from the assumptions he makes. To show this we follow Fin­
kelstein et al.s and note for ifJIEL ~ (lR) I and ifJ2EL ~ (Rh 
that 

hi ({ifJla: aEQ}) I\h2({ifJj3: fJEQ}) 

= {ifJI 'X2: (X I ,X2 ) -+ifJI (x I )X2(x2 ) IX2EL ~ (R)2} 

1\ {ifJ2'XI: (X I,X2) -+ifJ2(X2)XI (XI) IXIEL ~ (R) I} 
(4) 

is nonempty if and only if there exist quaternions a and b 
such that [ifJI (xl)a, ifJ2(x2)b] = a for allxl andx2' As {ifJla: 
aEQ} and {ifJj3: fJEQ} are atoms of their respective lattices 
then the possibility of the above meet being null is in contra­
diction with 3'. 

The assumptions 1,2,3 and their lattice theoretic inter­
pretations 1', 2', 3' are not only inconsistent with quater­
nionic composites but are similarly inconsistent with some 
simple complex compositions, in particular the complex 
quantum mechanics of two hard spheres and the quantum 
mechanics of two positively charged particles. Just as in qua­
ternionic composition in the complex composition there are 
pairs of atomic propositions, namely, one from the quantum 
mechanics of one hard sphere (considered as a separate sys­
tem) and the other from the quantum mechanics of the other 
hard sphere, for which the meet of the images of these propo­
sitions in the composite system is null. These are those pairs 
in which the two spheres are required to occupy some vol­
ume in common. The quaternionic and the hard sphere com-
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positions are similar in that they both satisfy 1, 1', and 3 for 
pure states but do not satisfy 2,2', and 3'. That they satisfy 1 
and l' is clear. For 2 we note that most composite systems do 
not satisfy 2 in an unqualified way because there are always 
states of the composite system in which the component sys­
tems are correlated. The more specific and much less strin­
gent requirement 2' falls foul of both compositions because 
in each case there exist these propositions of each of the com­
ponent systems whose meet in the composite system is null 
and such pairs can be found whose images in the composite 
system are not orthogonal. This is sufficient to prevent com­
patibility. For 3 and 3' we see that when the meet of the 
images, in the composite system, of two atoms, one from 
each of the component systems, is not null then the meet is a 
uniquely determined atom of the composite system. So 
whenever we know what pure states S I and S2 are in, and this 
is consistent with the two systems being composed together, 
then we know the state of S. In this way both compositions 
satisfy 3 but not 3'. 

Rembielinski requires that composition be described by 
a vector product/ l x/2x'" xl' with/k an element of the 
k th Hilbert space. This vector product is required to obey the 
distributivity condition II Xl2 X ... X (gk + h k) X ... xl' 
=/lxpx .. , xgkx ... Xlr +/lx/2x "'XhkX .. . 
xlr for every k = 1 to r. He notes that states are determined 
by rays and so requires II xP X .. "/ka X ... Xlr = (II 

XPX'" xlkx··· Xr)aTk for all k, where a is any ele­

ment of the field of scalars of the component space and a C k is 
some element of the field of scalars of the product space. He 
is then able to show that the scalars of the component spaces 
commute, thus discounting Q. His argument depends cru­
cially upon this relationship between rays of the component 
Hilbert spaces and those of the composite Hilbert space. In 
particular, the fact that the mapping Tk is independent of I I 
to r. What we have considered in Sec. II is an alternative 
relationship, one not essentially based on Hilbert spaces but 
on lattices, so we have sidestepped his objection by never 
requiring the composition to be put in terms of individual 
vectors. It is interesting to note that the implementation of 
composition by a vector product is precisely what Aerts's 
theorems assure, so Rembielinski and Aerts have come to 
the same conclusions somewhat from the same direction. 
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The problem of fi?ding ~omponent states given a composite state is examined for quaternionic 
quantum mechamcs. It 1S shown that under very loose conditions the component state is forced 
to be complex. 

I. INTRODUCTION 

The problem of composing systems in quaternionic 
quantum mechanics (QQM) is one with many suggested 
solutions. Elsewhere l we have shown that the criticisms le­
veled against the natural solution that was first mooted by 
Finkelstein et al. 2 are insufficient to dismiss it and prompt a 
search for alternative and more elaborate solutions. It has 
become apparent2-4 that the way to approach the problem is 
via the propositional lattices of the component systems and 
their embedding within that of the composite system. How­
ever, previous work 1.2 has only gone so far as to establish this 
embedding; what has not been discussed is the relationship 
between the states of the composite system and those of the 
component subsystems. This is what we propose to do here. 
In order to make the embedding and subsequent analysis 
more concrete we will discuss the composition of two one­
dimensional quantum wave mechanical systems. That is, 
L ~ (R) I and L ~ (Rh will describe the component systems 
and L ~ (Rz) will describe the composite system. We will 
refer to these Hilbert spaces as HI' Hz, and H, respectively, 
throughout this paper. These are of course sets of Lebegue 
square integrable functions from variously Rand RZ to Q 
with the usual integral inner product. There is no preference 
for system lover system 2 as a component system of the 
composite system, so to avoid tiresome rewriting of results 
which focus upon one component system or upon the com­
ponent systems differently, we note that in all that follows 
the subscripts or superscripts 1 and 2 may be interchanged. 

Fortunately a number of useful structures carry over 
from complex quantum mechanics (CQM). We know that 
the states of these systems correspond to density operators 
acting on the corresponding Hilbert spaces just as in CQM 
because Gleason's theorem applies unchanged to quater­
nionic Hilbert spaces.5

•
6 Also the spectral theorem remains 

unchanged6 so observables are self-adjoint operators and 
may be expanded in terms of projection operators. Similarly 
the relationship between pure and mixed states is preserved, 
the latter as convex combinations of the former. Finally as an 
upshot of all this the probability that a proposition PM' a 
projection onto the subspace M, is true when the system is in 
the state D, a density operator, is tr(DPM ). 

The superscripts and SUbscripts 1,2, or nothing will de­
note things pertaining to system 1, system 2, or the compos­
ite system, respectively, in the following way: functions will 
be superscripted and inner products will be subscripted. 

II. TWO QUESTIONS 

There are two questions one can ask of the relationship 
between composite and component states. First, if the com-

posite system is in a specified state D, what states if any can 
the component systems be in? Second, if we specify the states 
of the component systems what states if any can the compos­
ite system be in? To answer these questions we must form a 
criterion with which to say it is consistent for a component 
system (call it 1) to be in a state DI while the composite 
system is in a state D. Such a criterion is as follows: for any 
proposition of subsystem 1 the probability of that proposi­
tion being true, when subsystem 1 is in state D I , is equal to 
the probability that the "same" proposition, as a proposition 
of the composite system, is true when the composite system 
is in state D. 

Now the association between a proposition of the com­
ponent system and the same proposition of the composite 
system is given by the embedding of the propositional lattice 
of the component system into that of the composite system 
as we discussed earlier. In Ref. 1 we argue that this embed­
ding depends upon the choice of representation of the lattice 
of propositions of the two component systems within their 
Hilbert spaces. That is, it depends upon which subspaces 
represent which propositions or equivalently which Hermi­
tian operators represent which physical observables. How­
ever, whichever representations are chosen the Hilbert 
spaces are still the same function spaces and, considered on 
these function spaces independent of interpretation, the em­
bedding is fixed. So by putting off the discussion of observa­
bles for a moment we are free to discuss the embedding and 
its consequences for the relationship between the states, but 
without physical interpretation ofthe states. The embedding 
is as follows: if PM, is a proposition of the composite system 
1, MI a subspace of HI' then PM is the same proposition in 
the composite system when M = {¢I . r/?: ¢IEMI, r/?Elf2}, 
where ¢I . r/?: (xl,xz) _¢I (XI )r/?(x2). 

So for DI and D states of the component and composite 
systems, respectively, to be consistent with each other we 
require that 

tr(DIPM, ) = tr(DPM) 

for all Mia subspace of HI [call this requirement (A)]. 
For further work we need the explicit form of PM for a 

given MI' Let {XU be an orthonormal basis of MI and let 
{s J} be a real orthonormal basis of Hz then {xl . S 2} is an 
orthonormal basis of M. So for 'lJElf, J 

PM'IJ = j:xl . sJ(xl 'sJ, 'IJ) . 

We always can write 'IJ as 

2886 J. Math. Phys. 28 (12), December 1987 0022-2488/87/122886-05$02.50 @ 1987 American Institute of Physics 2886 



                                                                                                                                    

where ¢feH1, t/ifeHz, and a;eQ for all i. Thus using the prop­
erties of the inner products, 

PM'" = '2)PM,¢f> . t/ifa; . (1) 
; 

III. FIRST QUESTION 

To answer the first question mentioned above we need to 
start with a state of the composite system D. Then given D, 
requirement (A) amounts to specifying a probability mea­
sure on the propositions of HI, namely, PM, ..... tr(DPM ). So 
Gleason's theorem asserts that some Dl exists such that 
tr(D1PM, ) = tr(DPM ) for all Ml and its corresponding M. 
We may also show that such aDI is unique. SupposeD; also 
satisfies tr(D ; PM, ) = tr(DP M ) for all M 1, then 
tr(D ; M 1) = tr(D1M1) for all MI' Now for M, one-dimen­
sional, M, = (v), this becomes (v,D,v) = (v,D; v) for all 
veR,. So writing A = D, - D; we note that A is Hermitian 
and (v,Av) = 0 for all v. Take ueH, then 

0= (Au + u,A(Au + u)) 

= (Au,A zu) + (u,A 2U ) + (Au,Au) + (u,Au) 

= 211Aul12 . (2) 

Thus, Au = 0 for any ueH, implying D; = D,. Note that 
tr(D1PM,) for one-dimensional propositions was sufficient 
to determine D, uniquely. 

Having now shown the existence and uniqueness of Dl 
one may reduce the problem. Any D a state of the composite 
system can be written as ~;a;D;, where the D; are pure 
states of the composite system. For each oftheseD; we have 
D ~ the unique solution to tr(D ~ PM, ) = tr(D ;PM ) for all 
M,. It is easily shown that D, = ~ia;D ~ satisfies condition 
(A) uniquely. Thus the problem is reduced to finding the 
component states corresponding to a pure composite state. 
We can solve this reduced problem. For D pure then 
D = p(<f» the projection onto the one-dimensional subspace 
of H. Here (ct» = {ct>a: aeQ}, where ct> is a unit element of 
H. Now ct> can always be written as ~;¢f . t/ifA;, where {t/if} 
is a real orthonormal set in H 2, ¢feH" and A;eQ for all i. As 
we have shown above to uniquely determine D, it is suffi­
cient to consider one-dimensional subspaces Ml = {x'a: 
aeQ} = (X') for X1eHi of unit length. Then for the corre­
sponding Musing Eq. (1) and the fact that the rff are real, 

tr(DPM ) = LA~(t/if,(¢f'Xl)'(Xl,¢J)lrff)0j' 
ij 

= LA~Ad(¢:'Xl)llz. 
; 

Then it is easily shown that 

Dl = ~A ~A;P(<p:) 
I 

satisfies condition (A) uniquely. 

IV. SECOND QUESTION 

(3) 

Given states of the component systems Dl and D2 then 
D, a consistent state of the composite system, is neither guar­
anteed to be unique nor guaranteed to exist. The lack of 
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uniqueness comes about just as it does in complex theories. 6,
7 

The possible nonexistence of a consistent D is new. This can 
be traced directly to the correspondence between proposi­
tions in the component systems and those in the composite 
system. The pertinent property is that via this correspon­
dence the meet of some propositions of system 1 with some 
propositions of system 2 is null. 

We can give an account of what happens in the restrict­
ed case where Dl and D2 are pure. If D exists and is mixed 
then from what has been said aboveDI andDz would have to 
be mixed. So we know that when it exists D is pure. Suppose 
DexistsandletDI = P(.p,),D2 = P(r/i'),andD = p(<f» , where 
¢l, rpl, and ct> are elements ofHI ,H2, andH, respectively, and 
are all of unit norm. Here ct> can always be written as 
~;¢: . t/ifA;, where ¢: is a unit element of HI andA;eQ for all 
i and where {t/if} is a real orthonormal set in H 2. Thus from 
Sec. III 

Further ifve({¢f}) and (V,¢l) = 0 then 

(v,p(.p')v) =O#(v, ~A~A;P(<p)v). 

(4) 

This is a contradiction, so ({¢f}) = (¢l) and therefore 
tfJ: = ¢I ILi for some ILieQ and for all i. Therefore 

ct> = L ¢IIL; ·t/ifA; = ¢l. L t/if1-l;Ai . (5) 
i ; 

Similarly ct> = rp2'Xi for some XieHl' 
Finkelstein et 01. have shown that ct> can be expressed in 

these two ways only if for some a,/3eQ [¢i(xl)a, 
rp2(x2 ){3] = 0 for all Xl and X 2 (Ref. 2). And in that case 
ct> = ¢ly- rp2/) for some y,/)eQ. So these conditions are neces­
sary conditions for D to exist. When these conditions are 
satisfied D = P(.p'r . r/i') for some reQ, so from the discussion 
in Sec. III they are sufficient conditions for D to exist. The 
above necessary and sufficient conditions are precisely the 
conditions for the propositions corresponding to P(.p') and 
P(r/i') in the composite system to have a non-null meet.2 So D 
exists when the atomic propositions that correspond to the 
pure states of the components have a non-null meet. 

V. HIDDEN QQM 

The thrust of this work is to show that QQM is hidden. 
To do this we must take a specific orientation of the physical 
observables within the component Hilbert spaces. We re­
quire in particular that the position observables Q; have the 
form 

(Qi¢i) (Xi) = Xi¢i(X;), i = 1,2, 

and that the momentum observables P; have the form 

(P;¢i) (Xi) = el ~ ¢i(X;), i = 1,2. 
aXi 

That these observables can be written like this is shown in 
Ref. 8. The complex numbers are then defined as 
({I,e1}) = {al +{3el :a,/3eR} and the complex vectors in 
the function spaces HI and H2 are those functions that map 
onto the complex subset of Q. We further show in Ref. 8 that 
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we can associate those states of QQM that leave the subset 
containing the complex vectors of the Hilbert space invar­
iant with states of a CQM. 

A. An illustration 

We will now illustrate how it comes about that QQM 
might be hidden. Consider D = p(<'P) a state of the composite 
system 4>eH with 4>(XI,x2) = ,p1(XI )t/l(X2)' t/l a unit ele­

ment of H2 and,pl = (1/~) (,pl + el,p~) for,pl and,p~ real 
and unit elements of HI' (,pl ,,p~) 1= O. So we may write 4> as 

t/l . ,pl (1/~) + elt/l . ,p~ (1/~) and then from our pre­
vious analysis 

(6) 

We examine the action of D2 on a complex element of H 2, 

DiX
2 = !t/l(t/l,X

2
)2 + !e lt/l(e l t/l,x

2
)2 , 

=! ,/l(t/l,X2)2 + !e lt/l(t/l,x
2}zef 

as X2
(X2 ) = ({l,el}) for all X 2 , 

= t/li + elt/lief, where t/li = !t/l(t/l,X2)2 • (7) 

Therefore DiX2 is a complex element of H 2• So D 2 leaves the 
subset L ~{I,e,}) (lR}z of H2 invariant. Thus D2 may be writ­
ten as l:;a;P(s;(X

2
» , wherethes~(x2) are complex functions 

inH2 (Ref. 8). Thus for composite states of the form ofD the 
component states of particle 2 are always complex, indepen­
dent of the form of t/l(x2). So for such states their quater­
nionic nature is somewhat hidden. 

Pursuing the illustration further we note that the power 
of the result we have obtained depends very much upon how 
many and which composite states are of the appropriate 
form. Apart from the fact that it is not normalizable the 
momentum stateS exp(eIPxI) would have the appropriate 
form for ,p1(XI). However, in the case where we consider 
states normalized in a box of finite volume, 
,p1(XI) = (1IN)exp(px l ) is a normalized vector for some 
NeR. Hence 

4>(XI,x2) = ,pI (X I )t/l(X2) 

= (1/~N)t/l(X2)~ cos(px l ) 

+ (1/~N)elt/l(x2)~ sin(px l ) (8) 

is of the appropriate form for any t/l = L ~ (Box}z, It is clear 
that as well as D2 being complex DI is the momentum state 
PW1N)exp(e.px»' This shows, for such a normalization, that a 
large class of composite states are of the appropriate form, 
including those in which DI is a momentum state. It is in­
structive for generalization to note that 

,p1(XI) = !(exp(eIPxl ) + exp( - eIPx l ») = cos(px l ) 

does not leave 4>(XI,x2) in the appropriate form, as 

4>(XI,x2) = ,p1(XI)t/l(xZ ) = t/l(xz)cos(px l ) 

and so D z = p(t/i'(X
2
»' 

B. A generalization 

With the above in mind we examine a composite state 
D=D(<'P)' where 4>(XI,x2) =,pI(XI )t/l(X2),,p1 a unit ele-
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ment of HI and t/l a unit element of Hz. We also require 

,p1(XI) = - exp(eIPlxl),pI(PI)dpl ( 1 )112 J'" -
211' _ '" 

with ~(PI)#O, implying ~I( -PI) =0 for which we will 
say ~I satisfies condition (B). We will say D satisfies (B'). 
Then setting 

A I = - COS(PIXI)~I(pI)dpl ( 1 )112 J'" 
211' _ '" 

and 

B 1= (_1_)112 J'" sin(plxt>~I(pl)dpl' 
211' - '" 

we may write 

4>(XI,X2) =A I(XI)t/l(xZ ) + elB I(X I )t/l(X2) . (9) 

NotethatA I andB I are elements of HI' A I is even, andB I is 
odd. If we can write 

B I(XI) = Lx1;(xl )b; 
i 

with {X1;} an orthonormal set of real odd functions in HI 
and b;EQ for all i and if we can also write 

A I(XI) = LX~;(xI)a; 
; 

with {X~;} an orthonormal set of real even functions in HI 
with a; = b; for all i then 

~ b; .1;2 I 
4>(x l ,xz) = 7' Th;T 'f (X2)XA; (XI) Ib; I 

~ b; I + 7' el Th;T XB; (XI) Ib; I . ( 10) 

Thus as (X~; ,x1j ) I = 0 for all i and j we have, from our 
previous discussion, 

D2 = Lib; 12(p«b;lbil)t/i') + p(e, (b,lb,I>t/i') ) , (11) 
; 

which as before means that D2 is complex. 
We now need to show that we can find such sets {x1;} 

and {X~J. Take any orthonormal set of real odd functions 
{X1;} that span the subspace of odd functions of H I; then as 
Blisodd 

B I(XI) = Lx1;(xl )b; with b; = (X1;,B 1)1 . 
; 

We wish to find an orthonormal set of real even functions 
{X~;} such that 

A I(XI) = LX~;(xI)a; 
; 

with a; = (X~;,A I) and a; = b;. 
We may write 

I ( 2 )112 J'" -I . XB;(X I ) = -;: _ co XB;(p)SlO(px l )dp 

with x1; (p) = 0 for P < 0 as x1; is odd. Evaluating b; we find 
that 
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b l = f:x1i(P)~I(P)dP - f:x1i(P)~I( -p)dp, (12) 

by expanding the integrals. Now let m l = {P1~1(p)#O, 
p>O} and m2 = {PW( - p) #0, p>O} then by condition 
(B) m l nm2 = f/J. Further, take any M I;;Jm2 and M 2;;Jm2 
such thatMIUM2 =R +U{O} andMl nM2 = f/J, then 

f -I -I f -I -I bi = XBi(P)f/J(P)dp- XBi(P)f/J(-p)dp. 
MI M2 

Similarly we may write 

X~i(XI) = (! r/2f~ 00 X~i(P)COS(PXI)dp 
with X~i (p) = 0 for p < 0 as X~i is even. And similarly we 
may evaluate ai' 

f -I -I f -I -I ai = XAi(P)f/J (p)dp+ XAi(P)f/J (-p)dp. 
M, M, 

( 13) 

So to ensure al = bi it is sufficient to demand that X~i (XI) 
. -I -I -I -I 

satIsfy XAi(P) = XBi(P) for peMI' XAi (p) = - XBi (P) for 
-I -I 

peM2' andx.4i(P) = XBi(P) = 0 forp<O. 
We have left to show that {X~i} is an orthonormal set of 

real even functions in HI' That X~i (XI) is even is obvious 
since it has a cosine expansion. That X~i (x I) is real is en­
sured by X~i (P) being real which in turn comes from X1i (x I) 
being real. Using the above relationship between X~i (p) and 
X1i (P) it is easy to show that 

(X~/OX~j) = (x1/Ox1j ) . (14) 

Thus X~I (x I) is square integrable for all i and {X~i (x I)} is 
an orthonormal set in HI' So D2 is complex whenever D 
satisfies (B'). 

c. Superpositions 

We will extend this result to superpositions, that is to 
states D(<I» with 

cI>(XI,x2) = L f/Jl (XI )t!1(X2) , 
i 

where 

f/Jl(x l ) = (_1_)112 fOO exp(eIPlxl)~l(p)dp 
21T - 00 

and where ~l (p) #0 for some i implies ~J ( - p) = 0 for all 
j. We will say {~f} satisfies condition (C), and that D satis­
fies condition (C'). 

We may write cI>(XI,x2)' 

= LA l(XI)"'i (X2) + LelB l(XI)"'i (x2)· (15) 
i ; 

Then if we can write 
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B lex) = Lx1j (x l )bij 
} 

with {x1j } an orthonormal set of real odd functions in HI 
and if we can also write 

A l(x l ) = LX~j(xI)aij 
i 

with 

D2=~(P( .,;2 )+p( .. 2 », (17) ~ ~,(aijV',I1'J) e,~,(bij'l'iINJ) 
} 

which, as before, is complex. 
To show that we can find the required orthonormal sets 

we note that {~f} satisfying condition (C) implies that the 
non-negative real line may be split into two disjointed sets 
MI and M2 with 

MI~{P: ~l(p)#O, p>O} foralIi 

and 

M2~{P: ~l( - p) #0, p>O} for alIi. 

So given {x1}} an orthonormal set of real odd functions we 
may define {X~j} asbeforeviaMI andM2 which we note are 
independent of i. So for each i the required conditions to 
show aij = bi} for all j are satisfied by this choice of {x1) 
and {x1}. 

D. Momentum conditions 

We will now show that a pure composite state satisfying 
condition (CO) is equivalent to the probability density Pd of 
the momentum of particle 1 satisfying condition (B). 

and 

First take D = p(<I» with 

cI>(XI,x2) = L f/J:(X I )t!1(X2) 
i 

t!1(X2) = L tf(x2)Aji , 
j 

where {Sf} is an orthonormal set of real functions and a 
basis for H2 and AjiEQ for all i andj. Then 

cI>(XI,x2) = L f/J:(x I )Ajitf(x2) . 
ji 

Thus the component state 

DI = L ajP(~"'IA. ) , } ,.,., v 

where 
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The particle 1 momentum probability density function 
Pd(p) is then 

~ aJ(~ ~:(p)Ajjr(~ ~:(P)Ajj)' 
Suppose D satisfies (e'). So condition (e) holds for 

{~n. TakepeR ifPd(P) :;60, then ~:(p):;60 for somei; thus 
we have that ~l ( - p) = 0 for all k. It follows that 
Pd( - p) = O. Therefore Pd satisfies condition (B). 

On the other hand suppose Pd satisfies (B), Le., 
Pd(P):;60 implies Pd( - p) = O. Then 

L ~:(p)Ajj:;60 
j 

for some j forces 

L ~:( - p)Ajj = 0 
j 

for all j. So letting 

f)(x l ) = L t,61(X1)Ajj 
j 

we have that 

CP(XI,x2) = L f)(x l )sJ(x2) 
j 

with {i)} satisfying condition (e) as 

i)(p) = L ~:(p)Ajj . 
j 

So D satisfies (e'). 
Finally consider a nonpure state D = ~lajDj, D j pure, 

with the particle 1 momentum probability density function 
Pd(P) satisfying condition (B). As 

Pd(p) = L atPdj(p) , 
j 

Pdj the particle 1 momentum probability density function 
for state D j also satisfies condition (B) for all i. It follows 
that D j satisfies (e') and therefore that D ~ is complex and, 
as convex combinations of complex states are complex, that 
D2 is complex. 

We have then that for any composite state D if the prob­
ability density function for the momentum of particle 1 satis-
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fies condition (B) then the component state of particle 2, D 2 , 

is complex. Extending this result to three dimensions and to 
many particles is just a matter of introducing new param­
eters and may be derived as a corollary to the two-particle, 
one-dimensional case. The statement of the theorem then 
becomes, that for any many particle three-dimensional state 
D, if the probability density function for the component of 
the momentum in any direction of any particle satisfies con­
dition (B) then the component system of the rest of the par­
ticles together is complex. That condition (B) is satisfied by 
a momentum probability density is a common situation. For 
instance, (B) is satisfied if any component of the momentum 
of a particle is entirely positive. This occurs whenever the 
momenta of all but one of the products of a decay are mea­
sured sufficiently accurately which, for the two-body decay, 
amounts to observing one of the particles to be within any 
hemisphere centered on the center of mass. 

VI. CONCLUSION 

We have found that the description of the component 
states for a given composite state follows along much the 
same lines as in complex quantum mechanics. Using this 
formalism we have shown that the component states are 
complex under weak conditions, much weaker than requir­
ing one particle to be a momentum state. This means that if 
one can only measure component systems then it is plausible 
for the component system to be always in a complex state 
while the total system is in a quaternionic state, thus shield­
ing quaternionic states from investigation. 
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Several aspects of the general and constructive spectral theory of quasiperiodic Schrodinger 
operators in one dimension are discussed. An explicit formula for the absolutely continuous 
(a. c.) spectral densities that yields an immediate proof of the fact that the Kolmogorov­
Arnold-Moser (KAM) spectrum constructed by Dinaburg, Sinai, and Riissmann [Funkt. 
Anal. Prilozen. 9, 8 (1975); Ann. Acad. Sci. 357, 90 (1980)] is a subset of the a.c. spectrum is 
provided. Some quasiperiodicity properties of the Deift-Simon a.c. eigenfunctions are proved, 
namely, that the normalized phase of such eigenfunctions is a quasiperiodic distribution. In the 
constructive part the Dinaburg-Sinai-Riissmann theory is extended to quasiperiodic 
perturbations of periodic SchrOdinger operators using a KAM Hamiltonian formalism based 
on a new treatment of perturbations of harmonic oscillators. Particular attention is devoted to 
the dependence upon the eigenvalue parameter and a complete control of KAM objects is 
achieved using the notion of Whitney smoothness. 

I. INTRODUCTION 

Let Le be a quasiperiodic Schrodinger operator in one 
dimension, 1--6 

d 2 

Le ==L(ve ) == - -2 + Ve (x), 
dx 

V8 (x) == V( TxO), TxO==O + OJX, 
where xeR, BETd == Rd /21T'Z}, OJeRd is a rationally indepen­
dent vector and V is a real function defined on Td. In this 
paper we discuss, from two points of view, the absolutely 
continuous (a. c.) spectrum of L 8 • First, continuing the anal­
ysis in Refs. 2, 3, and 7, we study some general problems such 
as characterization almost everywhere (with respect to 
Lebesgue measure on Rand/or Haar measure on T d

) of the 
a.c. eigenfunctions and of spectral densities. Then we turn to 
the explicit construction of many (in the sense of Lebesgue 
measure) quasiperiodic a.c. eigenfunctions for a special class 
of potentials v. This second part should be regarded as a 
refinement of the theory in Refs. 8 and 9. 

Our results in the general part are described by the fol­
lowing three theorems. Before describing them let us recall a 
few definitions. The spectral class measure dp,8 is given by 
one of the following mutually equivalent measures: 

00 

dp,8= Lan dp':n' an >0, t/JneC;, 
I 

where l:an < 00, {t/Jn} is an L 2-dense set of C 00 functions 
with compact support and dp':n denotes the standard spec­
tral measure of L8 based upon t/Jn. Now let dp,:.c. be the a.c. 
part of dp,8 in the Jordan-Lebesgue decomposition. The es­
sential support S of dp,:.c. is uniquely determined (modulo 
sets of zero Lebesgue measure) by the requirement that if 
A C S is also a support for dp,:.c. then meas (S - A) = O. Fin­
ally, letf ± (x,O,E) be the solution of 

Lef= Ef (1.1) 

0) Permanent address: Dipartimento di Matematica, lIa Universita di 
Roma, 00173 Rome, Italy. 

with ImE#0,fE£2(R±), R+==(O,oo), R_==( - 00,0). 
Denoting by d IdE the Radon-Nicodym derivative with re­
spect to Lebesgue measure, by [g,h] the Wronskian 
gh' - g'h==g(dh /dx) - (dg/dx)h and by (t/J./) the L 2 

product SRt/J(x)](x)dx, we have the following theorem. 
Theorem 1.1: For any t/JeC ;, for a.e. (O,E)eTd XS, 
d e 2 - 2 

p'</I,a.c. 1 I (t/J./) I + I (t/J./) I ---=- - , 
dE 21Ti [f,f] 

wheref(x,O,E) =lim€1O f+ (x,O,E + iE) and i[f,]] > O. 
Throughout this paper a fundamental role is played by 

Bloch waves (or Floquet solutions). These are eigensolu­
tions of the form ,p = e; Pxx with peR and X a quasiperiodic 
function with basic frequencies OJ. 

Theorem 1.2: Let fCR be a set of positive Lebesgue 
measure and assume that for a.e. (O,E) in Td X f there exists 
a Bloch wave,p. Then fCS, [,p,~] #0 and, for any t/JeC;, 

d 8 2 - 2 
p'</I,a.c. 1 I (t/J,,p) I + I (t/J,,p) I 

-;JE = 21T I [,p,~] I ' 
(O,E) a.e. in Td xl. 

In Ref. 3 Deift and Simon showed that, for a.e. (O,E) in 
Td xS there exist eigensolutions g = eilax+.B(XlJr(x), with 
[g,g] = - 2ianda being the Johnson-Moser rotation num­
ber,7,10 such that r is an L 2 quasiperiodic function, i.e., 
r(x,O,E) =R(TxO) with R(·,E)E£2(Td

). However, no 
quasiperiodicity properties were proved for the phase p. 
Now assume that OJ satisfies a Diophantine condition like 

IOJ'vl=1 ±OJ;v;I>~' 
;=1 clvl 

Ivl==Llv;1 (anyveZd -O,somec,1'>O), (1.2) 

and denote by 

O={4>eC OO(T
d
): J 4>=0}. 
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Then f3 is an «(J) quasiperiodic distribution on 0 in the sense 
of the following theorem. 

Theorem 1.3: There exists a distribution Bon C '" (Td
) 

such that for any cf>EO, 

1 LX -(B,cf» = lim - f3(y,O,E)<J.> ( TyO)dy, 
xl", x 0 

(O,E) a.e. in Td XS. (1.3 ) 

Remark 1.4: Equation (1.3) determines B uniquely on 
O. Taking <J.> = eiv·e, (1.3) shows that all the quasiperiodic 
Fourier coefficients iwith v#O) of f3 are well defined and 
are equal to BveiV.e, Bv == (B,eiV·e). 

Remark 1.5: Theorems 1.1 and 1.2 can be trivially ex­
tended to the case of almost periodic Schrodinger operators. 
Theorem 1.3 is false if (J) fails to satisfy any Diophantine 
condition, i.e., if (J) is a "Liouville vector"; compare Ref. 1. 

The problem of characterizing the a.c. spectrum in 
terms of genuine Bloch waves remains open but we will see 
that it is closely related to the analysis of regularity proper­
ties ofanonlinear partial differential equation (POE) on T d

, 

namely, 

D! F= -4 + (V - E)F, F(e) >0 for a.e. e, (1.4) 
F 

where 

d a 
DO) == r (J)i-' 

i= I aei 

Equation ( 1.4) will be shown to be satisfied, for a.e. E in S, 
by R ( . ,E) in the sense of distributions. 

We pass now to the constructive part of the theory. The 
operators that we shall consider are of the form 
L (E")==L(v + EW), v + €w== V«(J)IX) + €W«(J)~, ... ,(J)dX), 
with V,Wreal analytic on, respectively, T,Td

-
1 and€aposi­

tive number. The vector (J) is assumed to satisfy a generalized 
Diophantine condition 

1(J)'vl>lIcfi(lvl), VEld - 0, c>O (fixed), (1.5) 

where fi(r»yJ-I is a monotone function growing not too 
fast as rt 00 (see Ref. 9). Then, employing a Kolmogorov­
Arnold-Moser (KAM) technique,II-13 we will construct, 
for small CEiK, a subset E(€l of u(L (0» nu(L (el) and for 
each EEE (el a Bloch wave eiaxX«(J)x) with (a,(J) rationally 
independent and X(e) analytic on Td. The parameter K is a 

function of E asymptotic to.JE and, for some a,b > 0 and for 
any Eo > 0, the set E(e) satisfies 

meas{(u(L (0» - E(e»)n [Eo,oo)} 

<~( r Ivllog log fi( Ivl) ). 
c Ivl>bEo O(lvl) 

( 1.6) 

The connection with the general part is then given by 
Theorem 1.2 which yields immediately E(el CUa.c. (L (el). 

Before constructing such Bloch waves we will explain 
that the existence of quasiperiodic eigenfunctions corre­
sponds to quasiperiodic Hamiltonian flows on (d + 1 )-di­
mensional tori; see, also, Refs. 14 and 15. In general, to any 
operator Leo(u), u(x)==U(Txeo), we can associate the 
(d + 1) -dimensional Hamiltonian 
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where (p,B)ERd + 1 denote the generalized momenta and 
(q,e) ER X Td denote the generalized coordinates. It is readi­
ly checked that the evolution equation for q [with initial data 
q(O) ,p(O) ==q' (0),0(0) == eo] is nothing but the eigenvalue 
equation Leoq = Eq. What we will see is that, for 
EEE(el, H v + eW is canonically conjugate to a system of har­
monic oscillators with Hamiltonian aAo + (J)IA 1 + ... 
+ (J)dAd in action-angle variables (A,e)ER+ XRd XTd + l. 
This fact, from one side, clarifies the use of KAM techniques 
in the theory of quasiperiodic Schrodinger operators and, on 
the other side, gives a rather natural interpretation of spec­
tral quantities such as a.c. eigenfunctions and the rotation 
number in terms of Hamiltonian objects. Actually we believe 
that the Hamiltonian H u is integrable whenever 
EEUa.c. (L (u»). 

In our treatment of these matters we refine some aspects 
of the Dinaburg-Sinai-Riissmann theory. For example, we 
will see that KAM objects, such as rotation number and 
Bloch waves constructed on E('" are C '" functions of EEE('" 

in the sense of Whitney. 16--18 Exploiting this fact it will be 
easy to give a self-contained and complete description of the 
KAM spectrum E(el that was still missing in the literature. 

Since the basic KAM techniques are by now well known 
(see, e.g., Ref. 19), most of the proofs in this second part will 
be outlined without going into detail. 

The content of the rest of the paper is the following: Sec. 
II, proof of Theorem 1.1; Sec. III, Bloch waves; Sec. IV, 
weak Bloch waves; Sec. V, periodic Schrodinger operators as 
harmonic oscillators; Sec. VI, quasiperiodic perturbations; 
Sec. VII, KAM Bloch waves; Sec. VIII, Whitney smooth­
ness; Sec. IX, structure of KAM spectra; Appendix A: on a 
new condition in analytic KAM; Appendix B: Moser-Deift­
Simon inequality on KAM spectra. 

II. PROOF OF THEOREM 1.1 

We need the following facts: 

(a) dP",.a.c. = lim Im(RE+ie</J,</J), 
dE .. 10 

RE==(L -E)-I, 

for any </JEC 0' and a.e. E in S. 

(b) RE (x,y) ==g(x,y;E) 

=1+(x)/-(y)/[/+,f-], ImE #0, 
for x>y and symmetrically for x <y (I ± are the eigenfunc­
tions introduced in Sec. I). 

(c) f ± (x,e,E) = const(jl (x,e,E) 

± h ± (e,E)J;(x,eE»), 

where II' J; solve (1.1) with 11(0) = n (0) = 1,f; (0) 
= J; (0) = 0 and h ± are, for every e, the Herglotz functions 

defined by limx~ ± '" +/1/12' We recall that a function h is 
Herglotz if it maps holomorphically the open upper half 
plane iC+ into itself. We will denote the boundary value of h, 

Luigi Chierchia 2892 



                                                                                                                                    

existing a.e. on R, by the same symbol. For more information 
see, e.g., Ref. 20. 

(d) Fora.e.EinR, 

-lim Re r h+ «(J,E + iE)d(J 
EiO JTd 

:=r(E) = r + (E,(J) 

:= (highest) Lyapunov exponent for Le - E 

and 

S = {E: r(E) = O}C {E: h+ = - h_, 1m h+ > O}. 

Equation (a) is a simple consequence of Stone's formula 
(see, e.g., Ref. 21). Equations (b) and (c) are the main 
results ofWeyl's limit-point theory (see Ref. 22). Equation 
(d) is proved in Ref. 2. 

Notice that, for a.e. E,J ± (x,(J,E + iE) converge, as E W, 
uniformly on compact x sets. Also, for a.e. E in S, (d) shows 
that/+ =1- with [/+./_] = - 2iIm h+. These observa­
tions together with (a) and the evaluation 

valid for any t/'EC(R) and t,6EC 0' (R), make Theorem 1.1 
plain. 

III. BLOCH WAVES 

In this section we prove some elementary properties of 
(genuine:=smooth) Bloch waves and Theorem 1.2. 

Lemma 3.1: (i) If tP(x) = ei/:/Xx(wx) is a Bloch wave 
for Lo - E then tP(x,(J) :=ei/:/xx(T,,(J) is a Bloch wave for 
Le -E. 

(ii) Let I be as in Theorem 1.2. Then tP can be written 
(a.e. on I) in the form eiaxX(Tx(J) with (a,w) rationally 
independent. 

(iii) IftP=eiaXx(wx)isaBlochwave(a,w)rationally 
independent, then [tP,ij,]:;;zf:O and minTdltPl >0. 

Proof: Since t/I solves (1.1) with (J = 0, X satisfies 

D~X+2i(lD",X+ (E-(lz- V)X=O (3.1) 

at (J = wx. But because {(J = wx: xER} is dense in Td, (3.1) 
holds identically on Td. In particular, it holds at (J + wx and 
(i) is proved. 

Property (ii) follows easily from (i) and the fact that 
EER-+a(E)ER+ is an increasing function, constant only on 
spectral gaps where it takes value in {w'vI2,VEZd}; see Ref. 
7. 

If [tP,ij,] = 0 we would have X = ae - 2iaxi, for some 
aEC. But two quasiperiodic functions cannot be equal unless 
they have the same basic frequencies; see, e.g., Ref. 23. Thus 
[tP,ij,] :;;zf:0. If ItPl were not bounded away from 0, there would 
exist Xn too for which tP(wxn ) -+0, but this would imply 
[tP,ij,] = 0, a contradiction. 0 

Proof a/Theorem 1.2: From the above lemma [tP,ij,] :;;zf:0 
(a.e.) on I. Thus the Lyapunov number vanishes a.e. on I 
and ICS by Kotani's results [see (d), Sec. II]. Now fix E 
(a. e.) in I and let g be the Oeift-Simon function described in 
Sec. I. Then, for a.e. (J and all x, 
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g(x,(J) = atP(x,(J) + bij,(x,(J) 

for some complex numbers a,b depending on (J. Taking abso­
lute values one obtains 

wherec = - (Ial z + Ib 12) andd = 2ab. Nowtakey> o and 
VEZd. Multiply the above equation by (lIy)exp[ - 2i(t 
+ ax) - iT" (J. v] and integrate it from 0 to y with respect 
to x. Since R Z and Ixl z belong to L I(Td

) we can use the 
ergodic theorem to letyt 00 and conclude 

0= de- 2it(x2)", for all v, a.e. (t,(J)ETd+ I, 

where (')" denote Fourier coefficients. This shows that 
d = 0, i.e., either a = 0 or b = O. Theorem 1.2 follows now 
from Theorem 1.1. 0 

IV. WEAK BLOCH WAVES 

Here we discuss the a.c. Oeift-Simon eigenfunctions g 
on S and prove Theorem 1.3. Henceforth we will often omit 
the sentence (E,(J) a.e. in S X Td. 

Since [g,g] = - 2i, rex) never vanishes and the nor­
malized phase (l is a well-defined function from R .... R. The 
Schrodinger equation for g implies 

r" = lIr + (ve - E)r, (4.1) 

(l' = lIr - a, (4.2) 

with initial data reO) = R«(J), r'(O) = D.,R«(J), and 
(l(O) = 0 (mod 217'). [The initial value for Pis explained by 
the identification g(x,O,E) = R (O)/(x,O,E), cf. Ref. 3]. 
Oeift and Simon in Ref. 3, extending to Sa formula by John­
son and Moser, proved 

. Il"l 5,1 hm- -= -z =a. 
xt"" X 0 r Td R 

(4.3) 

This, together with the Schrodinger equation for g, yields 
easily the finiteness of 

-1' 1 lXI 'I Z d -I' Ir'l + r + r- I 

Im- g an 1m . 
x 0 x 

(4.4) 

Our next goal is to show that (4.1) and (4.3) imply R -3EL I 

and that R is a distributional solution of (1.4). Let 
O<q,EC""(Td

) and write t,6(x) =t,6(x,(J):=q,(Tx(J). Then 
by the ergodic theorem, (4.4) and (4.1), 

I· 1 lX .'/''' = Im- r'l' 
x 0 

. 1 (X(1 ) 
= hm;- Jo r + (ve - E)r t,6. (4.5) 
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Another application of the ergodic theorem to positive ran­
dom variables shows 

lim..!.. r 1.. = f ~. 
x Jo,-3 JT" R 3 

But then from (4.5) we conclude, alortiori, that 

f ~ = f (E - V)Rcf> + f RD! cf> < 00. (4.6) JT" R 3 JT" JTd 
In particular, by taking cf>= 1 we get 

f _1 = f (E - V)R. (4.7) JT" R 3 JTd 

Now we can repeat the computation in (4.5) with an arbi­
trary cf>EC" (Td

) and get back (4.6). This is the same as 
saying the R is a weak solution of ( 1.4). 

Next we turn to the proof of Theorem 1.3. Since W satis­
fies (1.2), 

B(B) = L -. 1_(~) ei
"'8 

",,"oIW'V R " 
is seen to be a distribution on C co (Td

) • In fact, if t > T + d /2, 

LIB" 12( 1 + V'v)' 
",,"0 

= &0 IW~VI21(;2)"I2(l +v·v)t 

<c2 
- ~ < 00 (f 1 )2 IvI 2

m 

R2 ~ (1 +v·v)t 

shows that BeB _t(Td
). Now denote by D;;' the linear 

operator 
A-

D", ': cf>eO-D;;' cf>= L .cf>" ei ,,·8eO. 
",,"oIW'V 

Then by (4.3), the ergodic theorem, and (4.2) we have 

(B,cf» = (B,D", D '" 'cf» 

= - (D.,B, D;; I cf» 

= - (1/R 2 -a,D", 'cf» 

1 i'" = -lim - /3' D '" 'cf>(TyB)dy 
x 0 

= -lim 1.[/3 D '" 'cf>(TyB)]~ 
x 

1 LX -+ lim - /3cf>( TyB) 
x 0 

1 LX -= lim - /3cf> ( Ty 8), 
x 0 

in which the last equality holds because a is the rotation 
number ofg so that lim ( 1/x) P(x) = 0. 0 

To connect the existence of smooth Bloch waves with 
regularity properties for (1.4), assume that V is of class 
C .. (rt) and that R is a smooth solution of (1.4). Then, by 
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the equation, min R > ° and 1/ R 2 - a belongs to C co (Td
). 

Thus also B, as defined above, is a smooth function and we 
can identify P(x,B) with the quasiperiodic solution of (4.2) 
B(TxB) - B(B). Unfortunately, regularity properties for 
such nonlinear equations on tori are difficult to obtain by 
general POE methods. (See, however, Ref. 24.) 

v. PERIODIC SCHRODINGER OPERATORS AS 
HARMONIC OSCILLATORS 

From now on we will be concerned with the construc­
tive part of the theory. In this section we look at periodic 
SchrOdinger operators L (0) from the Hamiltonian point of 
view described in the Introduction. We show briefly that for 
each E in the interior Z, of the spectrum u of L (0), the Hamil­
tonian H y of Sec. I is conjugated to aoAo + w,A " 
(AoA, )eR+ X R, ao= rotation number for L (0) - E. (We 
learned about the integrability of H y in Ref. 15.) For more 
details on this and the following sections see Ref. 25. 

From Floquet theory26 one knows that, for each EeZ" 
there exist two independent Bloch wavesJo,fo of the form 

lo(x) = eia.,xxo(w,x) 

eiao(21rlw,) -I, (21T/W,) 
=/,(x) + 12(x), 

12(21T/w, ) 

XoeC(T), 

with 

=i.[ # r] - I I' (0) - sin(ao(21T/w,» ° 
K - JO,JO - m 0 - > . 

2 fA21T/W,) 
Now define 

Q(Bo,B,) =Re Fo(Bo,B,), P(Bo,B I ) =ReDFo(Bo,B,), 

where 

Fo(Bo,B,) =ei(8o - (aolw,)8.ljo( B,/w l ), (Bo,B1 )eT2, 

a a 
D=ao - + w, -. 

aBo aB, 

One recognizes easily thatx-Fo(Bo + aoX,B, + w,x) is 
an eigensoiution for L(ve, ) and that 

d 
-Fo(Bo + aoX,B, + w,x) = DFo(Bo + aoX,B, + w,x). 
dx 

Moreover, from 

aQ P_Q ap =i.U;f] =i.[Jo.fo] =K>O, 
aBo aBo 2 2 

it follows readily that the map 

(r,B,Bo,B,)eR+ XRxT2
-o (p,B,q,B, ) 

= (rP( Bo,B,) ,B,rQ( Bo,B, ) ,(1) 

is a diffeomorphism onto the phase space of H y, i.e., 
a3 xT - (O,R.,O,T). Now we can construct a diffeomor­
phism 

C: (p,B,q,B,) -+ (Ao.A"Bo,B,)eR+ XRXT2 

by settingAo = (r/2)K, 

Al =B+ r(aQ P_Q ap). 
2 aB, aB, 
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Straightforward computations will show first that 
dp /\ dq + dB /\ dOl = dAo /\ dOo + dA 1/\ dOl, so that C is 
canonical, and then 

(p2/2) + wlB + (q2/2)(E - V) = aoAo + alAI' 

confirming what we claimed above. 
Remark 5.1: Even for V merely continuous, ao, fl' f2' 

and K are real analytic functions of E.26 Furthermore, a o 
maps u(L (0» onto [0,00), daoldE> ° on t} and, setting at} 
={Eg <E? < ... }, a~ =ao(E~) = hWI/2 for some in­
teger h. Now denoting by eo(a), aER+, a=l=a~, the inverse 
function of ao, one can easily show that, if p < wl/4, eo ad­
mits a holomorphic extension to 

with 
00 

Ao= U [a~ +p,a~+1 -pl. 
k=O 

This will be of later use. 

VI. QUASIPERIODIC PERTURBATIONS 

Now let E> 0. Under the canonical transformation 

(p,B 1, ... ,Bd,q,OI, ... ,Od )ERd + 2 X Td - (O,Rd,O,Td) -+ (A,O) 

= (AO,AI, ... ,Ad,Oo,OI, ... ,Od )EM=R+ XRd XTd+ I, 

(Ao,AI,Oo,OI) =C(p,B,q,OI)' Aj = B j, t~2 
o 

(Cas in Sec. V), the HamiltonianHv + Ew ( ';E),EEu(L (0», 

takes the form 

HE (A,O;E) =w(O)'A + EAoF(O) 

with 

w(O) = (ao,w ),F( 0) = - [Q 2(Oo,Od/K] W(02, ... ,Od)' 

In this section we describe an iterative scheme that will 
allow us to integrate HE for special values of the parameter E 
and small E. Henceforth, it will be more convenient to con­
sider HE parametrized by the rotation number ao=a rather 
than by the eigenvalue E. It will be only later that we shall 
express our result directly in terms of eigenvalues. We start 
by considering thejth order analog of HE' Letj>O and, for 
(A,O)EM, let 

H(j)(A,O;a,E) =w(j)(a;E)'A + ?AoF(j) (O;a,E), 

w(j) = (w~j> ,wl, ... ,Wd)' 

Assume that w~) and F (j), as functions of a, are holomorphic 
in 

for some A (j) C R. Also, as a function of OERd + I, F (j) is reo 
quired to have holomorphic extension to 

Sj =Sd+ I(Sj) = {OECd+ I: 11m OJ I <Sj}, S} > 0, 

with 

IIF(j)II.= sup 1F(j) I <M. 
5)' Pj (lJ,a)ESjXD

j 
, 

independently of E. Notice that because of the analyticity 
assumptions on Vand W, HE(A,O;eo(a»), Ao as in Remark 
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5.1, satisfies the above hypothesis, thus we can set H (0) =He 
Now, let 8j < s/2 and let us define the main recursive ob­
jects 

t(s) = 1 + ~ Ivll1( Ivl)e - 'Ivl, s> 0, 
veZh"I -0 

~ =p+ 18j- l log E- I, 

FW (0)= ') P~)ejv'lJ, 
Ivt"Nj 

{( I dw(j) I) -I p.} 
Pj+ I =min 2c~11(~)~ d; ,~, 

Sj+ I =S} - 28j , 

A (j+ I) = {aEA(j): Iw(j) (a) 'vl>lIcl1( Ivl), 

VE,ld+ 1_ 0, Ivl<~}, 

D -D(p 'A(j+I» j+l= j+l, , 

Sj+ I =Sd+ I(Sj+ I)' 

Lemma 6.1 (Inductive Lemma): If aEA(j+ I) and E is 
small enough, i.e., 

K lt(8j )8j-
1 cMj?<I, 

where KI is a universal constant, then the function 

(A I,O)EM-+A 1·0 +? Aoct>j (O;a,E), 
p(j) 

ct>. = L v eiv·1J 

, 0< Ivl<Nj - iw(j)·v 

(6.1 ) 

is the generating function of a surjective canonical transfor­
mation, (A,O) -+ (A ',0 ') = (A I (A,O) ,0 '(0»), that conju­
gates H (j) (A,O) to 

H (j+ I)(A I,O';a,E) 

where 

w (j + I) = (w~) + ? P ~) ,w ) , 

act>. FU)(O) 
FU+ 1)(0 ' (0»)= __ ' (O)F(j)(O) + _R __ 

aoo ? 
Furthermore, aEAu+ I)-+w~)(a) and (O,a)ER d+ I 
X A (j + I) -+ F U + I) ( O;a ) have holomorphic extensions to, 
respectively, Dj+ I and Sj+ I XDj+ I with 

IIF(j+ 1)11 <K !-(8.)8.- (d+ I) C M2::;.M. (6.2) 
5j + \. Pj + \ ~ J , 'J + 1> 

in which K2 is a second universal constant. 
Applying this Lemma infinitely many times one can in­

tegrate HE for aEA (co)::;. n j""= oA U). 

Theorem 6.2: Let {8j } be such that l:j': 0 8j < S /2, let 
aEA ( co) and let E verify 

with 

r=K21/1cMo, 1/1= Ii [t(8j )8j- (d + I)] 1I:t. 
j=O 
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Then the Hamiltonian H (0) is conjugate to 

H (00) =llJ( 00) 'A, 

where llJ ( 00 ) = (llJb 00 ) ,llJ) satisfies 

1 00 

clllJboo ) - al <:- L (E'T')~, 
K2j=0 

1 IllJ(oo)'vl> , veZd + 1_ O. 
dl( Ivl) 

(6.4) 

The (surjective) canonical transformation conjugating 
H (0) to H (00) has the form 

(A ',() ')eM ..... (A,()) 

=(S«(}')A ',()~ + Ea«(}~)'(};""'(}d)eM (6.5) 

with S a (d + 1) X (d + 1) matrix of the form 

[
1 ;s~so 0 ~ ~1] . 

ESd 0 0 

Moreover, the vector s= (sO, ... ,sd ) and a have holomor­
phic extensions to Sd+ I(S 00 ), S 00 =S - 2l:t=0 8j , and 

max{lIslls~ ,lIalls~}<: (K1/K2 )'T'· 

Remark 6.3: Examples of{8j } and !l such that", < 00 

are displayed in Appendix A. 
Remark 6.4: Perturbations of the Hamiltonian of the 

form h(A,(}) =jJ·A were investigated in Refs. 27 and 28 us­
ing Moser's idea of "modified systems.,,29 

Remark 6.5: An easy corollary of Theorem 6.2 is that all 
the eigensolutions of L (E) for EeE(E) =ao- I (A(oo» are quasi­
periodic with basic frequencies (llJb oo),llJ ). Also, since all the 
transformations involved in the process are close to the iden­
tity it is easy to see that llJb 00) coincides with the rotation 
numbera. 

Remark 6.6: From an elementary asymptotic analysis 
(E> 1) of the periodic case, one realizes that 

IIQ 211/K -11$ so that Mo-II WII/$· 

VII. KAM BLOCH WAVES 

Even though we already obtained a complete descrip­
tion of the quasiperiodic eigenfunctions of L (E) for EeE(E), it 
is not immediate from the above analysis that such eigen­
functions are of the form eiaXX(llJx). Since this representa­
tion is crucial in the application of Theorem 1.2, we proceed 
now with a direct construction of Bloch waves for values of E 
in a set E(E) Cu(L (0», which a priori need not be identical to 
E(E). 

The eigenvalue equation L (E1 = Ef is equivalent to the 
first-order system 

Y'-[V«(}I~-E ~]Y+EW«(}2""'(}d)[~ ~]Y' (7.1) 

()' = llJ, 
with Y = (~, ). A fundamental matrix for (7.1) at E = 0 is 

y=[fo [0] (I' . S V) fb fb Joasm ec. . 

By setting 
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C=[iao 0.], 
o -lao 

the system (7.1) becomes, under the change of variable 
y=Tz, 

Z' = Cz + EPz, ()' = llJ 

with 

P 
W«(}2""'(}d) [-iIXo«(}IW 

2K iX~ 
- ii~ «(}I)]. 

ilXol2 

(7.2) 

Notice that PeGo={GeG: tr STdG = O} where G denotes 
the ring of matrix-valued functions on Td of the form 

G = [~ ;]. 

Theorem 7.1: If E satisfies the smallness condition 

(K1/K2 )E'T'<:1, 'T'=K2"'cMo, 

where KI and K2 are suitable universal constants, then one 
can construct a set E(E)Cu(L (0» and, for each EeE(E), a 
change ofvariablesz = (l + EU)W, with UeGo, which trans­
forms (7.2) into the trivial system 

w' = [i; _Oia]W' ()' = (i). 

Furthermore, U as a function of (}eTd admits a holomorphic 
extension to Sd(S 00)' for a suitable S 00 > 0, with 
IIU Ils~ <: (K1/K2 )'T' and a verifies 

la - IllJ'v/211> 1 veZd - 0 EeE(E) 
c!l(lvl)' , , 

sup la - aol < E'T'/C. 
EEE(E) 

Remark 7.2: Above we used the same symbols for quan­
tities that are analogous, but not always identical, to the ones 
appearing in Sec. VI. 

The proof of this result is based on a scheme very similar 
to the one described in Sec. VI: One removes infinitely many 
times the order of the perturbation of systems like 

0] . 
. Zj+C'P(j)Zj' (}'=llJ (p(j)eGo), 

-laj r
ia. 

, J 
z· = 

J 0 

by the aid of a change of variable (I + ~ ~ «(}»)zj + I = Zj' 

The set E(E) will be given by ao-I(A(oo» where 
A (00) = nA (j), where as in Sec. V, A(O) is the positive half-line 
minus suitable intervals of length 2p and 

A (j+ 1) = {aeA (j): laj (a) - llJ'v/21> 1Ic!l( lvI>, 

veZd
, 0< Ivl<:.Nj} 

with ~ denoting the jth cutoff in the Fourier expansion of 
p(j). 

VIII. WHITNEY SMOOTHNESS 

In this section we study the E dependence of the KAM 
limits. Following Ref. 16 we say that a function/: A C R ..... R 
belongs to C~(A) if there exist, on A, functionsfk' O<:k<:n, 
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k=.f, with the following property: For each xoEA and E> 0 
there is a 8 > 0 s.t. if x,x'E{yeA: Iy - xol < 8} then 

Ilk (x) - ni
k 

Ih+ k ~X') (x _ X')h I <Elx _ x'in - k. (8.1) 
h=O h. 

At interior points this definition coincides with the stan­
dard one but the next lemma shows how nontrivial C';v(A) 
functions can arise. 

Lemma 8.1: Let ACJR, rjlO, and {g) be a sequence of 
holomorphic functions on D(rj,A) which are real on A. If 

theng=.l:gj belongs to C';v(A). 
Proof: Since for any k<n 

we can define 

dkg = dkgj 

dxk -L dxk 

onA. To check that the d kg/dxk are the Whitney derivatives 
of g, let x, x'EA, let s = s( Ix - x'l) be such that 
rs + I < Ix - x'i < rs, and consider the splitting g = g[S) + g[s) 
with g[S) =. l:Sgj" The lemma follows now from g[s)EC 00 

X (D(rs;A) nR), the inequality 

I
dk-[S)I 00 

sup dgk <2n L IIgjllr/j-n 
A X j=s+1 

andfromlim1x_x'llos(lx-x'l) = 00. D 
The KAM limits of Secs. VI and VII are exactly of the 

above kind. For example, 

W~oo) = a + i: ?F~)(a), 
o 

with F~) holomorphic on D( pj;A(oo») and one has the fol­
lowing theorem. 

and 

Theorem 8.2: If nand {8j } are such that 

rrt(8j )ln' < 00, 
j=O 

. logn(2i8j- l
) 

hm 2i =0, 
jt«J 

(8.2) 

(8.3 ) 

2[ EMoPo- 1 + (E1') 2

j
to (E1')2'Njn(Nj) ] < 1, (8.4) 

then w~ 00 )EC w(A (00». 

The proof follows easily after noticing that (8.4) yields 

sup I dw~) - 11 < ~ , 
D(PJ+l;AU-1l) da 3 

(8.5) 

so that 

pj-I <4Nj _ 1 n(Nj_1 )c. (8.6) 

For more details see Ref. 25, Sec. 2.6. 
Remark 8.3: Whitney smoothness is obviously pre­

served under composition with smooth functions. Thus 
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w~oo)(ao(E») (= aCE») belongs to Cw(E('"», E(E) 

=.ao-I(A(oo». 

Remark 8.4: While a condition analogous to (8.2) ap­
pears in the (analytic) KAM literature,S condition (8.3) is 
new. This condition is necessary in order to be able to meet 
the smallness condition (8.4) and, as we shall see, to give a 
complete description of A(oo). We also point out that (8.2) 
and (8.3) are independent (see Appendix A). 

IX. STRUCTURE OF KAM SPECTRA 

The main theorem in Ref. 16 is that any function 
gEC';v(A), A closed, can be extended to a Cn(JR) function 
which is real analytic on JR - A; a simple corollary of this 
and of the maximum principle imply 

sup I dkg I <maxi dk~ I, k<n. 
R dxk 

A dx 

Here we show how to use the above facts in order to give a 
precise description of the KAM spectrum E(E). 

Denote by R the "resonant" set of a = ao(E) for which 
we cannot apply the KAM scheme, 

00 

R=.A(O) - A(oo)=. U U R~), 
j=O veZd 

0< l"I<Nj 

where for 0< Ivl<Nj, 

R~)=.{aEAU): laj(a) - w'v/21 < l/cn( Ivl)}. 

A condition analogous to (8.4) implies easily that the Whit­
ney extension of the aj's satisfy 

I
da. I 2 sup _J -1 <-. 

R da 3 

Thus defining 

aj,,, =.aj- l (w·v/2), r" =.3lcn( Ivl), 

we see that 

R~)CI~)=.{aEA(O): la - aj ,,, I <r,,}. 

This completes the description of A ( 00) and hence, via the 
smooth map ao- I, of E(E). 

Finally it is not difficult to show that2s 

U
oo 

I U) C {I _ I I } I =_7....;..+_lo....::g,-lo....::gc-3_n --,-,( I,-v,-,--I ) 
" a a" <r", r,,_ 

j=O cn( Ivl) 

and a" -w·v/2. These facts together with the asymptotic 

evaluation ao(E) -$ yields (1.4). 
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APPENDIX A: ON A NEW CONDITION IN ANALYTIC 
KAM 

Here we show that conditions (8.2) and (8.3) are inde­
pendent as announced in Remark 8.4. To do this we give two 
examples. 

(1) Let !l(r) = 1'"' for some m. Then 

1 
(8.2) ¢:} I ---:- 10gc5j - 1 < 00, 

'l! 

(8.3) ¢:}(l/~)logc5j-l-O(jfoo). 

(2) Let 

!l r = {exP(rIlOgu r), r>e
u

, 

() !l(eU
), 1 <;r.o>;;eu , 

(8.2) ¢:}c5j- llr is bounded; 

(8.3) ¢:}c5j-1lr-O(jfoo). 

In the first example (8.2) is stronger than (8.3) but in 
the second one the opposite occurs. 

Notice that since !l(r»rt- 1 (8.2) implies easily the 
finiteness of 1/1. 

APPENDIX B: MOSER-DElFT -SIMON INEQUALITY ON 
KAMSPECTRA 

Deift-Simon,3 extending an idea of Moser,30 showed 
that, for general, almost periodic potentials, 

I· a2(E + €) - a
2
(E - €) '-1 E . S 

1m "" , a.e. 10 • 
EIO 2€ 

(Bl) 

Here we want to discuss briefly the constructive version of 
(Bl) for L (E), namely, we sketch the proof of 

d WhO d" --= 1tney envat1ve. 
dE 

(B2) 

Without loss of generality we can assume that Wo = 0 
and, to simplify the Hamiltonian formalism, we consider 

V=O in which case HEW = ,jE Al + W~2 + ... + WdAd 

- (€I,jE)A 1 sin2 
()l W«()2""'()d)' Then we have 

a(E) =,jE + €Fci°) + €2Fci1) + O(€4) 

with FIO
)= - (sin2 ()11,jE) W«()2'''''()d) and F(l) as in the 

A A 

inductive Lemma 6.1. Here Wo = 0 implies Fo = O. Now, 
setting m = (w2"",Wd)' a computation shows that 

F(l) = f a<P°FIO) + O(€) 
o a()l 

f( F(O) ) 
= I v FlO) + O(€) 

0< Ivlc;No - iwIO)·v 

~WI' 12 + O(€), 
(WW)2 - 4E 

so that 

da
2 

= 1 +c,jE I 
dE 2 11'1c;No 

+_1_0(~). 
,jE 
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The smallness of the parameter €7' confirms (B2). 
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Perfect Morse functions on the manifold of coherent states are effectively constructed. The 
case of a compact, connected, simply connected Lie group of symmetry, having the same rank 
as the stationary group of the manifold of coherent states, such that the manifold of coherent 
states is a Kahlerian C-space, is considered. It is proved that the set of perfect Morse functions 
is dense in the set of energy functions for linear Hamiltonians in the elements of the Cartan 
algebra ofthe Lie algebra of the representation of the group considered. It is proved that the 
maximum number of orthogonal vectors on a coherent vector manifold is equal to the Euler­
Poincare characteristic of the manifold. 

I. INTRODUCTION 

Particular attention has been paid lately to the applica­
tion of geometrical ideas and methods in physics. First, geo­
metrical ideas, especially symplectic structures, 1 have an im­
portant role in classical mechanics.2 Second, the geometry of 
classical phase space is the starting point of the geometrical 
quantization program. 3

,4 On the other hand, the right appli­
cation of the variational principles in quantum physics is 
conditioned on the establishment of the topological and glo­
bal geometrical properties of quantum state manifolds.5 

Global variational methods are studied by means of the 
Morse theory. It is often useful to find the absolute minima 
of given functionals. In solving this difficult problem, Morse 
inequalities6-S can be successfully used. Morse inequalities 
imply constraints on the stable and unstable critical mani­
folds, imposed by the topology of the spaces on which the 
variational problems are considered. Morse inequalities 
have been applied to classical mechanics,9 the Hartree--Fock 
problem,lo,l1 and in connection with supersymmetry theor­
ies. 12 The extended Morse inequalities have been used in 
connection with the symmetry breaking phenomena for a 
Lie group of symmetry for Higgs-Landau systems. 13 Atiyah 
and Bott have applied Morse theory to determine the mani­
fold of minima for the Yang-Mills functional in the equivar­
iant case for Riemannian surfaces and the gauge group 
U (n ) .7 Another trend of applications of Morse theory in 

v 
mathematical physics is the use of the Lusternick-Schnirel-
man theory (see, e.g., Ref. 14). 

Morse inequalities become equalities for perfect Morse 
functions. The number of critical points of a given index of a 
perfect Morse function is minimal and is a topological invar­
iant (the Betti number) of the manifold on which the vari­
ational problem is based. In the quantum case, many quan­
tum states (e.g., the coherentI5,I6 state manifolds for Lie 
groups of symmetry) are obtained by embedding of some 
symplectic manifolds in Hilbert spaces of state vectors.5,17 
Generally, these manifolds have locally phase space struc­
tures, but do not admit global canonical coordinates. 1.2 
However, the corresponding quantum dynamical problems 

are global analysis problems. The perfect Morse functions 
just provide an economical method for the effective descrip­
tion of the geometry of quantum state manifolds. These 
functions exist only on manifolds that have torsion-free co­
homology groups. 18,19 They provide a cell decomposition of 
the manifold in Morse-Borel cells. 20 

Many authors have been interested in the construction 
of perfect Morse functions. The ideas go back to papers of 
Bott IS,I9 (see also Ref. 21). Let G be a compact connected 
Lie group with Lie algebra g, t a Cartan subalgebra of g, and 
Xeg a regular element such that t equals the centralizer of X. 
Then! O( Y) -oR, f(Z) = <Z,x) is a perfect Morse func­
tion and the number of critical points of f is equal to the 
Euler-Poincare characteristic of t. Here O( Y) = Ad (G) Y, 
Yeg, and < , ) is an Ad-invariant product in g. In our case 
the coherent state manifold is a compact, simply connected 
homogeneous Kahler manifold (Kahlerian C_space22 ) (cf. 
Refs. 1 and 23, see also Sec. III). The fact that these mani­
folds admit perfect Morse functions was proved by BottlS,I9 
(see also references to papers of Borel). Frankel has ex­
tended the results of Bott to some classes of Kahler mani­
folds, not necessarily homogeneous.24 Also Frankel gives ex-

amples of Morse functions for classical groups using the 
trace function25 (see also Refs. 26 and 27). Takeuches has 
studied large classes of real and complex symmetric R­
spaces (in the complex case these are the irreducible Hermi­
tian symmetric spaces) that admit perfect ("economical,,29) 
Morse functions, using (Nagano's) zonal spherical func­
tions. Another idea is to embed the manifolds into suitable 
Euclidean spaces and apply Morse theory to the length func­
tion.27,30 Flag manifolds31-33 are embedded in the projective 
space by means ofPliicker embedding and the perfect Morse 
function on projective space is used. S 

In this paper, perfect Morse functions are constructed 
on coherent state manifolds admitting a Kahlerian C-space 
structure. These functions have the significance of energy 
functions associated to the Hamiltonian. 

Section II comprises elements of Morse theory on a 
manifold of quantum states: Morse inequalities and proper­
ties of perfect Morse functions. 
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In Sec. III, perfect Morse functions are effectively con­
structed as energy functions associated with linear quantum 
systems, described by coherent state manifolds for Lie 
groups of symmetry. The cellular structure of these mani­
folds and the maximal orthonormal systems of coherent vec­
tors are deduced. 

Some applications to the Slater determinant manifold 
are outlined in Sec. IV. The last section is devoted to con­
cluding remarks. 

II. MORSE INEQUALITIES ON A MANIFOLD OF 
QUANTUM STATES 

( 1) The conventional model of quantum mechanics at­
taches to every physical system a complex Hilbert space ,w'. 
To every wave vector ¢JE!JI"* = ,w'\ {a} the state ~ 
= kIP 1I¢J11- 1¢J19? ElR} is associated. The complex projective 

space of states is denoted by ift>. 
Let S:,w'* ..... ift>be the projectionS(¢J) = ~,¢JE!JI"*. The 

unit sphere in ,w'is defined as Y(,w') = {¢JI¢JE!JI"; II¢JII 
=1}. 

Let Q be a C ""-differentiable manifold and let 1]: 

Q ..... Y (,w') be an injective and continuous mapping so that 
each function I"': Q ..... C, I"'(p) = (1/1,1](p», PEQ, 1/1 
EY (,w') is differentiable. Here ( , ) is the symbol of the 
scalar product of ,w'. The manifold M = 1] (Q) is called the 
quantum vector manifold. If the restriction of the projection 
S to M is injective, then M = SCM) is called the quantum 
state manifold. The structure of the differentiable manifold 
is canonically carried from Q onto M and M. 

Differentiable functions! M ..... lR will be studied later. 
As a typical example, functionslA (1/1) = (1/1.A 1/1) will be con­
sidered in Sec. III, where 1/JEM and A is a self-adjoint opera­
tor with M in the domain. 

(2) The Morse inequalities used further will be now 
outlined. CHl,34-36 

Let! M ..... lR be a smooth function on a compact, C "" m­
dimensional manifold M. Let Ctf '" ( I) be the set of critical 
points ofJ, that is, the set of points when dl = O. The Hessian 
H(/) of/becomes a well-defined quadric form on the re­
striction of the tangent bundle of M to Ctf '" ( I). The number 
of negative (resp. 0) eigenvalues of the Hessian matrix at a 
critical point p is called the index of p (resp. the degeneracy 
degree) and is denoted by A p ( I ). The connected submani­
fold N C Ctf '" (I) is called the nondegenerate critical mani­
lold for I if the degeneracy degree of all pEN equals the di­
mension of N. The latter condition means that the restriction 
H N (I) of the Hessian to the normal bundle of N is nonde­
generate. 

A function I on M is called a nondegenerate (Morse) 
lunction in the extended sense if Ctf '" ( I) is a union of nonde­
generate critical manifolds. If N is a nondegenerate critical 
manifold of M, one may choose a subbundle vN (I) on the 
tangent bundle to M restricted to N on which H N (I) is 
negative definite. The fiber dimension of v N (I), denoted by 
A N' is called the index of N, and we say that N is orientable 
alongl if and only if v N (I) is orientable. In the orientable 
case the extended Morse (counting) series for the Morse func­
tion/is defined, relative to a coefficient field K, as 
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Mt(J,K) = '} tANP, (N,K) , 
Ncfr,..(f) 

(2.1) 

whereas in the nonorientable case the field K is 1':2' Here 
Pt (N,K) is the Poincare series for N relative to a coefficient 
field K, 

dimN 

Pt(N,K) = L tibi(N,K), (2.2) 
i=O 

and bi (N,K) is the Betti number relative to a field K, i.e., 
bi(N,K) = dim Hi(N,K), Hi(N,K) being the ith cohomo­
logy group of N with coefficients in the field K. 

For a nondegenerate (Morse) function I in the ex­
tended sense, the Morse inequalities can be written compact­
ly, 

(2.3 ) 

where R (t) is a polynomial with non-negative coefficients. 
Note also that for a nondegenerate Morse function in 

the extended sense, Eq. (2.1) can be put in the form 
m 

M,(J,K) = L tjCj(J,K), (2.4) 
j=O 

Cj(J,K) = L bj_AN(N,K). (2.5) 
NC9ff~(fl 

The Morse inequalities (2.3) can be written 

CA (J,K)-"bA (M,K) , O<A<m, (2.6a) 
A L (-1)A-;Ci(J,K) 

;=0 

A 

-" L (-1)A-;b;(M,K), O<A<m, (2.6b) 
i=O 

m L (_l)m-;C;(J,K) 
;=0 

m 

= L (-l)m-;b;(M,K) =X(M,K), (2.6c) 
;=0 

where X(M,K) = P -I (M,K) denotes the Euler-Poincare 
characteristic of M. 

The Morse function I in the extended sense is perfect 7 

(or economica129
) ifin Eq. (2.3) R(t) =0. From Eqs. (2.6) 

it follows that if all odd coefficients Cj ( I,K) of M t (J,K) 
vanish, I is a perfect Morse function in the extended sense 
(Morse lacunary principle) and Cj (J,K) = bj (M,K). 

When Ctf ",(I) consists of points alone, Eq. (2.5) re­
duces to 

Cj(J,K) =card{pECtf",(/)IAp(/) =j}, 0<.i<m. 
(2.7) 

Note also that the set of Morse functions on a compact 
manifold is an open set, dense in the set of differentiable 
functions on M (relative to the C 2 topology37). 

The existence of perfect Morse funtions on a compact 
manifold has other topological consequences. For example, 
perfect Morse functions can exist only on manifolds that 
have a torsion-free cohomology group. 18,19 

The compact manifolds M appearing in this paper admit 
a Kahlerian C-space structure (cf. Ref. 1, p. 168 and Ref. 
23), so the field K = lR can be used. However, because the 
manifolds here are Hodge, it will be sufficient to take K = Z. 
The existence of perfect Morse functions on Kahler C-spaces 
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is known. 18.19 More precisely, the homogeneous manifold 
G IC( T), where G is a compact, connected, semisimple Lie 
group and C( n the centralizer of a toral subgroup T of G, 
admits perfect Morse functions and also admits a homogen­
eous Kiihler structure.18-20.38 Here we shall present a con­
crete realization of a perfect Morse function in local coordi­
nates, indicating also the globalization for a compact 
manifold of coherent states admitting a Kiihlerian C-space 
structure. Also these manifolds have complex analytic cellu­
lar decomposition in the sense of Morse--Borel, 20.28,39-41 and 
this cell decomposition is the one as the CW complexes, 
identical to the decomposition of certain classical groups like 
the Grassmann manifolds.42 

III. PERFECT MORSE FUNCTIONS ON COMPACT 
MANIFOLDS OF COHERENT STATES 

( 1) Lately, the coherent states have been intensively 
studied. 15,16 Now we shall introduce in a convenient manner 
the strictly necessary elements used in this paper. 

A quantum system with symmetry (in the sense of 
Wigner43 and Bargmann44 ) is characterized by a continuous 
homomorphism iT of a topological group G into a group of 
transformations G of the space K which leaves invariant the 
transition probabilities 

«(iT(g)~,iT(g)¢)) = (~,¢»), geG, ~,~, (3.1) 

where 

(~,¢») = 1I(.611-11I¢'1I-11«(.6,¢,W, ¢,¢'e2*. 

Let ¢oeK be a fixed state. The G orbit containing ¢o' 
M = G¢o = {iT(g)¢olgeG}, (3.2) 

is called the manifold of coherent states, and every ~eM is 
called a coherent state. 

The closed group 

K = {h IheG; iT(h)¢o = ¢o} (3.3) 

is also considered. Then iT(K) is a stationary group of the 
state ¢o and there exists the bijection t: G I K --M, defined by 
t(g') = iT(g)¢o, where g' = gKeG IK. Let the notation 
¢(g') = t(g'). Evidently, t(O') = ¢o, where 0 is the unity 
element of the group G. 

Further, G will be taken as a compact, connected Lie 
group. The fact that rank G = rank K will result in the next 
paragraph from general considerations, when restrictions on 
the fixed state ¢o and representation iT will be imposed. Also, 
further it will result that K is the centralizer of a toral sub­
group of G and, moreover, is connected. The manifold M 
will be endowed with the canonical differentiable (even real 
analytic) structure induced by t from the homogeneous 
space G I K, hence M is a quantum state manifold diffeomor­
phic with G I K. On the other hand, according to a theorem of 
Wigner and Bargmann,43,44 there exists a continuous, uni­
tary representation 1T of the group G onto the complex Hil­
bert space ilt", such that 

-...- -
1T(g)f/! = iT(g)f/!, geG, ¢'e2*. (3.4) 

Then, there exists the cross section 0': M ..... Y (ilt") , 
where 0' is an injective mapping such that 
5(o1¢(g'»)) = ¢(g'), g'eGIK. Let the notations 
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M = O'(M), f/!(g') = o1¢(g'»), f/!o = O'(¢o)' It follows that 
M is a differentiable manifold relative to the structure in­
duced by 0' from M. The manifold M is named a coherent 
vector manifold, and every ¢eM is called a coherent vector. 
However, M is not a submanifold of K. 

Let us also introduce the mapings So: M ..... M and 71: G I 
K ..... M by 50(¢,(g')) = ¢(g') = t(g'), g'eG IK, and 7J(g') 
= O'ot(g') = o1¢(g'») = f/!(g'). Evidently, So, 71, and t 
= 50071 are diffeomorphisms. It follows that the coherent 

state manifold M. the coherent vector manifold M, and the 
homogeneous space GIK are diffeomorphic. It can be noted 
that M is a system of coherent vectors of type (1T,f/!0) in the 
sense ofPerelomovl5 [local sections of the holomorphic line 
bundle 5 -I (M) ..... M]. 

The previous construction is natural from the point of 
view of the interpretation of symmetries in quantum me­
chanics. Moreover, this construction is important for estab­
lishing the global properties of coherent state and coherent 
vector manifolds. 

(2) Further, we need some elements of the theory of 
finite-dimensional representations of compact, connected, 
simply connected Lie groups (see, for example, Ref. 45). 
Because we deal with coset spaces G I K (rank K = rank G), 
there is no loss in generality in assuming that Gis semisimple 
and simply connected (see, e.g., Ref. 46, p. 490). 

Now, let T be a Cartan subgroup of the group G, and 
suppose that f/!o is aj-dominant weight vector relative to the 
representation 1T. Let JYtj denote the complex linear cover­
ing of the manifold M. Let 1Tj denote the restriction of the 
representation 1T to JYtj. Hence 1Tj is a finite-dimensional 
unitary irreducible representation of the group G onto the 
complex linear space JYtj. There exists an isomorphism 1T; of 
the Lie algebra 9 of the group G onto the Lie algebra 1T; (g) of 
the group 1Tj (G) such that 

1T/?) = exp(1T;(X»), Xeg, (3.5) 

where e: g ..... G and exp: 1T; (g) ..... 1Tj (G) are exponential map­
pings. 

Let us also fix a Cartan-Weyl base47 of the complexifica­
tion gC of the Lie algebra g. with elements hi> ea, 1 <i<r, aea, 
where r is the rank of the group G and a is a system of 
nonzero roots satisfying the commutation relations 

[hi>hj ] = 0, [hpea ] = a(h;)ea, 
r 

[ea,e -a] = L a(h; )h;, 
;=1 

[ea,ep] =0, a+PEtau{o}, 
[ea,ep] = Napea+ p, a + pea, 

(3.6a) 

(3.6b) 

(3.6c) 

(3.6d) 

where 1 <,i<j<,r, a,pea, and a(h;), NaP are real structure 
constants (cf. Ref. 47, pp. 166-171). Ifa +P #0, then the 
roots ea , ep are orthogonal relative to the Killing form 
B(',), and the relation a(h) =B(h,ha ), where ha 
= [ea,e -a 1 was taken into account in Eq. (3.6b). The root 

system a is included in the dual t* of the Cartan algebra t of 
T, and by means of the mapping a --ha' a can be embedded 
in t. 

The elements h; (1 <,i<,r) form a base of the complexifi­
cation tC of the Cartan algebra t. 
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Let TI denote the set of simple roots. The simple roots 
can be chosen such that 

aj(hj ) =~ij' ajETI, 1<;, j<r. (3.7) 

Every root aEIl is a linear combination of simple roots 
from TI with integer coefficients of the same sign. If these 
coefficients are non-negative, the root a is called a positive 
root. Let Il+ denote the set of positive roots. 

Let ~ be the fundamental Weyl chamber 

(3.8) 

where the fundamental weights WjEt* verify the relations 

2(wj,aj ) =~ij(aj,aj)' 1<;, j<n. (3.9) 

Here ( . , .) denotes the Euclidean scalar product in t*. 
The representations 1Tj and 1T; can be uniquely extended 

to the group homomorphism trj: G C --+ 1T) ( G C) and, respec­
tively, Lie algebra isomorphism 1Tj': gc-+trj' (gC) by 

trj (ez ) = exp(trj' (Z»), ZEgC
, (3.5') 

where trj' (gC) is the complexification of the Lie algebra 
1T;(g), but G C and 1Tj(GC) denote the complexification of 
the groups G and, respectively, 1Tj (G). Of course, 1Tj (G C) 

and trj' ( gC) are the sets of linear operators on ift"j' Also let 

Hj=trj'(h j), Ea=trj'(ea ), (3.10) 

where 1 <i<n and aEIl. According to the theory of compact 
representations,38 the j-dominant weight can be chosen to 
belong to the Weyl chamber C(j and 

HjtPo = j;tPo, l<i<r, 

E -atPoi=O, aEIl', 

E _ a tPo = 0, aEIl "Il', 

wherej = (jl, ... ,jr)'j; = (Wj>j), i = 1, ... ,r, and 

Il' = {alaEIl; (j,a) <O}. 

(3.11 ) 

(3.12) 

The base of the real Lie algebra 9 [resp. 1T; ( g) ] is made 
of elements ihk' i(ea + e -a), ea - e -a [resp., the anti­
Hermitian operators iHk' i(Ea + E -a), Ea - E -a' 
l<k<r, aEIl]. 

Also, the unitarity of the representation 1Tj implies 

H/ =H;, Ea+ =E_ a , l<i<r, aEIl, (3.13) 

whereA + denotes the adjoint of the operator A. 
Let.p denote the complex Lie algebra with base h;, e _ a' 

1 <i<r, aEIl ,,6.'. The complex Lie subgroup P = eV of the 
group G C is a parabolic group corresponding to the parabolic 
subset - (Il" Il') of Il (cf. Ref. 45, p. 54) (Borel group if 
Il' = - Il+). The representation ir) is irreducible, 
K= Gnp, and 

~ -
P= {gjgEG c; 1Tj(g)f/;o = f/;o}. (3.14) 

It follows that there is a diffeomorphism of homogen­
eous spaces c: G IK-+GcIP, defined by c(gK) = gP, gEG.38 

The following facts are known about the homogeneous space 
G C I P strictly associated to the irreducible representation irj 

of dominant weight j. 1,20.22.38 The space G C I P is algebraic. 
The isotropy group K = Gnp is connected, with the same 
rank as G and it is the centralizer of a torus in G (K is a 
maximal torus if P is a Borel subgroup). The principal bun-
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die P -+ G C --+ Gel P is holomorphic. Details on the geometric 
realization are provided by the Bott-Borel-Weil theorem 
(see, e.g., Ref. 45, p. 201). Following the denomination of 
Wang,22 G C I P is a C-space, endowed with a Kahlerian 
structure. 

Let W(G) denote the Weyl group47 associated with G, 
defined as the quotient W( G) = N( T)/C( n of the norma­
lizer 

N(T) = {glgEG; gTg- 1 = T} (3.15) 

of the Cartan group T by the corresponding centralizer 
C( T) = {glgEG; gt = tg, any tET}. Similarly, W(K) de­
notes the Weyl group associated with the group K. Let 
'i. CN( T) be a set of elements such that the quotient space 
W(G)IW(K) is made of the coset classes (sC(n)W(K), 
sE'i.. Let us define the mappings s: Il ..... Il, for every SE'i., by 

sa (h) = a(s-Ihs), hEt, aEIl. (3.16) 

The action ofSa on an element k of the space generated 
by Il is the reflection 

Sa (k) = k - 2(a,k)al(a,a), (3.17) 

and for every aEIl, there exists {JEll and yeTI such that 
a = sp(y). 

( 3) With the previous facts, the Kahlerian structure of 
the homogeneous space G C I P will be carried onto the mani­
fold M of coherent vectors. Moreover, the Kl:lhlerian struc­
ture of the homogeneous space G C I P will be also transport­
ed onto the homogeneous space G IK.To get the Kl:lhlerian 
structure on G C I P, here we use local coordinates. The effec­
tive construction of a Kahler metric on a compact manifold 
of coherent states in the case of nonsingular highest weight 
was pointed out in Ref. 23. The same argument as in Ref. 23 
provides the globalization in the present construction. 

Let us introduce the vectors 

<l>z = exp( L zaE - a) tPo' 
aed' 

(3.18 ) 

tP. = 11<1>.11- 1<1>. = tP(g')EM, (3.19) 

for 

c(g') =exp(L ZaE_a)P, 
ae~' 

(3.20) 

where z belongs to the m-dimensional Euclidean complex 
space cm and 

2m =dimM= dimM=dim GIK= dim GCIP. 
(3.21 ) 

Let the notation 

'Yo = {tPz IZECm
} 

and let us consider the homeomorphism h: 'Yo ..... Cm
, defined 

by h -I (z) = tPz. Let also the notation 'Y. = 1Tj (s) 'Yo and 
hs = h0 1Tj (S) + for every SE'i.. Then ('Ys)",l: is an open, fin­
ite covering of the manifold M, and the collection of local 
charts ('Y s' hs) sel: generates an atlas of a Kahlerian mani­
fold with the fundamental two-form on 'Yo 

W = - i L gap dZa I\azp, 
a,pA 

where 
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(3.22) 

(3.23) 

Note that tl) is nonsingular everywhere. 23 
The Kahlerian structure 01 the manifold M is induced by 

the mapping So onto the coherent state manifold M. 
To every linear operator A on!lij, a function/A : M-C 

can be associated by 

(3.24) 

called the covariant symbol.48 If A is a Hermitian operator 
associated to an observable, then IA is a real function, and 
IA (:;p) can be interpreted as an expectation value of the con­
sidered observable. If H is a Hamiltonian, then/H is called an 
energy function. The manifold M (being Kiihlerian) is, of 
course, also symplectic, hence the symbollA associated to a 
Hermitian operator admits the interpretation of a classical 
observable. 

Let us now introduce the notation 
, 

Aa = L E;a(h;), E = (Ew··,E, )ER'. 
;=1 

(3.25) 

After this long preparation, we are ready to state the 
main theorem of the paper. 

Theorem 1: Let M be the homogeneous compact mani­
fold of coherent states, diffeomorphic with G / K and the 
Kiihlerian C-space GC/P. Here G is a compact, connected, 
simply connected Lie group and K is a closed subgroup 
(connected and rank K = rank G). Then the energy func­
tion/H associated to the Hamiltonian 

, 
H= L E;H;, E= (EI, .. ·,E,)ER', 

;=1 

(3.26) 

is a perfect Morse function in the extended sense. The nonde­
generate critical manifolds of M are described by ifz,c~ 
= ~z,c~' sEl:, where 

(3.27) 

(3.28) 

Every nondegenerate critical manifold has even index 

As,c~ = 2 card{a!aEa", ASa >O}, sEl:. (3.29) 

Moreover, if 
, 

A- = ~ E.s .(h.) =1=0, sEl:, aEa', 
Sa £.J I a, I 

( 3.30) 
;=1 

then the associated energy function IH is a perfect Morse 
function. 

Proof: Let us consider the function! cm 
-+ R defined by 

I(z;i) = (tPz' HtPz)' ZECm
• (3.31) 

The functionl can be put into the form 

ji( _) ~ . ~, aF(z;i) 
z,z = ~ E;]; - ~ AyZy . 

; = 1 )'Ea' azy 
(3.32) 

Indeed, from Eqs. (3.18) and (3.19) it follows that 

I(z;i) = IIct>zll-2(ct>z,HetPo)' (3.33) 

where 
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(3.34) 

But 

He = eL (n!)-I( - adX)nH, (3.35) 
n;>O 

where, taking into account Eqs. (3.26), (3.25), (3.34), 
(3.10), and (3.6a), 

ax 
(ad X)H = [X,H] = L zaAa - , (3.36) 

aEa' aZa 

Equation (3.35) becomes 

H~ = ~H - L zaAae 
aEa' 

(3.38) 

From Eqs. (3.11) and (3.26), 
, 

HtPo= L E;j;tPo, (3.39) 
;=1 

and also 

(3.40) 

Introducing the latter expression in Eq. (3.33) and tak­
ing into account Eq. (3.23), the relation (3.32) is proved. 
Note that if the subspaces generated by E_ a , where aEa' 
and aEa \. a' are Abelian, all terms with n > 1 in Eq. (3.35) 
are 0. This situation corresponds to Hermitian symmetric 
manifolds (cf. Ref. 49, p. 1191). 

The point ZECm is a critical point of the function/if and 
only if 

(3.41) 

Since the fundamental two-form tl) is nondegenerate, the 
matrix r = (gyp)y,{3Ea' is nonsingular. Then Eq. (3.41) is 
equivalent to the conditions 

AyZy = 0, rEa'. 

The manifold of critical points of/is 

~ ",(I) = {ZIZECm
; Zy = 0, yea"}, 

where a /I is given by Eq. (3.28). 

(3.42) 

(3.43 ) 

IfthepointzoE~"'(/), then (3.41) and (3.42) imply 

= =0, a,pEa, ( a2j) (a2j) , 
aZa azp Zo iJZa iJZp Zo 

(3.44) 

(3.45) 

From Eq. (3.45) it results that the positive definite ma­
trix rand the matrix A = (Aa<5a{3 )a,{3Ea' are simultaneously 
diagonalizable. So, the Hessian matrix of the function/inzo, 
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0) + 
W' U , 

(3.46) 

admits A_ (resp. Ao) negative (resp. 0) eigenvalues, where 

A_ = 2 card{rlreA'; Ay>O}, 

Ao = 2 card{rlreA'; Ay = O}, 
(3.47) 

and In denotes the unit matrix of the group GL(n,C) and 
W' denotes the transpose of matrix W. In Eq. (3.46) the 
Hessian is expressed in the real coordinates (Xa, Ya ), where 
Za =xa +iYa' 

(3.48) 

Equations (3.44)-(3.47) imply thatthe Hessian matrix 
(3.48) has the nonzero determinant det(H(f»)a.Pe~· #0, 
hence the manifold (3.43) is a nondegenerate critical mani­
fold. A point (vector) of this manifold has the expression 
(3.27). 

Now, choosingfS =fHoS00 1rj (s)oh -I, se~, it follows 
that the nond:genera~cal manifolds of M for f' are 
described by tIIz.c~ = 1rj (s "'z.c~. Every nondegenerate criti­
cal manifold has even index (3.29). 

It follows that in Eq. (2.1) the fiber of the nondegener­
ate critical manifold has even dimension, and, moreover, the 
coefficients C1 (f) (2.5) are all even, hence the lacunary 
principle of Morse in the extended sense is applicable. 

The first part of Theorem 1 was proved. 
If A' = A", then Zo = 0 is the only critical point of the 

function/. This point is a nondegenerate one and has an even 
index (3.47). 

If the conditions (3.30) are fulfilled, then it results that 
the critical points of the functionfH are the distinct states ijI, 
se~, where VI = 1rj (s)1/1o' Every critical state ijI is nondegen­
erate and has an even index 

As = 2 card{alaeA'; A';: >O}. (3.49) 

Now, the lacunary principle of Morse is applied and the 
Theorem is proved. 

Remark 1: The set of perfect Morse functions is dense in 
the set of energy functions associated to Hamiltonians which 
are linear in HI> i = 1, ... ,r. 

Remark 2: As in the formulation of Bott's theorem21 

presented in the Introduction, Theorem 1 is also true for 
Hamiltonians H such that iH belongs to the Lie algebra 
1r;(g). Note also that the case iHe1r;(g) corresponds to co­
herent state preserving Hamiltonians for semisimple Lie 
groups.41 We also remember that Frankel has proved the 
existence of perfect-Morse functions for linear Hamitonians 
in the generators of the Lie algebra of a group of isometries of 
a compact connected Kahler manifold.24 Here the Kiihler­
ian structure of the compact coherent manifold follows, as 
was already pointed out, from the fact the M is the orbit of 
thej-dominant weight (see also Ref. 1, p. 168). The exis-
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tence of perfect Morse functions on Kiihlerian C-spaces was 
proved by Bott.18.19.21 

Remark 3: The perfect Morse functionfH is related to 
the spherical zonal function used by Takeuchi in the case of 
irreducible symmetric complex and real R-spaces.28 The 
complex R-spaces in the paper28 of Takeuchi are the C­
spaces of Wang. 22 In the complex case, the function ofTa­
keuchi is constructed only for Hermitian symmetric spaces, 
whereas the proof presented here is valid for Kiihlerian C­
spaces. In fact, in the case of complex Grassmann manifold 
Takeuchj29 claims that the economical spherical function 
reduces to the "nice" function (of Hattori), which is a par­
ticular case of the function constructed in Sec. IV [see Eq. 
( 4.11) ]. On the other hand, the proof presented here in the 
case of the compact coherent state manifold is more direct. 

As an application to Theorem 1, a description follows of 
a maximal system of coherent vectors. 

Theorem 2: If Y eM is a maximal orthogonal system of 
coherent vectors, then there exists an element geG such that 

(3.50) 

and the number of vectors in Y is equal to the Euler-Poin­
care characteristic X(M). 

Proof: The perfect Morse function fH appearing in 
Theorem 1 induces a cellular structure onto the manifold of 
coherent states M. For every se~ there exists in the cell rs 
= SoC 'Y.) one and only one critical state ijI of the function 

fH' Observing that {r.} sel: is an open covering of the mani­
fold M, that the group G acts transitively on M, and that 

( 3.51) 

fors,s'e~,zeCm, Eq. (3.50) follows. On the other hand, from 
the Morse equality (2.6c) with all odd Betti numbers equal 
to 0, it can be deduced that ~ and Y have exactly X(M) 
elements. 

IV. APPLICATIONS TO THE MANIFOLD OF SLATER 
DETERMINANTS 

From the preceding section, it can be noted that the 
results outlined there are applicable to large classes of quan­
tum systems with symmetry, where G is compact and rank­
G = rank K, and admit a Kahlerian C-space structure. The 

situation when the manifold M is endowed with a homogen-
eous complex structure includes the Hermitian symmetric 
spaces [in fact, this situation occurs when dim (cen­
ter K) = 1, and there are only two invariant structures (see, 
e.g., Ref. 46, p. 505). This situation also corresponds exactly 
to the case when the subspaces generated by E _ a' where 
aeA' and aeA "A', both can be chosen as Abelian subalge­
bras of'171" ( ge) .49 

The irreducible Hermitian symmetric spaces (see Ref. 
47, p. 518) appear frequently in different branches ofphys­
ics. For example, SU(p + q)/S(U(p) XU(q») appears in 
connection with Hartree-Fock problems lO or Grassmann 
nonlinear u models,50 SO (2n ) IV (n) is present in fermion 
models16 or in quantum field theoretical models as the 
Gross-Neveu type model,48 SO(p + 2)/SO(p) XSO(2) is 
used in models with spins with SO(p) symmetry,S 1 and 
Sp (n ) IV (n) is the manifold of Lagrangian subspaces of the 
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phase space. 52 Also, Fordy and Kulish have studied the gen­
eralization of nonlinear Schrodinger equation by getting the 
field components to take values in irreducible Hermitian 
symmetric spaces. 53 Here we sketch a short application of 
the general Theorem 1 to the Hartree--Fock case. Details 
will be presented elsewhere. 

The time-dependent variational principle of Hartree-­
Fock is based on the Slater determinant manifold. 54 A geo­
metrical description of this manifold will be achieved by 
means of perfect Morse functions and topological con­
straints onto the energy function will also be established. 

Let us consider a fermion Fock space Jr' with vacuum 
state n. Let ~ denote the linear complex subspace of Jr' 
with a base formed by the n-particle vectors 

ap;ap; "'ap~!l, I<pI <P2'" <Pn<n', (4.1) 

where a/, ap (p = 1, ... ,n') are the usual fermion creation 
and annihilation operators. respectively. 

The Hartree-Fock Hamiltonian is a Hermitian operator 
on Jr'j' realized as a second degree polynomial in bifermion 
operators 

Cpq = a/aq• 1<p. <n'. (4.2) 

From the usual anticommutation relations of the anni­
hilation and creation operators. it follows that 

[Cpq,Cp'q'] = ~qp,Cpq' - ~pq,Cp'q. 1<p. q<n'. (4.3) 

The Lie algebra of anti-Hermitian operators on Jr'j. 
which are linear combinations with complex coefficients 
xpq • xpq = - xqp. of the operators Cpq • is isomorphic with 
the Lie algebra u(n') of the group U(n'). But the group 
U (n') is canonically isomorphic with the product of groups 
U(1) xSU(n'). being. of course. connected. simply con­
nected. Hence it can be chosen that G = SU (n'). Let us also 
fix the initial vector 

Since 

CpqtPo = ~pqtPo. 1 <p.q<n. 

CpqtPo = o. 1<p<n'. n + l<q<n'. 

CpqtPo=l=O. n + 1 <p<n'. l<q<n. 

(4.4) 

(4.5) 

tPo is a vector of dominant weight j = (1 non' - n) of the uni­
tary irreducible representation 1rj ofSU(n') on Jr'j. 

A manifold of coherent states of dimension m 
= 2n(n' - n) is obtained. 

M = {~I~ = ~o; geSU(n')}. (4.6) 

and is diffeomorphic with the complex Grassmann manifold 
Gn (Cn')::::: U(n')!U(n) xU(n' - n).",55 The manifold of 
coherent vectors M is diffeomorphic with M. as in Sec. III. 
Here we introduce the notation 

<l>z = exp( ± i zqpCpq ) tPo. 
p=n+1 q=1 

l: = {aulosS'(n,n')}. (4.7) 

au = (~iU(j) )I<i,j<n" 

wherez = (zpq )n+ 1<P<n,eCn(n'-n) and thesetS(n.n') ofC:' 
I<q<n 

Schubert symbols comprises all permutations u: {l.2 ..... n'} 
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--+ {l.2 ..... n'} with the property that its restrictions to the 
subsets {1,2, ... ,n} and {n + 1 ..... n'} are increasing. The atlas 
of the manifold M is generated by the open covering 
{ru}oeS(n,n'>' where 

ru = {1r/aU)tPzlzecn(n'-n)}. (4.8) 

Here the local coordinate mappings hu: r u --+ cn(n' - n) are 

hu(tPzu) =Z, 1rj (aU) +tPzu = tPz. osS'(n.n'). (4.9) 

The manifold M is called the Slater determinant mani­
fold (in the second quantization). 

According to Theorem 1. the energy function fHo asso­
ciated with the Hamiltonian 

n 

Ho = L CiCiO C1 <C2 < ... <Cn' 
i=1 

is a peT/ect Morse function. 

(4.10) 

By direct calculation 11 it is obtained. for f = fHo 0So 
01r. (aU)oh - 1 

J u , 

f(z) =Tr[(U+zVz+)(ln +ZZ+)-I]. 

U= (Cp~pq)I<P' q<n' (4.11) 

V= (cp~pq)n+ I<p, q<n" 

Then. the function! cn(n' - n) --+ R has a unique critical 
point z = O. This point is nondegenerate. and the Hessian 
matrix has double degenerate eigenvalues: cq - cpo 1<p<n 
<q<n'. 

The critical sets of the energy functionl H consists of the 
critical states ~u(osS'(n.n'»), where 0 

(4.12) 

and the critical state ~ u has the index 

Au = 2 card{(p.q) 11<p<n <q<n'; u(p) >u(q)}. 
(4.13) 

It is funny to recover directly the Betti numbers of the 
manifold M of Slater determinants55 

bu.+, =0. O<A<n(n'-n). 

bu. = card{ (w1 .... ,wneZn+ 10<w I < ... <wn <n' - n; 

WI + W2 + ... + Wn = A}. (4.14) 

and also the Euler-Poincare characteristic X(M) = C:'. 
Remark 4: Observing that the uniparticle states are ei­

genstates with eigenvalues C;o i = 1 ..... n, it can be noted that 
perfect Morse functions are obtained when the uniparticle 
space is nondegenerate. 

Remark 5: Ifthe Hartree-Fock energy functionlH ad­
mits only nondegenerate critical states, then the Morse in­
equalities (2.6) are satisfied. where O<A<m = 2n(n' - n), 
C"t (I) is the number of critical states of index A forlH' and 
the Betti numbers are given by (4.14). The problem of exis­
tence of Hartree--Fock states for Hamiltonians that do not 
have spurious states was analyzed in Ref. 10. The Hamilto­
nians that give the minimum number ofHartree--Fock states 
were effectively constructed here. It can also be shown that if 
the eigenvalues of the uniparticle states Ci are not all distinct, 
then the set of critical states are Grassmann submanifolds of 
the Grassmann manifold. 

Remark 6: Perfect Morse functions of the type (4.11) 
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have been constructed in the mathematical literature for the 
Grassmann manifold (see, e.g., Refs. 31-33, where in the 
last reference, a calculation with components of matrices is 
performed). Note that the proof from Ref. 11 is more direct 
than the proofs of Refs. 32 and 33. Also in the case of Grass­
mann manifolds there are direct proofs that the Morse­
Borel cells are identical to the Schubert cells.40 

v. CONCLUSION AND DISCUSSION 

The Morse inequalities in the classical and extended 
sense have been used for the effective construction of perfect 
Morse functions on a manifold of quantum states and quan­
tum vectors. Actually, the case of a compact Lie group and 
of a compact manifold of coherent states having the struc­
ture of a Kahlerian C-space was considered. It was proved 
that the set of perfect Morse functions is dense in the set of 
energy functions for linear Hamiltonians in the elements of 
the Cartan algebra of the Lie algebra of the representation of 
the considered group, which was chosen compact, connect­
ed, simply connected, and having the same rank as the sta­
tionary group of the manifold of coherent states. By the con­
struction of perfect Morse functions, the cellular 
decomposition of the manifold of coherent states was found. 
For every energy function, the Morse inequalities are satis­
fied, the odd Betti numbers being in this case O. Particularly, 
the energy function admits a number of critical points at 
least equal to the Euler-Poincare characteristic of the mani­
fold of coherent states. It is also proved that the Euler-Poin­
care characteristic is equal to the maximum number of or­
thogonal vectors. The existence of perfect Morse functions 
for Kahler C-spaces is well established. 18,19.21 Here we have 
presented a construction of a perfect Morse function with 
physical significance as an energy function on the manifold 
of compact coherent states, diffeomorphic with Kahlerian 
C-spaces. 

The results obtained permit a correct approach to differ­
ent problems of the classical limit and variational principles 
on manifold of coherent states from the point of view of 
global analysis and geometry. In this context, the cellular 
decomposition of the coherent state manifold induced by the 
perfect Morse functions is useful for solving asymptotical 
problems of actual interest such as the following: the classi­
cal limit of quantum collective models,56,57 liN expansions 
in quantum field theory,48 semiclassical behavior of func­
tional integral based on coherent states, 58 Lagrangian analy­
sis, 59 and the connection between the geometric quantiza­
tion method and the functional integral. 52 
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Exponential time-evolution operator for the time-dependent harmonic 
oscillator 

Francisco M. Fernandez 
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(Received 15 April 1987; accepted for publication 22 july 1987) 

The time-evolution operator for the time-dependent harmonic oscillator H = !{a(t)p2 
+ p(t)q2} is exactly obtained as the exponential of an anti-Hermitian operator. The method is 

based on the equations of motion for the coordinate and momentum operators in the 
Heisenberg representation. The problem is reduced to solving the classical equations of motion. 

I. INTRODUCTION 

The time-dependent Schrodinger equation (units are 
used so that Ii = I), 

i~ U=HU, U(t=O) = 1, (1) at 
can be exactly solved for a number of simple problems. The 
solution is most conveniently written as a product of unitary 
operators. 1.2 However, in some cases it is preferable to look 
for a solution of the form 

U=e- iA
, (2) 

where A is a Hermitian operator. When no exact solution is 
available exponential perturbation theories may be used. 
One of them is the celebrated Magnus expansion3 that en­
ables one to write A as A I + A2 + A3 + .... The conver­
gence of this series was extensively discussed.4-6 

The applicability of the Magnus expansion to spin sys­
tems in periodic magnetic fields was investigated by Fel'd­
mans and Salzman.6 To this end exactly solvable problems 
prove to be very useful. 5 

II. THE TIME-DEPENDENT HARMONIC OSCILLATOR 

The purpose of this paper is to obtain the exponential 
time-evolution operator for the time-dependent harmonic 
oscillator 

(3) 

where a andpare realfunctions oft and [q,p] = i. Since the 
operators 

HI=}p/, H 2=!(qp+pq), H3=!p2, (4) 

span a three-dimensional Lie algebra there is a solution of 
(1) of the form (2) with l 

A = bl (t)HI + b2(t)H2 + b3(t)H3, (5) 

where bj,j = 1,2,3 are real functions of t and bj (0) = o. It 
remains to determine the form of the b's. 

The coordinate and momentum operators in the Heisen­
berg representation q, = U+qU andp, = U+pU, respec­
tively, satisfy 

d d 
-p, = -Pq" -q, =ap,. 
dt dt 

(6) 

Therefore they can be written 

p, = Ppp + Pqq, q, = Qpp + Qqq, (7) 

where the P 's and Q 's obey the classical equations of motion 

d d 
-Pu = -PQu' -Qu =aPu, u =p,q, (8) 
dt dt 

with the boundary conditions Pp (0) = Qq (0) = 1 and 
Pq (0) = Qp (0) = O. Only three of the four P's and Q's are 
independent since [q"p,] = i which leads to PpQq 
- PqQp = 1. 

On using the well-known Baker-Campbell-Hausdortf 
formulas it is not difficult to prove that 

P b -I . P b -I' 
p = cos cu - 2CU sm cu, q = - lCU sm CU, 

Qp = b3cu - I sin cu, Qq = cos cu + b2cu - I sin cu, 
(9) 

wherecu2 = bl b3 - b ~. Whencu2 < Oit is convenient to write 
cu = is, cu- I sin cu = S -I sinh s,andcos cu = cosh s. Clear­
ly, the form of the b 's is completely determined by Eqs. (8) 
and (9) and the problem of finding U is solved. 

Pechukas and Lighe showed that U can also be written 
U = exp(iaIHI)exp(ia2H2)exp(ia3H3), wherea l = PqlQq, 
a2 = -! In Qq' and a3 = - Qp /2Qq. Therefore the results 
of this paper also reveal the quite complex relationship be­
tween the two forms of writing U. 

Apparently, the exponential time-evolution operator 
for the model just discussed was not obtained before. The 
method proposed here can be applied to other problems 
where the Hamiltonian operator can be written as a linear 
combination of the operators in a Lie algebra. Although the 
resulting expressions for U appear to be difficult to disentan­
gle, they may be useful, for instance, in checking the applica­
bility of the Magnus expansion. 2.3 

Spin systems in periodic magnetic fields5
•
6 can be treated 

exactly in the same way if it is taken into account that 

Mx = !(q2 + p2), My = F(q2 _ p2), 

M z = - !i(qp + pq), 
( 10) 

and the Pauli spin matrices U x ' uy' and U z obey the same 
commutation rules. 
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It is shown that the projective symmetries of the polynomial <I> of quadratic 6j coefficients form 
the symmetrical group S6' Nonlinear rational symmetries of <I> are found. Partial 
parametrizations of the zeros of <I> are presented. 

I. INTRODUCTION 

Recently some progress has been made in finding zeros 
of 6j coefficients for the quadratic case. 1.2 Unlike the linear 
case3.4 all solutions are not known. 

In this paper we study the quadratic case from the point 
of view of geometry. All concepts of algebraic geometry used 
in this paper (projective coordinates, multiple points, base 
points, etc.) can be found in Semple and Roth.5 Beyer, 
Louck, and Stein6 have recently found that the polynomial 
of 6j coefficients is invariant under a symmetrical group S6' 
In Sec. II, by studying some geometrical properties of the 
surface associated to the polynomial we also arrive at this 

I 

symmetry group and show moreover that there is no other 
projective symmetry of the polynomial in the quadratic case. 
In Sec. III, we present rational nonlinear symmetries of the 
polynomial that we conjecture to generate an infinite group. 
In Sec. IV, two-dimensional cubic surfaces of zeros are 
found from geometrical considerations. These cubic sur­
faces, like those introduced by Bremner7 for the linear case, 
can be rationally parametrized. However these parametriza­
tions do not provide a complete parametrization ofthe four­
dimensional surface of all zeros. By considering a family of 
cubic surfaces we arrive at a parametrization of a three-di­
mensional subvariety of zeros. 

We take a quadratic 6j coefficient in the form 

{

(T+A + C - 2)/2 

(T+B)/2 

(S+A +B-2)/2 

(S + C)/2 

(S+ T+B+C-4)/2}, 

(S+ T+A -2)/2 

where A, B, C, S, and T are integers :>2. 
This 6j coefficient has exactly three decompositions in 

terms of extremal elements4
: 

(2 - k)e l + (S - k)e2 + (T - k)e3 + (A - 2 + k)e4 

+ (B - 2 + k)e5 + (C - 2 + k)e6 + ke7 , 

with k = 0, 1, or 2 in the notations of Ref. 4. 
The polynomial part of this 6j is given by 

<I> (A ,B,C,s,T) 

=A(A -l)B(B-l)C(C-1) 

+2ABCSTU+S(S-l)T(T-l)U(U-1), (1) 

where 

U=2-A-B-C-S-T. 

Using the notation A (k) = A (A - 1)'" (A - k + 1) 

and considering it as a symbolic exponential we can write 
Eq. (1) as 

<I> = (ABC + STU) (2). 

II. SOME GEOMETRIC PROPERTIES OF THE SURFACE 
4»=0 

We consider A, B, C, S, and Tas belonging to C, the field 
of complex numbers, and view the solutions of <I> = 0 as an 
algebraic surface (which we also call <1» of complex dimen­
sion 4 in the projective space P5(C). More precisely, we in­
troduce the homogenizing coordinate z, and the homogeni­
zation of <1>, which is of degree 6: 

<l>H (A,B,C,S,T,z) = ct>(A /z,B /Z,C /z,S /z,T /Z)Z6. 

The projective coordinates A ,B, C, S, T, z of a point of P 5 (C) 
are defined apart from a multiplicative factor. Points at in­
finity are those for which z = O. 

Let us first study the multiple points of the surface <1>. To 
determine if a point M of the surface <I> is a multiple point we 
proceed in the following way. We take any other point 
Q( =l=M) inP5(C) and parametrize the points oflineMQ as 

R(t)=Mt+Q(1-t) (teC). 

The equation of degree 6 in t 

for M and Q fixed, gives the intersection ofline MQ with the 
surface <1>. The point M is multiple of multiplicity k if t = 0 is 
a root of multiplicity k of q; M.Q (t) = 0 for any point Q. 

The only multiple points of the surface <I> are triple and 
double points. There are 31 triple points, ten of which are at 
infinity (Table I, where the coordinates will be defined a 
little below). We use a notation for the triple points that 
makes easy the description of the system L of lines joining 
these points (Table II). The double points ofct> form a set of 
195 lines that is also the set of lines of types c and d of system 
L. We can classify the triple points of <I> accordingly to the 
type of lines of system L going through them. The triple 
points fall in three classes (Table III) that also correspond to 
the difference of notations of the triple points. 
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TABLE I. The 31 triple points. The indices k, I, m, itake the values 1,2, ... , 
6. Note that there are two notations for the 15 points like TJ2 = T21 and 12 
notations for the ten points at infinity like T123 = T4S6 = T321 = .... 

Number of 
points Notation Coordinates 

6 Tk Xi =8ik , Z= 1 
15 Tkl Xi = ! - 8ik - 811 , Z = 1 

k 01-1 
10 T k1m Xi = ! - 8ik - 811 - 8im , Z = 0 

k 01-1 oI-mol-k 

The six triple points (Tk ) l<k<6 are independent and 
form one of these classes. It is then very natural to introduce 
new projective coordinates (Xi) l<i<6 such that the triple 
point Tk has coordinates Xi = 8i,k' The transformation from 
projective coordinates A. B. C. S. T. U (we use coordinate 
U = 2z - A - B - C - S - T instead of z to make the 
transformation simpler) is given by 

A 0 0 0 XI 

B 0 0 0 0 X 2 

C 1 0 0 0 0 X3 (2) 
S 0 0 0 0 x4 

T 0 0 0 0 Xs 

U 0 0 0 0 

The transformation matrix in (2) has been chosen so 
that its column k represents theA. B. C. S. T. U coordinates 
of the triple point Tk with the determination corresponding 
toz = 1. 

We recall that here. the projective coordinates A. B. C. 
S. T. U. or (Xi) l<i<6 of a given point of pS(IC) are defined 
apart from a multiplicative factor. Thus if we want thatA. B. 
C. S. T. U correspond to our earlier definition ofEq. (1) we 
have to fix this multiplicative factor by z = 1. Since 
z = ~~~ IXi , this condition corresponds to the relation 

6 

CTI = LXi = 1 
i~1 

on the new coordinates. 

(3) 

TABLE II. System L of lines. Classification of the lines joining the triple 
points. 

Type of Number of 
lines lines Lines 

a 30 TkTkl meet cI> only at Tk and Tkl 

b 120 TkTI lines of simple points of cI> 
TklTpq 

c 60 TkTlmTklm lines of double points of cI> 
passing through three 
triple points 

d 135 TklmTpq lines of double points of cI> 
( 01- T k1m Tkl ) passing through two 

Tk1mTpq, triple points 
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TABLE III. Classification of triple points. The three types of points, A, B, 
and Care characterized by different values of the numbers na , nb, n" nd of 
lines of types a, b, c, d of the system L through one triple point (n. + nb 

+ 2nc + nd = 30). 

Type of Number of 
points points Points n. nb nc nd 

A 6 Tk 5 5 10 0 
B 15 Tkl 2 14 4 6 
C 10 T k1m 0 0 6 18 

Transforming polynomial <I> H by Eq. (2) gives. after 
dehomogenizing by CTI = 1 [Eq. (3)], 

(4) 

where 

6 

CTk = L x~. 
i~1 

In this form it is clear that the polynomial <I> is invariant 
under any permutations of the Xi' 

This symmetric group S6 has also been found by Beyer. 
Louck. and Stein6 in a more general setting (for 6j coeffi­
cients of any degree). However. with our approach we can 
now show in addition that there is no other projective sym­
metry of <1>. We intend by projective symmetry a projective 
transformation [in other words. this is a linear transforma­
tion of the (Xi) l<i<6 coordinates] that leaves the surface <I> 
unchanged. 

The system L of lines together with their types (a-d) 
and the triple points together with their classification are. of 
course. invariant under any projective symmetry {} of <1>. By 
considering the triple points of class A of Table III. we see 
that {} permutes the six triple points Tk , 

{)( T k ) = Tu(k)' 

where CT is a permutation of 1 ..... 6. 
Then by considering the lines of types a and c we have 

{)( T kl ) = Tu(k)u(l) and {)( T k1m ) = Tu(k)u(l)u(m)' Since T I • 

T 2 • .... T 6• and Tl2 form a basis of the projective spacePS(IC). 
the transformation {} is entirely determined by {}(T1 ) • .... 

{)( T6 ) and {)( Td. and so by the permutation CT. This shows 
that there is no other projective symmetry than the permuta­
tions of the X k • 

We now mention another remarkable property of the 
surface <I> which will be useful in Sec. IV. The 45 projective 
three-spaces E(kl)(mn) (where k.l. m. n are different integers 
.;;; 6). defined by 

X k +x1 =0. Xm +xn =0. 

are on the surface <1>. Moreover. there is no other projective 
three-space on <1>. Each of these spaces contains ten triple 
points. for example. E( 12) (34) contains the points Ts. T 6 • T 13• 

T 14• T 23• T 24• T 13S' T 136• T I4S ' and T 146• 

Let us point out that 27 of these spaces can be obtained 
at once from Eq. (1). For example. each term of Eq. (1) is 
zero if we set A = S = 0 (giving E(23)(56» or if we set 
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A = S - 1 = 0 (giving E(23)(14) since 1 - A - S = XI + X4 and 
for dehomogenized Xi ). . 

III. THE RATIONAL SYMMETRY .1 OF ell 

Equation ( 1) is invariant under two transformations R 
of coordinates A, B, e, S, T of the form 

R(A,B,e,S,T) = (S,T,e + w,A,B). 

Indeed forming D = q>(A,B,e,S,T) - q>(S,T,e + w,A,B) 
we obtain a polynomial in w of degree 2: 

D = a (w - W J) (w - w2 )· 

But one root of D, WI' corresponds to the permutation A+-+S, 
B~T, e~u, which is an obvious rational symmetry ofEq. 
( 1 ). It results that the symmetry corresponding to the other 
root of D, W 2, is also rational. More precisely we have 

WI =2-A -B-S- T- 2e 

It turns out that the base points consist of the 18 three­
spaces of q> given in Table IV. The neighborhood of a base 
point is transformed by I:. into a line (i.e., when we letA, B, 
e, S, T approach a base point from all directions, the corre­
sponding transforms by I:. tend to points forming a line). The 
neighborhoods of points in E(13)(24) are lines that generate 
E(15)(%) ' so we writel:.N (E(13)(24) ) = E(15)(%)' We have a 
similar property for the 18 three-spaces of base points: 
I:.N (E(Z5)(46) ) = E(13)(25) ' I:.N (E(13)(46) ) = E(13)(46) , ... , 
which is also displayed in Table IV. • 

(c) We know very little about the group of rational sym­
metries generated by I:. and the permutations of the Xi' We 
conjecture that this group is infinite. Calculating orbits of 
1:. 13 = (13) 0 I:. (I:. followed by the permutation of X I and x3) 
in pS(Fp) (the five-dimensional projective space over the 
field Fp of integers modulo a prime number p), we get divi­
sors (the number of points of an orbit) of the order kof 1:.13 if 
this order is finite. By calculating a few orbits we got that if k 
exists, it is a multiple of a very large number ( > 1080). 

IV. SOME CUBICS ON THE SURFACE ell 

If we put S = A and T = Bin Eq. (1) we observe that q> 
factorizes in three linear factors and one cubic factor, 

TABLE IV. The 18 three-spaces of base points of IJ.. Two three-spaces on 
the same line in the first and second columns are exchanged by IJ.N • The 
three-spaces in the third column are self-transformed by IJ.N • 

E(13)(24) E(lS)(46) E(13}(46) 

E(13)(ZS) E(ZS)(46) E(14}(ZS) 

E(Il)(S6) E(23)(46) E(14}(36) 

E(l4)(23) E(l4)(S6) E(1S)(24) 

E(IS}(23) E(24}(S6) E(23)(S6) 

E(1S)(36) E(24)(36) E(ZS}(36) 
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W2 = (1 - A - B - S - T) 

X [(A (2)B(2) - S(2)T(2»/(AB - ST)(2)]. (5) 

We shall denote by I:. the symmetry corresponding to root 
W 2, 

I:.(A,B,e,S,T) = (S,T,e + w2,A,B). 

Some properties of I:. are as follows. 
(a) I:. is an involution, 1:.2 = 1. 

(6) 

(b) The base points of 1:., that is, the points where I:. is 
not defined (giving homogeneous transformed coordinates 
all equal to zero), are the points canceling both the numera­
tor and denominator of Eq. (5). 

The base points can be obtained by making use (for 
k = 2) of the first part of the following identity: 

q> = AB(A + B-1 )FI , 

FJ = e 2 + 2(A + B - 1)e (7) 

- (A -1)(B-l)(2A +2B-l). 

A similar factorization also occurs by setting S = A and 
T=B+ 1, 

q> = AB(A + B)F2 , 

F2 = e 2 + (2B + 1) e (8) 

- (A - I)(B + 1)(2A + 2B - 1). 

The geometrical interpretation of these factorizations is 
very simple. For example, relations S = A and T = B define 
a projective subspace PI of P 5 ( C) of dimension 3. Equation 
( 7) describes the intersection of PI and q>. The factorization 
means that this intersection consists of three planes and one 
cubic surface. The three planes are in fact, the intersections 
of PI with the three-spaces E(23)(56» E( 13)(%)' and E(1S)(24) . 
Similarly, Eq. (8) describes the intersection of the subspace 
Pz (S = A,T = B + 1) with q> that consists of three planes, 
intersections of P2 with the three-spaces E(23)(56) ' E(13)(25) ' 
and E(15)(36) ' and of the cubic surface F2 (we also denote by 
F2 the surface of P2 defined by the equation F2 = 0). 

In P 5 (C) the intersection of two projective subspaces of 
dimension 3 is, in general, a line. So the intersections of a 
generic projective subspace P of dimension 3 with the spaces 
E(kl)(mn) consist oflines.1t is only for particular positions of 
P that some of the intersections of P with E(kl) (mn) become 
planes giving a factorization oflinear factors in the equation 
of the intersection. It happens that there is an interesting 
family of such three-spaces: 

P
a 

{XI + X 2 + X3 + X 4 - a(x I + x 2 ) = 0, (9) 
X 2 + X 4 + a(x3 + xs) = o. 

The space Pa intersects each of the spaces E(12)(34) ' 
E(13)(25)' andE(24)(36) along a plane. We can take any value 
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for a, excepted a = 0 for which Pa coincides with E(l3)(24) , 
and a = I forwhichPa coincides withE(34)(2s)' Algebraical­
ly we use the projective coordinates u, v, w, and z of Pa : 

XI =u-v, 

X 2 =v, 

X3 = (a - l)u + v - w, 

X4 = -v+w, 

Xs = (I - a)u - v + (I - 1Ia)w, 

X6= -u+v- (1-1Ia)w+z. 

Substituting into 4>, we obtain a factorization of the 
form 

4> = uv(au - v)Fa , 

where Fa describes a cubic surface. Rather than writing the 
complicated expression of Fa in terms of u, v, w, and z we use 
the classical theory as exposed in Chap. VII of Semple and 
RothS to obtain a simpler form. The cubic Fa has one double 
point only when a = - I,!, or 2. For these values of a, there 
is a permutation of the X; coordinates such that the space Pa 

and the cubic Fa coincide with the space P2 and the cubic F2 
of Eq. (8), respectively. For other values of a, Fa has no 
double point and possesses a system of 27 lines that are ra­
tional in a. There are 45 tritangent planes that are also ra­
tional in a and cut the cubic along three lines. The method 
for simplifying the equation of the cubic consists in finding a 
pair of associated Steiner trihedrals. This is two sets 
(XI,x2,x3)' (YI,Y2,Y3) of three tritangent planes (of equa­
tions XI = 0, X2 = 0, ... ) such that the mutual intersections 
as shown in the array 

are nine different lines 11, ... ,19 of the cubic Fa' There are 120 
such pairs of Steiner trihedrals, but it is enough to find one of 
these. It is then possible to choose XI' X 2, X 3 , Y I, Y2, Y3 such 
that the equation of the cubic takes the form XIX~3 
= YI Y2Y3 and such that the following relation is verified: XI 
+ X2 + X3 = YI + Y2 + Y3· Then by setting XI = h + Y3' 

X2 = YI + Y3' X3 = YI + Y2' Y I = - Ys - Y6' Y2 = - Y4 
- Y6' Y3 = - Y4 - Ys the equation of the cubic can be writ­

ten as 

o h + Y3 Ys + Y6 
det Y4 + Y6 0 YI + Y3 = 0 ( 10) 

YI + Y2 Y4 + Ys 0 

or as 

(11 ) 

Carrying out these calculations, we obtained that a pos­
sible choice for they; is given by 

YI = - (a - l)a2u + (a - I )aw 

+ (a3 _ a2/2 - 3a/2 + 1I2)z, 
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Y2 = - (a - 1)2au + (a - 1)2w 

+ (a3 - 5a2/2 + a/2 + 1I2)z, 

Y3 = (a - l)a2u - (a - 1)2W 

- (a3 - 3a2/2 + 3a/2 - 1I2)z, 

Y4 = - (a - 1)2au - 2(a - I)av 

+ (a - I)aw + (a2 + a - l)z/2, 

Ys = (a - 1) 2au + 2(a - I)av 

- (a - I)aw - (a2 - 3a + l)z/2, 

Y6 = (a - 1)2au - (a - I)aw 

- (a3 - 3a2/2 - a/2 + 1I2)z. 

These variables are linked by two linear relations: 
6 

LY;=O' 
;=1 

2(a - I )YI - 2aY2 - (a2 - a + 1) (Y4 + Ys) = O. 

(12) 

(13) 

The sum of cubes of Y; is then related to the cubic factor Fa 
by 

6 

L Y; = 3(20 - I) (I - 1Ia)3Fa , 

;=1 

so that for a ~! the equation of the cubic Fa is given by Eq. 
(10) or (11). 

The cubic Fa can be parametrized rationally by homo­
geneous variables b, c, d by solving in terms of u, v, w the set 
of linear equations 

(Y2 + Y3)C + (ys + Y6)d = 0, 

(Y4 + Y6)b 

(Yl + h)b 

+ (YI +Y3)d =0, 

+ (Y4+YS)c =0. 
(14) 

Indeed the equation of the cubic [Eq. (10)] is the result of 
eliminating b, c, and d from Eq. (14), and as shown in Sem­
ple and RothS the correspondence between the projective 
plane b, c, d and the cubic Fa is birational (i.e., bijective and 
rational). 

Dehomogenizing by c = I, for example, and z = 1, we 
obtain six rational functions R; (a,b,c) that give the parame­
trizationx; = R; (a,b,d) of the cubic Fa for fixed a. We omit 
giving the complicated expressions of the R;. We can inter­
pret this result by considering the surface Q ( of dimension 4 ) 
generated by the spaces Pa by varying a. The equation of Q is 
obtained by eliminating a from Eqs. (9), 

(XI + X2 + X3 + X4)(X3 + xs) 

+ (XI + x 2) (x2 + x 4) = 0, 

so that Q is a quadric. The functions R; are thus giving a 
rational parametrization of the intersection of Q and 4> in 
terms of the three independent parameters a, b, and d. 

The cubic FI can be studied by proceeding as in the case 
of cubic Fa. We introduce in this case the followingy/: 

YI= -~, Y2= -A-B-C+ a, 
Y3=A+B+C-~, Y4=B-!, 

Ys = A - !, Y6 = - A - B + ~ , 
which are linked by 
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6 

LYi=O (15) 
i=l 

and 

2Y1 + 3(Y2 + Y3) = O. 

The expression F 1, Eq. (7) then takes the form 

2 6 
F1 =- L Y:. (16) 

3 i=1 
The cubic F1 then can be parametrized by solving Eq. (14). 
This gives, setting d = 1 and c = b 2 - a, a full rational para­
metrization of F1 as 

A = (b 4 + b 2 
- 2b)/2a + a/2 _ b 2

, 

B = (b 2 - a + 1)/2, 

C = (b - 1)A + 1 - (b 2 + b - a)/2. 

In the case of the cubic F2 we define similarly 

Y1 = !, 12 = - B - C - ! , 
Y3 = B + C + a' Y4 = B + ! ' 
Y5 =A -i, Y6= -A -B+!, 

which are linked by 
6 

LYi=O 
i=1 

and 

3Yl + Y4 + Y5 + Y6 = O. 

The expression F 2, Eq. (8), then takes the form 

(17) 

(18) 

2 6 3 
F2 =- L Yi' (19) 

3 i=1 
For the cubic F2 there is a very simple way of obtaining a 
rational parametrization. We have already mentioned that 
F2 has one double point n. It is (A = 1, B = -!, C = 0). 
The line (for fixed a and b the line is parametrized by t), 

A =a(2t-1) + 1, B=t-l, C=b(2t-l), (20) 

intersects F2 twice at n (for t = !) and at another point given 
by 

t = b(b + 1)/a(2a + 1), (21 ) 

as can be verified by substituting Eq. (20) into F2• Equations 
(20) and (21) give a rational parametrization of F2 in terms 
of the two parameters a and b. Let us note that this method 
cannot be applied to F1 or Fa' which have no double points. 

It is clear that Eqs. (18) and (19) describing the cubic 
F2 are invariant in the permutations of the triplet (Y4'Y5'Y6) 
and the pair (12, Y3)' The corresponding symmetry ex­
pressed in terms of A, B, and C is described in Table V. In 
fact, the 12 transformations are the only projective transfor­
mations of P2 that leave F2 invariant. This can be shown by 
considering the system of Steiner trihedrals and the double 
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TABLE V. Symmetries of F2(A,B,C). The cubic polynomial F2 takes the 
same value for the 12 sets of A, B, C. 

A B C 
A B -2B-C-l 
A -A-B A-C-l 
A -A-B A+2B+C 

B+~ A-~ -A -B-C+~ 

B+~ A-~ -A+B+C+~ 

B+~ -A-B A-C-l 

B +~ -A-B A+2B+C 
-A -B+~ A-~ -A-B-C+~ 

-A-B+i A-i -A+B+C+i 
-A -B+~ B -2B-C-l 

-A-B+~ B C 

point of F2 that have to be invariant under any projective 
symmetry. 

Similarly, Eqs. (15) and (16) for the cubic F1 are also 
invariant under the same 12 permutations oftheYi as in the 
case of F2• However unlike the case of F2, the corresponding 
transformations are simply permutations of the Xi coordi­
nates. 

V. CONCLUDING REMARKS 

( 1) It is still an open question whether there exists or 
not a full rational parametrization of the surface cfl (in terms 
offour independent parameters). The parametrizations that 
we have found (in terms of three or two independent param­
eters) really represent a very small part ofthe surface. 

(2) Once a rational parametrization is found, one would 
like to know how to find all the values of the parameters that 
give genuine zeros of 6j, that is, for which the corresponding 
A, B, C, S, T are integers >2. This is, however, a difficult 
problem in itself, even for a simple parametrization like Eqs. 
(20) and (21) for the cubicF2• Indeed, if it is quite easy to 
generate integerA, B, C [for example setting b = a(2a + 1), 
and taking any integer for parameter a, in Eqs. (20) and 
(21) ], it seems difficult to characterize the parameters a and 
b that give integers A, B, C without calculating A, B, and C. 
Note that a and b are not necessarily integers (for example, 
a = i, b = ~ give A = 6, B = 7, C = 25). 
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On discrete SchrOdinger equations and their two-component wave 
equation equivalents 
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An approach to inverse scattering problems for discrete SchrOdinger equations, which are 
discrete three-term recursions, is presented by systematically transforming them into discrete 
two-component wave-propagation equations. The wave-propagation equations permit the 
immediate application of certain computationally efficient and physically insightful "layer­
peeling" algorithms for inverse scattering. The mapping of three-term recursions to two­
component evolution equations is one to many, because the relation between the "potential" 
sequence parametrizing Schrodinger equations and the "reflection coefficient" sequence 
determining local wave interaction is a nonlinear difference equation. This mapping is 
examined in some detail and it is used to study both direct and inverse scattering problems 
associated with discrete Schrodinger equations. 

I. INTRODUCTION 

A highly nonstandard approach to the inverse scatter­
ing problem of quantum mechanics is due to Krein (see, e.g., 
Chadan and Sabatier, I p. 123). It is based on a transforma­
tion of the Schrodinger equation, parametrized by a poten­
tial function P(x), into a two-component system of first­
order differential equations parametrized by a local 
reflectivity function K(x). 

The point of this transformation is that the correspond­
ing inverse scattering problem for the two-component sys­
tem leads to an integral equation (the Krein equation) dif­
ferent from the classical equations due to Gel'fand and 
Levitan and to Marchenko. One can formally show in a rath­
er straightforward way that, to a given one-dimensional sec­
ond-order nonhomogeneous wave equation 

( a a2
) -2 - -2 V(x,t) - P(x) V(x,t) = 0 

ax at 
(1.1 ) 

(which by Fourier transforming w.r.t. the time variable be­
comes a Schrodinger equation), we can associate a two-com­
ponent first-order differential equation [relating right and 
left propagating waves {WR (x,t) , WL (x,t)}] of the follow­
ing form: 

~[WR(X,t)] = [ -a/at 
ax WL (x,t) - K(x) 

-K(X)] [WR(X,t)]. 
a/at WL (x,t) 

( 1.2) 

Indeed, if the reflectivity function K(x) is related to the po­
tential P(x) via the Riccati equation 

-~K(x) +K2(X) =P(x) (1.3) 
dx 

and V(xo,t) = WR (xo,t) + WL (xo,t) at some point xo, it 
follows that 

V(x,t) = WR (x,t) + WL (x,t) (1.4) 

holds everywhere (see Chadan and Sabatier,I Bruckstein 

and Kailath,2 and Bruckstein, Levy, and Kailath3
). Note 

that if one starts with wave-propagation equations as in 
( 1.2), then it is immediate to determine the potential func­
tion of the corresponding second-order (Schrodinger) equa­
tion; however, the reverse mapping is more problematic. 
From ( 1.3) we expect it to be nonunique, since we also need 
an initial condition, say K(xo), in order to determine K(x) 
given the potential P(x). 

Several interesting questions now arise in the context of 
Krein's approach to inverse scattering: For which potentials 
can we find reflectivity functions obeying (1.3)? Are there 
potentials for which the reflectivity function is uniquely de­
termined from the corresponding Riccati equation? Are 
there potentials for which no reflectivity function obeying 
(1.3) exists? The answer obviously depends on the interval 
over which we wish to determine a model as well as on the 
properties of the potential P(x) . If the potential is identically 
o for XE [0,00 ) then reflectivity functions obeying (1.3) are 
of the formK(O)/( 1 - K(O)x), and, to be well defined on the 
positive axis, K(O) can be any negative value. However, had 
we required a solution over the entire real axis, the conclu­
sion would have been that K (x) = 0 is the only one that does 
not blow up at any point. This simple example shows that the 
mapping from potentials to reflectivity functions may some­
times be problematic. 

We shall analyze the problems raised above for a dis­
crete version of the wave (or Schrodinger) equation. Doing 
a straightforward discretization of Eq. (1.1), with both spa­
tial and temporal quantization intervals chosen to have 
length A, one arrives at the equation 

Vex + A,t) + vex - A,t) 

=G(x){D+D-I}V(x,t) +O(A4 ) , (1.5) 

where G(x) is defined as 

G(x) = exp{A2[P(x)/2]} ( 1.6) 

andD acts on time sequences as a A/unit delay operator, i.e., 

DI(t) =f(t - A) and D -If(f) = f(t + A) . (1.7) 

·Presently with the Faculty of Electrical Engineering. Technion, lIT, For details of the discretization see, e.g., Case and Kac.4 If, 
32000, Haifa, Israel. for integer values of n and 1', V(nA,1'A) is rewritten as 
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V(n,1") and all functions of the (discrete) time index are 
replaced by formal two-sided power series in D, i.e., 

f(1")-f(D) = "Lf(1")DT, 
'fEZ 

Eq. (1.5) becomes a discrete wave equation 

V(n + I,D) + V(n - I,D) = G(n){D + D -1}V(n,D) , 

( 1.8) 

which has the form of a "classical" discrete Schrodinger 
equation with eigenvalue U = D + D -I (see, e.g., Case and 
Kac4 and Case5

). Note that by (1.6) the potential sequence 
G(n) is always positive. Since in the continuous case it is 
assumed that P(x) tends to 0 as x goes to infinity (in each 
direction), we have that G(n) tends to 1 as Inl- 00. It is 
usually further assumed that convergence to these limits is 
quite fast, therefore our discussion will often refer to the case 
of G(n) = 1 for Inl exceeding a certain value N. 

We shall also consider here a generalized version of 
(1.8) parametrized by two sequences of numbers 
{F(n),G(n)}, 

F(n) V(n + I,D) + F(n - 1) V(n - I,D) 

= G(n){D + D -1}V(n,D) , ( 1.9) 

where F( n) is never zero and tends to 1 as In 1- 00 • 

Our interest in discrete Schrodinger equations arose 
from recent research on efficient algorithms for solving nest­
ed (linear) systems of equations, or integral equations, re­
cursively for increasing dimensions. Such algorithms pro­
vide lattice filter solutions for linear prediction/estimation 
of stochastic processes and are of crucial importance in digi­
tal signal processing (see, e.g., the discussion in Kailath6 and 
the references therein). It gradually became clear that there 
are close connections between inverse scattering problems 
for transmission-line models and estimation theory, and in 
both fields the problems are solved once one has an algo­
rithm for recursively determining a layered medium, or a 
cascade filter, from impulse responses or equivalent spectral 
data. Moreover, in both fields the solutions may be found 
either by first deriving and solving sets of linear equations 
(or integral equations, in the continuous case) or in a direct 
way, by exploiting the causality of signal propagation and 
structure of the layered medium, i.e., the assumed structure 
of the elementary processors in a cascade filter. This re­
search also showed that the more efficient way of finding the 
solution of inverse scattering problems is via a recursive lay­
er identification and peeling process, in which signals are 
propagated through the already identified layers to provide 
the scattering data for the deeper and yet unidentified layers 
of the medium (see, e.g., Bruckstein, Levy, and Kailath3 and 
Bruckstein and Kailath2,7). It was thus natural to look for 
similar algorithmic solutions to the classical inverse scatter­
ing problem, which starts with the Schrodinger equation as 
the propagation model. This paper shows that, in the dis­
crete case previously analyzed by Case and Kac,4 and Case5

,8 

and several others, direct layer-peeling solutions are always 
possible via a mapping of the Schrodinger equation to a two­
component wave-propagation model, and hence to an equiv­
alent discrete transmission line. The mapping then provides 
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a new algorithmic inverse scattering procedure that does not 
proceed via classical systems of equations (see, e.g., Cases) 
corresponding to the solutions of Gel'fand-Levitan, Mar­
chenko, or Krein (see, e.g., Chadan and Sabatier l

). 

This paper is organized as follows. The next section 
deals with the formal mapping of the discrete Schrodinger 
equation into a two-term wave evolution equation, and 
proves that such a mapping is always possible. In Sec. III we 
then discuss some properties of the mapping between poten­
tials and the reflection coefficients that parametrize two­
term evolution equations. In Sec. IV we deal with direct and 
inverse scattering problems and derive layer-peeling algor­
ithms for inverse scattering based on inverse scattering for 
transmission-line models; an example from Cases is then 
reexamined from this point of view. 

II. FROM THREE-TERM TO TWO-COMPONENT 
EQUATIONS 

Equations (1. 8) and (1. 9) relate discrete functions of 
time, in their formal power series representations, at three 
consecutive points in space. They may be regarded as recur­
sive ways of defining V(n,D), given the "interaction" pa­
rameters {F(' ),G(')} and some initial conditions V(O,D) 
and V( I,D), say. 

Suppose that, over a certain interval in the space coordi­
nate nE[ NL,NR ], we have F(n) = 1 and G(n) = 1. It is 
then straightforward to verify that, over [NL ,NR ], the solu­
tion of the three-term recursion is of the form 

(2.1 ) 

To determine the functions rPR,L (D) we of course need the 
signals V(n,D) at two points in space. In the time domain, 
( 2.1) means that 

V(n,1") = rPR (1" - n) + rPL (1" + n) , (2.2) 

i.e., V(n,1") is a sum of two noninteracting right and left 
propagating waves over nE [ N L ,N R ] • Regarding V( n, 1") as a 
sum of waves propagating in opposite directions can give 
simple physical interpretations to relations induced between 
time signals at various points in space, as a consequence of 
linear and causal wave interaction. One of the major aims of 
this paper is to show that a decomposition of signals V(n,1") 
into interacting waves propagating in opposite directions can 
be done in general: The potential sequences {F(n),G(n)} 
determine the local interactions between the right and left 
propagating wave components of V(n,1") via a local reflec­
tion coefficient sequence {Kn }, corresponding to the contin­
uous reflectivity function. 

To do this, we start by writing, for a general Schrodinger 
equation, that V(n,D) is the sum of two components as fol­
lows: 

[
WR (n,D)] 

V(n,D) = [1 1] W
L 

(n,D) . (2.3) 

Now, since V(n,D) obeys (1.8) or (1.9), we have to deter­
mine a sequence of operators, {E>(n,D)}, that will yield 
wave components at n + 1 from the ones at n, and also en­
sure that (2.3) will hold at all points in space. This sequence 
of 2 X 2 matrix operators will, of course, be determined by 
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the potential sequences, i.e., G(n) and F(n), that parame­
trize the three-term evolution equation. Since we wish to 
consider both forward and backward evolution operators we 
require the 0(n,D) to be invertible for every n. Writing 

[ 
WR (n + I,D)] _ " [WR (n,D)] (2.4) 
WL (n + I,D) - 0(n,D) WL (n,D) , 

some algebra shows that we can determine V( n + I,D) from 
V(n,D) and V(n - I,D) as follows. Here V(n + I,D) is giv­
en by 

V(n + I,D) = [1 1]0(n,D) [ 
WR (n,D)] 
WL(n,D) 

(2.5) 

and using (2.4) and (2.5) we also have 

[ 
V(n,D) ] [ I I ] [WR (n,D)] 

V(n - 1,D) = [I 1]0- I (n - I,D) Wdn,D) . 

(2.6) 

This yields 

[011 (n,D) + 021 (n,D) 012(n,D) + 022 (n,D) ] 

[ 
I I ]-1 

V(n + I,D) = [I 1]0(n,D) [I 1]0- I (n _ I,D) 

[ 
V(n,D) ] 

X V(n _ I,D) , (2.7) 

a three-term recursion for V(n,D) that should be made iden­
tical to (1.9). For this the sequence of matrices 0(n,D) must 
obey 

[I 1][0(n,D)] = [G(n) {D+D-I} _ F(n -1)] 
F(n) F(n) 

X[[I 1]0~1(:-1,D)]' (2.8) 

If we set 

0(n,D) = [011 (n,D) 012(n,D)] 
021 (n,D) 022(n,D) , 

then (2.8) reads 

(2.9) 

[ 

I 
G(n) -I F(n - 1) 

= [F(n) {D+D } - F(n) ] °22(n-I,D)-021(n-I,D) 
det 0( (n - I,D) 

Oll(n - I,D) ~ 012(n - 1,D)j. 
det 0(n - I,D) 

(2.10) 

There are many ways of choosing operator sequences that 
will make (2.1 0) into an identity. We shall be interested, for 
reasons to become clear soon, in nonsingular matrices hav­
ing the following structure: 

0(n,D) = 0 n [~ D °_ 1] 

=Yn[ -~n -~n][~ DO_I]' (2.11 ) 

where we require IKn I =f I, for all n. Thus it will be assumed 
that the propagation operators are composed of a relative 
shift operator, delaying WR (n,D) one unit of time and ad­
vancing WL (n,D) by the same amount, followed by a sym­
metric pure-gain matrix mixing the two sequences, 
DWR (n,D) and D -I WL (n,D), pointwise in time. We as­
sume this form for the operators 0(n,D) because their so­
called scattering domain representation l:.(n,D), relating 
WR (n + I,D) and WL (n,D) to WR (n,D) and 
WL (n + I,D), is then the cascade connection of a causal 
scattering matrix that delays the waves propagating in oppo­
site directions and a wave-interaction matrix that transmits 
part of the signal and reflects part of it adding the reflected 
part to the wave propagating in the opposite direction (see 
Fig. 1). Indeed, writing 

[
WR(n+ I,D)] = l:.(n,D) [ wR(n,D)] (2.12) 

WL (n,D) WL (n + I,D) 

a few steps of algebra show [using (2.11)] that 
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l:.(n,D) = [~ ~] 

[
ern -K~)lIYn 

X K 
n 

-Kn ][D °
1
], 

llYn ° 
(2.13 ) 

(a) 

Yn 
-~ 

FIG. 1. (a) Transmission and (b) scattering representations of wave-prop­
agation operators. 
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The above assumed structure for the signal transfer opera­
tors, and their scattering equivalents, leads to transmission­
line models that are discrete-case analogs of ( 1.2), see, e.g., 

I 

[Yn(1-Kn)D Yn(1-Kn)D- 1] 

Bruckstein and Kailath.7 

Using (2.11) forthe0(n,D) operators (2.lO) becomes 

=[G(n) {D+D-1} _ F(n-1)][D- 1Yn-_11 +~n-.!IKn_1 
F(n) F(n) 1 _ K2 

n-I 

C2.I4) 

and the equation becomes an identity provided 

Yn =F(n)IG(n + 1)(I-K~), (2.l5a) 

(1 +Kn)(1 - Kn_ l ) = F 2 (n)IG(n)G(n + 1) . 

(2.15b) 

Here we have used the fact that delay and advance operators 
commute with scalar gains and have equated the coefficients 
of D and D -I in (2.14). Thus to have that 
V(n,D) = WR (n,D) + WL (n,D), the wave components 
should evolve according to (2.4) with the parameters of the 
symmetric delay-and-interaction operators 0(n,D) being 
determined by (2.15). 

To summarize, suppose that we are dealing with a three­
term recursion (1.9) defined over nE ( - 00, 00 ). Given the 
potential sequences {F(n),G(n)}, we have the following re­
sult: If a sequence Kn can be determined so that it obeys 
(2.I5b) and is, for all n, different in absolute value from 1, 
then we can associate to the three term recursion (1.9) the 
following transmission-line type wave propagation model 

[
WRen + I,D)] 

WLCn + I,D) 

___ F-..:.C--,n )~ __ [1 -Kn] 
GCn+l)(I-K~) -Kn 1 

x[~ o J [WR (n,D)] 
D -I W

L 
(n,D) . 

(2.16) 

We now show that we can always determine infinite se­
quences Kn, so that JKn J =1= 1 for all n, and also satisfying 
(2.I5b ). Let us further analyze the relation (2.15b). Define 
the strictly positive sequence of numbers 

Pn =F2 Cn)IGCn)G(n + 1). (2.17) 

It is clear that the nonlinear difference equation C 2.15b) can 
be read either as a right, or forward propagating recursion, 
yielding Kn from Kn _ 1 , 

(2.18a) 

or as a left, or backward propagation equation, yielding Kn 
fromKn _ l , 

(2.18b) 

To determine a {Kn} sequence, we thus need to choose an 
"anchoring" value at some point, say n = 0, i.e., to set an 
initial condition to the forward and backward recursions 
(2.18). Clearly we need to haveKn different from 1 in abso-
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I 
lute value, since Pn in (2.I5b) is strictly positive. The follow­
ing lemma shows that we can always choose an initial condi­
tion that determines a {K n} sequence that has JK n J =1= 1 for 
all n. 

Lemma: Given an arbitrary sequence of numbers {Pn}, 
Pn > 0 for all nEZ, there exist uncountably many sequences 
{Kn }, such that, for all n, 

C 1 + Kn ) (1 - Kn _ 1 ) = Pn . 

Proof: We shall show that there are uncountably many 
values for Ko for which both forward and backward recur­
sions yield sequences Kn having JKn J =1= 1. The forward re­
cursions will never yield a-I since Pn is always positive, 
however, they cannot be propagated past a point where the 
K-sequence hits a value of 1. The backward recursions never 
hit the value I,however, they may at some point yield a - 1, 
beyond which we cannot proceed. Assume that at all points 
n > 0 we start backward recursions, i.e., (2.18b), with the 
initial value of 1, and at all points n <0 we start forward 
recursions with K n = - 1. We proceed, if it is possible, with 
these recursions until n reaches 0 and exclude the values that 
are attained at this point from the set of possible anchoring 
values for Ko. But, since any real value can be an anchor 
point for Ko and the above described process rules out at 
most countably many of them, it will be possible to find un­
countably many initial values Ko that will yield solutions of 
the nonlinear difference equation (2.15b) on the entire line. 
Hence there always exist infinitely many different {Kn} se­
quences that correspond to any givenpn sequence. Q.E.D. 

We have proved that to any three-term recursion of the 
form (1.9) there correspond many wave propagation mod­
els of the form (2.16). We call these models wave-propaga­
tion equations because, as pointed out above, (2.16) implies 
that the signals WR (n,D) and WL (n,D) may indeed be re­
garded as waves propagating in opposite directions in a 
layered scattering medium that determines their causal in­
teraction. The wave-interaction ~(n,D) show that the medi­
um layers operate causally on the incoming waves WR (n,D) 
and Wdn + I,D) to generate the outgoing waves 
WR (n + I,D) and WL Cn,D). As we see from (2.13) the 
pointwise interaction matrix of the layers' scattering repre­
sentations have as right and left reflection gains Kn and 
- Kn, respectively. This is the reason for calling the Kn's 

local reflection coefficients. 
The causal picture of wave propagation proves to be a 

most intuitive physical interpretation of signal interactions 
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described by the discrete Schrodinger equation: Given a po­
tential sequence {G(n)}, or generally, a pair of sequences 
{F(n),G(n)} we shall investigate the properties ofthe dis­
crete SchrOdinger equation via corresponding reflection co­
efficient sequences {Kn}. 

III. POTENTIALS AND LOCAL REFLECTION 
COEFFICIENTS 

It is usually assumed that the sequences {F(n),G(n)} 
tend to 1 as In 1--+ 00. In this case the corresponding P" se­
quences defined by (2.17) also converge to 1 with increasing 
I n I· We have from the forwards and backwards recursions 
(2.18) that, if Kn tends to a limit, then 

lim Kn = O. (3.1) 
Inl-oo 

However, the convergence of K" to 0 is conditioned on the 
asymptotic behavior of the sequence Pn . From (2.15) we see 
that, in order to have a convergent K" sequence for In 1--+ 00, 

it is necessary that P" - 1 approaches 0 as fast as 
K" -Kn_ 1 -KnKn_1 (=Pn -1),forsomeKn sequence 
convergent to O. It is not difficult to show that a sufficient 
condition for having a convergent K" sequence is that 
~n = 1 -P" approaches o from above, i.e., sothatp" < 1 for 
all n big enough in their absolute value. This means, for ex­
ample, that the potential in Eq. (1.8), G(n), should obey 
G(n)G(n + 1) > 1 foralln, a condition triviallymetifG(n) 
is always greater than 1. 

To avoid dealing with convergence conditions we often 
assume that the potentials are already at their limiting value, 
1, for Inl > No· In this case the iteration ofthe functions 

F,(x) = 1/(I-x) -1 and Fb(x) = 1-1/(I-x) 

(3.2) 

yields K" sequences that converge to 0 as 1/ln I. To see this 
we can either check directly that sequences converging to 0 
as 1/lnl satisfy the recursions induced by (3.2) or transform 
(2.18) into two-component recursions forA" andB", where 

K" =A"/B,, . (3.3 ) 

It is straightforward to show that 

[A,,] = [1 P" -1][A,,_I] 
B" - 1 1 B"_I 

(3.4) 

implying that, for n > 0, A" and Bn are given by 

[An] = .IT [~ Pi - 1] [Ko] . (3.5) 
B" 1=" 1 1 1 

Now if P" = 1 for n > No we obtain 

K" =AN.I- (n-No)ANo +BNo--+O. (3.6) 

and a similar exercise shows that for n --+ - 00, K n also tends 
to zero as 1/( In - Nol). 

Note that if we had F(n) = G(n) = 1 for all neZ, the 
sequences K" that would correspond to an anchoring value 
of Ko would be 

K" = KaI( 1 - nKo) , (3.7) 

the excluded values for Ko being {1/nlneZ}. 
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A. Conditions for losslessness 

Suppose that we can find a sequence Kn corresponding 
to the given potential sequence (s) so that 

IKn 1< 1 for all n . (3.8) 

The evolution equations (2.16) into which the three-term 
recursion ( 1.9) is mapped then yield sequences proportional 
to those provided by the following associated wave equation: 

[ w~ (n + 1,D)] 

Wren + I,D) 

1 [1 
=(1_K~)1/2 -Kn 

[
D 0] [W~ (n,D)] 

X 0 D -I Wr(n,D) . (3.9) 

These equations describe wave propagation on a lossless 
transmission line, as discussed in Bruckstein and Kailath.7 

The interaction (gain) matrices are J lossless in the trans­
mision representation, i.e., 

0* J0* T = J with J = [1 0] 
" n 0 - 1 

(3.10) 

and this implies that they are unitary (lossless) in their scat­
tering representation. 

Let us determine conditions under which a given three­
term recursion may be mapped into a lossless model, with all 
reflection coefficients less than 1 in absolute value. From 
(2.19) we see that necessary conditions for this are 

O<Pn <4 = max{(1 + K" )(1- K n_ I )}. (3.11) 

To obtain sufficient conditions, too, let us study the forward 
and backward recursions providing the {K,,} sequence from 
the anchoring pointKo, say. A simple analysis off unctions of 
the form 

F,(x;p) =p/(1-x) -1 and Fb(x;p) = I-p/(1 +x) 

(3.12) 

shows that, ifp < 1, then F,(x;p) maps the interval ( - 1,0) 
into itself, whereas F b (x;p) maps (0,1) into itself. If we 
therefore ensure thatKI is in ( - 1,0), then Kne( - 1,0) for 
all positive n, and similarly if K -Ie( 0,1) then K" will remain 
in that interval for all n < O. Thus, choosing Ko = 0 [or any 
value in the interval (Po - 1,1 - PI) ], we shall have that 
IK" 1< 1 for all n, providedpn < 1, for all n. This proves that 
a sufficient condition for the three-term recursion (1.9) to cor­
respond to a lossless two-component evolution equation is that 
all the positive values P", defined by (2.17), are less than 1 in 
magnitude. 

In the special case of the three-term recursion (1.8), 
which is parametrized by the single sequence {G(n)}, we 
realize that the above condition for losslessness is satisfied 
automatically provided we have all G(n) > 1. This corre­
sponds to a continuous model for which the potential is al­
ways positive, a well-known condition for the nonexistence 
of so-called "bound-state" solutions for Schrodinger equa­
tions. Losslessness should intuitively correspond to no­
bound-state situations, since bound states correspond to en­
ergy trapped in the medium, which is impossible in lossless 
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media (see, e.g., Ablowitz and Segur9
). 

B. Local mapping between reflection coefficients and 
potentials 

Suppose we are given a local reflection coefficient se­
quence {K n} and we ask for the potential sequences 
{F(n),G(n)}. These sequences should obey 

F 2 (n)/G(n)G(n + 1) =Pn = (1 +Kn)(I- K n_l) 

(3.13 ) 

and they are not uniquely determined by (3.13). If F( n) = 1 
for all n and G • (n) obeys the relation (3.13), then clearly 
G (n) = G • (n ) Z (-I). is another valid potential sequence for 
any Z #0. To determine the potential sequence uniquely we 
need to anchor it at a given point, say n = O. Suppose, how­
ever, that we wish to have a local functional dependence of 
the potentials on the reflection coefficients. If we try to set 
G(n) = r(Kn _ I ), then we see that it is necessary for F(n) 
to be different from 1. Writing (3.13) out in terms of the 
r(Kn) we obtain 

F 2 (n) = (1 +Kn)r(Kn)(I-Kn_1 )r(Kn _ I ). 

(3.14) 

Requiring further F(n) to be independent of Kn _ 1 leads to 

r(Kn_ l ) = G(n) = 1/(1-Kn_ l ) 

and (3.15) 

F(n) = [(1 +Kn)/(1-Kn>1 -1/2 

and we see that, to have positive G(n) and real F(n), it is 
necessary for all Kn to be less than unity in magnitude. In 
this case the evolution equations (2.16) become identical to 
the lossless propagation model (3.9). Three-term recursions 
having F( n) and G (n) given by (3.15) were first derived in 
(Bruckstein and Kailath2

) from the corresponding 10ss1ess 
two-component equations as recursions that describe the 
evolution of the voltage on a transmission line with piecewise 
constant impedance function. The associated current signals 
are defined as [(n,D) = WR (n,D) - WL (n,D), and obey a 
complementary pair of three-term recursions, with G(n) re­
placedbyG(n) = 1/[1 +Kn]· 

We note that associated wave difference or current vari­
ables can be defined for arbitrary three-term recursions and 
then we can write that 

[
V(n,D)] = [1 
[(n,D) 1 

1][WR (n,D)] 
- 1 WL(n,D) 

(3.16 ) 

and we readily obtain two-component evolution equations of 
the following form: 

[ V(n+l'D)]=~[1 1] 
[(n + 1,D) 2 1 - 1 

X0(n,D)[~ 1][V(n,D)] . 
- 1 [(n,D) 

(3.17) 

After some simple algebraic manipulation these equations 
can be put in the form 
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[
V(n+l,D)] 
[(n + 1,D) 

F(n) [1 
= 2G(n + 1) [1 + Kn] 0 

[
D +D -I D -D -1][V(n,D)] 

X D-D-I D+D- 1 [(n,D) . 
(3.18 ) 

This form of two-component equations associated to a trans­
mission-line model was recently found useful in deriving 
new and computationally efficient algorithms for matrix fac­
torization and estimation applications. It turns out that, by 
parametrizing the media in terms of 
A.n = (1 + Kn )/(1 - K n ), these algorithms require about 
half the number of multiplications when compared to con­
ventional transmission line based algorithms see, e.g., Bis­
tritz, Lev-Ari, and Kailath. 1O 

IV. DIRECT AND INVERSE SCATTERING PROBLEMS 

Up to this point we discussed the basic three-term recur­
sions (1.18) and (1.9) and showed that we can always asso­
ciate to them two-component propagation equations of the 
form (2.16) or (3.18). The basic three-term recursions 
(1.9) can be written out in the space-time coordinates (n,r) 
as a second-order system of partial linear difference equa­
tions (see, e.g., Fort,l1) 

(a) 

TIME(t ) 

, 
(o.o~ 

dolo 

(b) 

TIME(!) 

I-r- d elermined ralues of 
Vln,lI 

(n ) SPACE 

m recursive forwardprapoqalion 
diagram 

(n)sPACE 

FIG. 2. (a) Computable regions of V(n,1") from given sequences, and (b) a 
diagram of in1Iuence propagation from a certain data point. 
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ar (n,r) V(n + 1,r) + aJ (n,r) V(n - 1,r) 

+ au (n,r) V(n,r + 1) + ad (n,r) V(n,r - 1) 

+ ac (n,r) V(n,r) = 0 , 

where 

ar(n,r) =F(n + 1), aJ(n,r) =F(n), 

au (n,r) = ad (n,r) = - G(n), ac (n,r) = 0 . 

(4.1 ) 

(4.2) 

Notice that the a ... (n,r) are independent of the time index r, 
which made possible the transform analysis, i.e., the repre­
sentation of ( 4.1) as a recursion relating formal power series 
via three-term propagation equations having constants or 
time-delay/advance operators as coefficients. 

To determine V(n,r) from (4.1), or the three-term re­
cursions (1.9), we need to be given two initial condition 
sequences, say V(O,r) and V( 1,r), or in general any pair 
V(m,r) V(m + 1,r). Then we can forwards or backwards 

propagate the three-term recursion to obtain the time se­
quence V(n,r) at any point in space n. Furthermore, the 
sequence at V(n,r) depends linearly on the initial given ini­
tial sequences. To analyze graphically the influence propa­
gation of given data sequences we can plot space-time dia­
grams as depicted in Fig. 2. We see in these diagrams that 
given a contiguous portion of the data sequences, it will be 
possible to determine V(n,r) in a certain influence region 
that can readily be mapped. 

If we pass to the equivalent two-component domain, 
where we are given interlocked recursions for the right and 
left propagating signals then we need as initial conditions the 
two wave components at a certain point in space, say 
WR (m,r) and WL (m,r). The waves at any point in space 
will obviously be given by (in the transform domain), 

[ 
WR (n,D)] [WR (m,D)] 
W

L 
(n,D) = M(m:n,D) W

L 
(m,D) , (4.3) 

where the operator M(m:n,D) is given by 

(

[ M~ (D)] = i=V-l 
F(i) [1 

G(i+1)[l-K7] -Ki 
if n>m, 

M(m:n,D) = 
n G(i+1) [D- 1 

[M;:'(D)] -I = IT 
i=m-I F(i) 0 ~][;i 

(4.4) 

Given a legal choice of "anchor" value for the reflection coefficient sequence, at m, 
{V(m,D),V(m + 1,D)}, we can determine the wave components {WR (m,D),WL (m,D)} from 

K m , and the data pair 

WR (m,D) + WL (m,D) = V(m,D) , 

{F(m)/G(m + 1) [1 + Km]} (DWR (m,D) + D -I WL (m,D») = V(m + I,D) , 

i.e., we have 

( 4.5) 

[ 
WR (m,D)] [ V(m,D) ] 

=E(m,D) 
WL (m,D) V(m + I,D) 

[ 

1 

= F(m) D 

G(m + 1) [1 + Km ] 

Now to determine V(n,D) for any n we can write that 

V(n,D) = [1 1] [;: ~:~~] 

[ 
V(m,D) ] 

= [1 1 ]M(m:n,D)E(m,D) V(m + I,D) 

(4.7) 

and, since the choice of the reflection coefficient sequence, 
and thus of K m , clearly does not enter in the determination of 
V(n,D) from the initial conditions {V(m,D),V(m + I,D)}, 
we have that the row vectors 

[<I>(m:n,D)'I'(m:n,D)] = [1 1 ]Mm:n (D)E(m,D) 

(4.8) 

are independent of K m' and in fact of the two-component 
medium altogether. 

We have shown that there exist transfer functions relat-
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(4.6) 

ing the initial conditions to the signals at any point in space, 
and they are seen to have a very special structure. Let us 
analyze further the properties of these transfer (Green's) 
functions. 

A. Transfer function properties 

Let us first analyze the transfer matrices M~ (D), for 
m < n. We have by the definition (4.4) that 

m 

M~ (D) = IT 0(i,D) 
i=n-l 

= [[M~ (D)] 11 

[M~(D)]21 

[M~(D)]12] 
[M~(D)h2 

(4.9) 

and from the symmetry and invertibility of the elementary 
layer transfer functions, we obtain that M ~ (D) is invertible 
and obeys 
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- - - [0 1M':,. (D)1 = M':,. (D -I) with 1 = 1 ~]. (4.10) 

Furthermore, the entries of M':,. (D) are polynomials in D 
and D -I of degree not more than n - m. The determinant of 
the matrix operator M':,. (D) is given by the product of the 
determinants of the ® U,D) appearing in (4.9). We have 

det{®U,D)} = FU)2/GU + 1)2[1- Kn (4.11) 

yielding 

det{M" (D)} = "n-I 
FU)2 

m i=mGU+1)2[I-Kn 

[1-Km _ I ]G(m) =-=-----....;....--
[l-K,,_dG(n) 

(4.12) 

Note that det{ M':,. (D)} approaches 1 as m -+ - 00 and 
n -+ + 00, if the potentials approach 1 as the space index 
increases. Equation (4.12) also shows that the inverse of the 
transfer matrix from m to n is given by 

[M':,.(D)r l 

[1- K,,_ dG(n) 
=-=---~~--

[1-Km-d G(m) 

[ 
[M':,. (D) h2 

X -[M':,.(D)]21 

[1-K,,-1 ]G(n) 

[1-Km- 1 ]G(m) 

[ 
[ M ':,. (D -I) ] 11 

X _ [M':,.(D) hI 

- [M':,. (D)] 12] 
[M':,. (D)] 11 

- [M':,. (D)] 12] 
[M':,. (D -1>]22 . 

(4.13) 

Finally, we shall note that the matrices M':,. (D), when for­
mally regarded as functions of a complex variable z = D, 
obey on the unit circle 

[M':,. (e i8
)] J [M':,. (e j8

)] * = det{M':,. (D)} J 

(4.14 ) 

showing that the transfer matrix approaches (as the 
boundaries tend to ± 00) a J-unitary matrix (provided it 
converges, i.e., if its entries have limits as functions of a com­
plex variable z) . 

The transfer matrices M':,. (D) yield the wave variables 
at depth n from those at depth m. It is natural to inquire 
about the relationship between the waves impinging on a 
portion of the medium extending from depth m to depth n 
and the outgoing ones. If the medium is originally at rest, the 
emerging waves are the causally generated response of the 
medium layers, since, as we have seen, the scattering descrip­
tions of elementary medium layers are the causal, linear and 
time-invariant operators (2.13). A few steps of algebra show 
that the scattering representation corresponding to M ':,. (D) 
is 
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s" (D) = 1 
m [M':,.(D)h2 

[ 
det{M':,. (D)} 

X _ [M':,.(D)]21 
[M':,.:D)]12] . 

(4.15) 
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Important properties of the scattering representations 
S':,. (D) are causality, inherited from the causality of elemen­
tary layers the medium is composed of, and asymptotic loss­
lessness due to the J losslessness of the corresponding trans­
fer representation on the unit circle. 

We shall see that the data assumed to be available for 
inverse scattering, a problem that requires the recovery of 
the local parametrization of a scattering medium described 
by either a three-term recursion (or partial difference equa­
tion) or a two-component evolution equation, are signals 
that are causally generated in these media. In the case of the 
wave-propagation description the causality has immediate 
meaning, however, if we are dealing with the V( n,D) signals, 
the concept of a causal signal has to be properly defined. We 
shall show that the Jost solutions as defined in the classical 
theory of inverse scattering (Cases) do indeed correspond to 
causally generated waves in the equivalent wave propagation 
media. 

B. Causal solutions and inverse scattering 

Suppose first that we are dealing with a two-component 
system corresponding to the discrete SchrOdinger equation 
( 1.8), and that we know the medium parametrization up to 
depth m, i.e., we have G(m) and Km _ I' Assume that we are 
also given an input-response pair {WR (m,D), WL (m,D)} at 
m = 0, that is right causal, i.e., we know that the WR1L (n,r) 
were zero prior to the time l' = ° when the first nonzero lag 
of the sequence WR (0,1') is sent into the medium towards 
the right. This implies that WL (0,1') will be the causal re­
sponse elicited by right propagating input signal, and a little 
thought will show that we have, at depth n, 

WR (n,r) = 0, for r<n, 

WL (n,r) = 0, for r<n + 2, 
(4.16) 

simply due to the delay structure of the medium. Also we 
shall have, immediately (see Bruckstein and Kailath7

), that 

WL (n,r = n + 2) = K" WR (n,r = n) . (4.17) 

This observation is the basis of a straightforward inverse 
scattering process that yields the medium parameters from 
the data. Indeed, (4.17) readily yields Ko from the given 
data, then (2.15) provides G ( 1 ) , and then we can use (2.16) 
to determine the sequences {WR (l,D),WL (l,D)}. These 
sequences are a synthesized set of causal scattering data for 
the medium starting at depth 2 and extending to + 00, and 
we can proceed to determine KI and G(2), and so on. We 
thus have an immediate recursive layer-peeling procedure 
that recovers the medium parameters from the scattering 
data. For more detail on such procedures see Bruckstein and 
Kailath.7 We note that the scattering data assumed to be 
available is equivalent to having the left reflection function 
of So', the scattering representation for the medium portion 
extending from 0 to + 00. We have, from the structure of 
the medium, that the nestedness property 

[S,:(D)hl = [S':,.(D>]21 +D 2
(,,-m} 

X {a bilinear function of [S:, (D)] 21} 

(4.18 ) 
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holds, showing that the medium up to depth n can be recov­
ered from the first 2n lags of its impulse response alone. 
There are interesting connections of the above discussed in­
verse scattering method to an algorithm by Schur for testing 
for boundedness inside the unit circle, analytic functions of a 
complex variable (see Schur,2 Kailath,6 and Bruckstein and 
Kailath7

). 

Suppose now that we are dealing with scattering asso­
ciated to the original three-term recursion ( 1.8) , and assume 
that the potential sequence G(n) is different from 1 only 
somewhere between n = 0 and n = N> O. In this case we 
know that solutions of (1.8) in the "outer" regions 
( - 00,0] and [N, + (0), are of the form 
t/JR (O.D)D n + t/JL (O,D)D - n and t/JR (N,D)D n 
+ t/JL (N.D)D n, respectively. Only two of the four 

t/JRIL (O/N.D) functions are independent, and those may be 
determined if we are given the signals V(· ,D) at any two 
points in space. If we consider the Jost-type solution (see 
Cases), for which V J (n.D) = D n for n > N, then it is easy to 
see from the influence propagation diagrams (Fig. 3) that 
we have for all n that 

00 

VJ(n,D) = L DiO(n,i) . ( 4.19) 
i=n 

Since by definition the sequences V J (n.D) obey the recur­
sion (1.8), we readily obtain that the potential can be com­
puted from the function 0 ( " . ) as 

G(n) = O(n - l,n - l)/O(n,n) , (4.20) 

therefore, an inversion algorithm could be based on first de­
termining the kernels 0(','). The classical approach to in­
verse problems was to derive integral/matrix equations re­
lating the kernels O(n,i) to the scattering (or so-called 
spectral) data, and then using (4.20) to recover the poten­
tials. We shall outline here an alternative approach, which 
exploits the structure of the problem directly, and recovers 
the potentials by propagating a nonlinear difference equa­
tion. The insight that yields immediate derivations of these 
results follows from the equivalent two-component evolu­
tion equations that can always be associated to three-term 
Schrodinger recursions. 

The scattering data that we shall assume available are 
the functions t/J~ IL (D) that specify the behavior of V J (n.D) 
in the region ( - 00 ,0]. First let us see what is the meaning 
of a Jost-type solution in the equivalent wave propagation 
representation. We have at depth n >N, that V(n,D) = D n 

and also that V(n + I,D) = D n + I, and using (4.6) we ob­
tain 

WR(n.D) =Dn{I_ [1 +K,,]D2} 

xU +D2+D4+D6+ ... }, (4.21 ) 

where Kn is the local reflection coefficient at depth n in some 
equivalent two-component model, and the formal expansion 
11(1- D2) = 1 +D2 +D4 +D6 + ... was also used. An 
interesting fact becomes clear from this exercise: the waves 
corresponding to the Jost solutions are causal pairs in the 
region n > N. Let us look at what happens at the other edge of 
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the medium, at n = O. Assuming without loss of generality 
that G(O) = 1, we have that VJ(O.D) = t/JR (D) + t/JL (D) 
and VJ( I,D) = t/JR (D)D -I + t/JL (D)D. Using (4.6) 
again we obtain the following expressions for the waves: 

WR(O,D) = 1I(1-K_ 1){t/JR(D)[[1-K_ 1 ] _D2] 

-t/JL(D)K_1}{1 +D2 +D4 +D6 + ... }, 
WL (O,D) = 11(1- K_1){t/JR (D)D 2K_ 1 (4.22) 

+t/JL(D)[I- [1-K_dD2 J) 

xU +D2 +D4 +D6 + ... }. 
It can be seen that, provided t/J L (D) has a D 2 factor and is 
causal, the waves at n = 0 will constitute a causal pair of 
scattering data. It is relatively easy to show, using the struc­
ture of the wave-propagation medium that we shall have a 
causal pair at aU depth n. This follows from the relation 
(4.3) and the form of [M;;'(D)] -I. 

Therefore the Jost solutions are causal, in the sense of 
corresponding to causal waves for any choice of equivalent 
reflection coefficient sequence. The straightforward layer­
peeling algorithm can now be invoked to recover the poten­
tialovertheregion [O,N]. Ifwe would havechosenK_ 1 = 0, 
and assuming that this choice yields a legal two-component 
model, we would have that 

WR (l.D) = t/JR (D) and Wd I,D) = t/JL (D) (4.23) 
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and we could start propagating the layer-peeling algorithm 
on this data. Note that we can never recover both F(n) and 
G(n) in the general equation (1.9) since the recovery ofthe 
local reflection coefficient sequence provides recursions for a 
nonlinear combination of these parameters. Therefore we 
can use this method to recover the parameters of either the 
classical discrete Schrodinger equation (1.8), or ofa variant 
for which only F(n) are different from 1, and there exists a 
mapping between such equations based on a renormaliza­
tion, see, e.g., Case.8 Also it is important to note that if we 
assumed K_I = 0 and the algorithm yields a Kn

c 
= 1 at 

some point, we can continue the medium recovery from this 
point on by recomputing the scattering data under the as­
sumption of another Kn' This can be done by obtaining 
V(nc - I,D) and V(nc - 2,D), say, and recomputing via 
(4.5) the waves with a different Kn

c 
_ I . 

It is clear that if we are given the Jost functions, we can 
obtain alternative causal pairs by assuming that the behavior 
in the region n>Nis VC(n,D) =D n (a causaljunction), 
since this corresponds to convolving the input and output 
waves at n = 0 with the same causal function. Sometimes the 
scattering data is given by an equivalent set of functions, for 
which, at n < 0 we have 

VC(n,D) = D n + s(D)D - n = VJ(n,D)ltPL (O,D) . 

(4.24) 

Here s(D) = [tPL (O,D) ]/[ tPR (O,D)] and we consider its 
causal expansion, starting withD 2, a property inherited from 
tPL (O,D). The pair WR (O,D) = 1 and WL (O,D) = seD) 
form a causal impulse response pair for the scattering medi­
um associated with the Schrodinger equation, having 
K -I = 0 as the "anchor" reflection coefficient and we shall 
be able to recover the sequence G(n) from this data, via layer 
peeling. 

In his paper on one-dimensional inverse scattering 
Cases tests an inversion method, based on the discrete ver­
sion of the classical theory that proceeds via Gel'fand-Levi­
tan or Marchenko systems of equations, on an example that 
corresponds to the following one. Assume s(D) of (4.24) is 
given as 

s(D) =D2{ D2 - ~ _ I} 
(2 -g)D -g 

=(~ -1)D2+C~g - ~)D4 

+ ( (2 - g)2 _ 2 - g)D 6 + .... 
g3 g2 

(4.25) 

Applying the layer-peeling inversion algorithm on the pair 
of sequences {l,s(D)} is seen to yield 

K o="!'-I, KI = (I-g) , 
g - (1- g) +! 

K2 = (I-g) , 
- 2(I-g) +! 

(4.26) 

which provide, via (2.17) and assuming G(n) = 1 for n";;O, 
the potential sequence 

G(1) =g, G(2) = 1, G(3) = 1, (4.27) 
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a result that coincides, up to a shift in space, with that ob­
tained by Case. 5 

v. CONCLUDING REMARKS ON BOUND STATES 

We have presented a rather direct approach to the anal­
ysis of three-term recursions by mapping them into two­
component wave-propagation equations having a certain de­
lay-and-interaction structure. Note that we have assumed 
that the propagating signals are general time sequences and 
used their representation as formal power series, or generat­
ing functions. This immediately puts us into the domain of 
so-called scattering solutions of SchrOdinger equations, 
therefore we did not discuss issues pertaining to the existence 
of so-called bound states. Indeed note that once Eqs. (1.8) or 
(1.9) is written as an eigenvalue problem 

F(n + 1) V(n + 1,..1.) + F(n) V(n - 1,..1.) 

= G(n)UV(n,A.) , (5.1) 

it receives more mathematical content than that implied by 
its interpretation as a wave-propagation equation. The spec­
trum of values for A where solutions exist consists of the 
values A = cos Be [ - 1,1], for which D = e j8, and can have 
the interpretation of a delay operator in the harmonic analy­
sis oftime sequences, but we may also ask what happens for 
values of A. outside the itnerval [ - 1,1]. If a solution to 
(5.1) exists for such a value of A, then we shall have that 
.DeR, i.e., it will be a real value, since 

D+D-I=U (5.2) 

implies that 

D I ,2 =A. ± [A. 2 _ 1]1/2, 

which also shows, incidentally, that DI = D 2- I. 
In our two-component interpretation, the waves then 

disappear in a rather mysterious way and are replaced by 
single values at each point in space (or rather, time se­
quences will be have a constant value at all times). The D 
operators become pure gains, instead of delays, and the solu­
tions of (5.1) effectively become sequences in only the space 
dimension. If we want these sequences to be bounded and 
have finite energy, it turns out that there is only a discrete 
spectrum of values of A for which such solutions exist. Sup­
pose that we have a medium described by a sequence of po­
tentials for which the reflection coefficients are very close to 
zero outside an interval [O,N]. Then we have that M ~ (D) 
describes the interaction of signals that exist at n = 0 and 
those at n = N. In order to have bounded solutions corre­
sponding to some real value D = d; < 1, we need to have, see 
Fig. 4, 

WR (N,d;) #0 and WL (O,d;) #0 (5.3a) 

together with 

WR (O,d;) = 0 and WL (N,d;) = 0 (5.3b) 

proving that in this case we shall have [M ~ (d; ) ] 22 = O. 
Therefore, to have a bound-state solution, [M ~ (D) ] 22 has 
to have zeros inside the unit circle. The alternative analysis 
of dj > 1 leads to the same conclusion, viz. [M ~(D)] II 
needs to have zeros outside the unit circle. This condition 
however implies that the scattering matrix (4.15) has poles 
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FIG. 4. Conditions for the existence of bound states. 

inside the unit circle, which means that, from a system theo­
retical point of view, the wave-scattering system is unstable, 
i.e., some inputs will elicit exponentially growing causal re­
sponses. This did not bother us much, since all along we were 
not concerned with the boundedness of our functions, or 
with the convergence of the generating functions to legal and 
analytic functions in the complex variable D. We, however, 
obtained sufficient conditions under which such problems 
do not arise: indeed it is easy to realize that if the medium can 
be associated to a lossless structure we shall never have 
bound state solutions. Also if we stay in the scattering do­
main and deal with sequences represented by purely formal 
generating functions, we can apply the straightforward 
analysis without any problems. If we want to deal with se­
quences of numbers that are bounded and summable in some 
sense, we should only use inputs that do not excite the unsta-
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ble modes of the scattering medium. These issues underlie 
much of the effort in the rigorous treatment of discrete in­
verse scattering problems, however, we feel that the simpli­
city of the approach outlined in this paper explains the mech­
anism of inverse scattering in a way that most directly 
exploits the wave interaction model assumed. 
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The canonical formalism of thermally dissipative semifree fields in the time-dependent 
situation is presented. The use of thermal covariant derivatives simplifies the formulation 
considerably. With this formalism one can unambiguously obtain the interaction Hamiltonian 
under any thermal situation which together with the free propagator enables perturbative 
calculations to be performed. The "on-shell" renormalization condition in the time-dependent 
case is also discussed. The model of a system with a thermal reservoir illustrates how the 
present formalism works in time-dependent situations. 

I. INTRODUCTION 

Thermo field dynamics (TFD) is a real time quantum 
field theory with thermal degrees of freedom. In a series of 
papers I

-
7 we have been extending TFD to describe any ther­

mal situation, including nonequilibrium phenomena. This 
extended TFD has been shown to be equivalent to the den­
sity matrix formalism with the Liouville equation. I The pur­
pose of this paper is to present this extended TFD in a sys­
tematic form placing a strong emphasis on the time 
dependence of thermal situations. 

Before starting on the extended TFD we summarize 
here the equilibrium TFD8

•
9 that is now well established. 

The basic concepts in equilibrium TFD are the following: (i) 
the doubling of each degree of freedom through the tilde 
conjugation rules, (ii) the thermal Bogoliubov transforma­
tion taking care of the freedom in choice of the temperature, 
and (iii) the total Lagrangian density is given by 

A _ 

!f=!f-!f, (1.1) 

where if is the usual Lagrangian density and Y is obtained 
from if by the tilde conjugation rules. 

According to (i), with an operator A we associate with it 
its tilde conjugate A. The tilde-conjugation rules are sum­
marized in the next section. In TFD, therefore, any field has 
its tilde conjugate, forming a thermal doublet. A similar situ­
ation of the doubling of the degrees of freedom is observed in 
other formulations of real-time quantum field theory at fin­
ite temperature such as the C *-algebraic formalism,1O the 
path-ordering formalism of the Schwinger-Keldysh type, II 

and the superoperator formalism 12 of the Liouville equation. 
The relation between TFD and the C *-algebraic formalism 
was beautifully analyzed by Ojima in Ref. 13. The relation 
between TFD and the path-ordering method was clarified in 
Ref. 14. In the theory of the density matrix there appear 
right- and left-operating operators which form thermal 
doublets and which are called the superoperators. 12 The re­
lationship between the superoperator formalism and TFD 
was given in Ref. 1. Intuitively speaking, the nontilde opera­
tors take care of the usual quantum excitations, while the 
tilde operators describe the thermal excitations. 8 

Since each field is a thermal doublet, there appears a 

mixing of the doublet components through the Bogoliubov 
transformations. In the equilibrium TFD the different 
choices of temperature correspond to different choices of 
these Bogoliubov transformations. Thus we were led to the 
concept (ii), i.e., the thermal Bogoliubov transformation. 

The concept (iii) for the total Lagrangian in TFD ex­
hibits the following beautiful feature ofTFD. Since !f does 

A 

not depend on the temperature, neither does if. The tem-
perature appears only through the thermal Bogoliubov 
transformations. Since these features play a fundamental 
role in the extension ofTFD to nonequilibrium situations let 
us elaborate on them. As is well known the language of quan­
tum field theory has a dual structure.8 The basic entities such 
as the Lagrangian, the Heisenberg equations, and the basic 
canonical commutation relations are expressed in terms of 
the basic fields called the Heisenberg operators, while the 
phenomenological language is constructed in terms of the 
"quasiparticle" operators, which are the particles including 
all the renormalization effects. The state-vector space is the 
Fock space associated with these quasiparticles. When a La­
grangian is given, an essential task in quantum field theory is 
to obtain the expressions for the Heisenberg operators writ­
ten in terms of the quasiparticle operators. This expression, 
which has been frequently called the dynamical map,8 deter­
mines the realization of the Heisenberg operators. The dif­
ferent choices of the thermal Bogoliubov transformation 
correspond to different choices of the realization of the Hei­
senberg operators. Thus concepts (i) and (ii) imply that 
different temperatures correspond to the different realiza­
tion of the Heisenberg operators that are determined by the 
total Lagrangian Y. Since the state-vector space is the Fock 
space associated with the quasi particles, the best choice for 
the unperturbed Hamiltonian is the Hamiltonian of the 
quasiparticles. Denoting the annihilation and creation oper-

- t - t ators by (Sk,Sk) and (S k'S k)' respectively (i.e., 
Sk 10) = tk 10) = 0 and (Ols t = (Olt t = 0 with the ther­
mal vacua 10) and (01, where k represents any quantum 
number), the Fock space is constructed by the cyclic oper­
ation of creation operators on 10) and of annihilation opera­
tors on (01. Denoting the quasiparticle energy by Wk' the 
temporal behavior of the creation and annihilation operators 
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are required to be of the form 

Sk(t) = SkEk(t), ~dt) =~kEr(t) ( 1.2) 

with Ek (t) = exp( - iwkt). Then, the feature (ii) means 
that the oscillator operators (a k (t) ,a k (t)) of the fields are 
related to (s k (t).t k (t») through the Bogoliubov transforma­
tionB, 

[
ak (t)] = B [~k (t) ] 
at<t) s! (t) , 

(1.3 ) 

where B is a 2 X 2 matrix. 
A remarkable fact in equilibrium TFD is that the loop 

corrections to the self-energy of the quasiparticles create an 
imaginary term, making the quasiparticles dissipative 
(spontaneous creation of dissipation). This dissipative be­
havior is caused by the presence of the background tilde field 
whose quanta carry negative energy. The real quanta de­
scribed by the non tilde operators live in a world with the 
background tilde field of negative energy, which easily ab­
sorbs the energy of real quanta and makes them dissipative. 
An essential reason why the quasiparticles easily becQ.me 
dissipative, irrespective of the fact that the Lagrangian.!£ is 
real, is that the quantum field has an infinite number of de­
grees of freedom. When we denote the number of degrees of 
freedom by N, the ( 1/ N) expansion provides us with a clear 
picture for the spontaneous creation of dissipation. The lead­
ing term in the (1/N) expansion exhibits the dissipative be­
havior. Since the Lagrangian is real when N is finite the dissi­
pative behavior disappears when all of the terms in the (1/ 
N) expansion are summed up. However, when N is infinite 
and only the leading term in the expansion is picked up, the 
dissipative behavior may arise from a real Lagrangian. This 
consideration will be explicitly demonstrated in the analysis 
of the reservoir model in Sec. V. The appearance of a dissipa­
tive effect in the equilibrium situation is not surprising. Al­
though the equilibrium situation is stationary, a short-time 
measurement induces excited states which approach the 
ground state dissipatively. Thus although the thermal aver­
age of the observable is independent of time, the dissipative 
effect appears in the multipoint functions such as Green's 
functions and correlation functions. 

The same dissipative effect becomes apparent even in 
the thermal average of observables when the thermal situa­
tion becomes nonstationary. Even a brief consideration2 of a 
time-dependent transition between a disordered state and an 
ordered state indicates that the renormalization effects due 
to loop corrections become dependent on time, making most 
of the physical quantities (such as energy, order parameter, 
dissipative coefficient, particle number, etc.) dependent on 
time. This analysis also indicated a need for time-dependent 
renormalization.2 This motivates us to extend TFD to time­
dependent nonequilibrium phenomena. 

The task of extending TFD began with the construction 
of the Hamiltonian for dissipative quasiparticle. 1,2,4 The idea 
is that once this Hamiltonian, say n°, becomes known the 

"- "- "-
interaction Hamiltonian is given by H - HO, where H is the 
Hamiltonian obtained from the total Lagrangian :?l. This 
provides us with the Feynman-diagram method for compu­
tation. In the density matrix formalism the description of an 
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open system in terms of quasiparticles was obtained by elimi­
nating the variables of the reservoir through the coarse 
graining process. Our first approach 1 was to reformulate this 
coarse graining process in terms of the TFD formalism. In 
Ref. 3 this approach was reformulated in terms of the 
Green's function formalism and the result was compared 
with the path-ordering method. Our next step, made in Ref. 
4, was to construct n ° by making the so-called thermal state 
condition time dependent [this is equivalent to making the 
thermal Bogoliubov transformation (1.3) dependent on 
time]. It turned out that the n° thus obtained depends on 

"-
time explicitly. A remarkable fact is that this HO at the long-
time limit (t-+ (0) coincides with n° obtained from the 
coarse graining process. Another significant point in the 
analysis in Ref. 4 was to point out that the spontaneous cre­
ation of dissipation can be formulated in terms of the renor­
malization technique. The basic idea here is that since the 
unperturbed quasiparticles include all of the self-energy cor­
rections, and since the self-energy corrections frequently 
make quasiparticles dissipative, the unperturbed Hamilto­
nian contains dissipative terms. Thus we are led to the self­
consistent renormalization condition which states that the 
interaction Hamiltonian (n - no) should not create any 
on-shell self-energy. Since the on-shell self-energy is a 2 X 2 
thermal matrix this condition gives four complex equations, 
which are equivalent to eight real equations. Although not 
all of these equations may be independent of each other, this 
condition does contain more information than the energy W k 

and the dissipative coefficient K k • However, the precise for­
mulation of the self-consistent renormalization condition re­
quired more analysis and was not presented in Ref. 4. To 
learn more from this formalism in Ref. 4 we applied it to two 
models in the stationary case in Ref. 5, one of which was an 
exactly solvable reservoir model. Since TFD treats the reser­
voir as a part of the quantum field system we do not need to 
eliminate the reservoir variables. This analysis clearly exhib­
its the previously mentioned argument based on the (1/ N) 

expansion with the limit N -+ 00. The other model was a real 
scalar field model without a reservoir. Since, as was pointed 
out above, TFD treats a reservoir as a part of a quantum field 
system, it is readily applicable to any quantum field system 
without any reservoir. Here it is important to note that a 
quantum field has an infinite number of degrees of freedom 
as the reservoir does and also that a stochastic effect is 
caused by the background tilde field, which has negative 
energy. In any application of the formalism to a quantum 
field system it is important to put the theory of dissipative 
quasiparticle in the canonical form. This was done in Ref. 6. 
However, this just dealt with the stationary case. 

With all of the results mentioned above, we are now 
ready to put the foundations of nonequilibrium TFD in a 
systematic form. This is the purpose of this paper. The exact­
ly solvable reservoir model in a time-dependent situation 
will be treated as an example. The foundations of nonequilib­
rium TFD are the previously-mentioned basic concepts, (i), 
(ii), and (iii). We now state that any (even time-dependent) 
Bogoliubov transformation, which is consistent with other 
basic concepts, is permitted and that the entire set of the 
Bogoliubov transformations cover all possible thermal phe-
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nomena. In other words, the general TFD considers all pos­
sible realizat~ns of the Heisenberg fields controlled by the 
Lagrangian !f. In the equilibrium TFD we considered only 
a particular set of Bogoliubov transformations. To cover the 
time-dependent phenomena, we consider time-dependent 
Bogoliubov transformation. Furthermore, since the quasi­
particle is dissipative we might assume that E k (t) in ( 1.2) is 
exp( - iWk t - K k t) with unknown parameters Wk and K k' 
However, we find that when a time-dependent thermal situa­
tion is considered the higher-order loop corrections may 
make Wk and Kk dependent on time. We thus state that the 
dissipative quasiparticles are defined by (Sk(t),S Ut)) with 

Edt) =exp[f ds{ -iwk(s) -Kk(S)}]. 

This dissipative quasiparticle is called the "semifree" quasi­
particle. The appearance of Kk in Ek (t) and the time-depen­
dent Bogoliubov transformation are the basic features in the 
extended TFD. Our unperturbed particles are the fully re­
normalized semifree quasiparticles. Since these particles are 
fully renormalized the interaction Hamiltonian (which con­
tains the renormalization counter terms) should not create 
anyon-shell correction. This leads to the self-consistent re­
normalization condition which, in general, depends on time. 
. The extended TFD distinguishes itself from the eq~lib­

num one by the fact that the unperturbed Hamiltonian H O is 
not the usual free Hamiltonian, but the semifree Hamilto­
nian which has an imaginary term responsible for the dissi­
pative effects. Then we need the full knowledge of the semi­
free field in order to perform a perturbative calculation 
formulated in the terminology of the interaction representa­
tion. We first formulate the extended TFD in terms of the 
oscillator operators a(k) and at (k). It is not an easy task to 
form~late the extended TFD in terms offield operators tfJ(x) 
~d tfJ(x) when the formalism is required to include any 
time-dependent thermal situation. In order to construct 
such a formalism one requires a method simpler and more 
systematic than those that have previously been presented. 
In this paper the formulation of the extended TFD begins 
with the time-dependent Bogoliubov transformation applied 
to a semifree field. This leads us to the thermal covariant 
derivatives that simplify the construction of the extended 
TFD. 

The reconstruction of the generalized semifree oscilla­
tor operators4 is given in Sec. II by use of the thermal covar­
iant derivatives. Then by using the same method we formu­
late a theory of semifree fields which is applicable to 
time-dependent thermal phenomena. Although the use of 
the time-dependent Bogoliubov transformation and the co­
variant derivatives simplified the formulation of semifree 
fields, the consideration in Sec. III is still limited to semifree 
fields of type 1 (i.e., the semifree fields with a positive fre­
quency part only). Study of semifree fields of type 2 (i.e., 
those with both the positive and negative frequency parts) is 
limited to time-independent situations only. This is present­
ed in the Appendix. The works in the past4

•
7 showed that 

there exists a flexibility in the formulation of TFD: TFD 
carries an arbitrary parameter denoted by a. In equilibrium 
TFD it has been shown14 that the freedom in choice of a 
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corresponds to the freedom in choice of path in the path­
ordering method. This might lead us to anticipate that this 
freedom might disappear in nonequilibrium TFD. Contrary 
to this expectation, this freedom remains in non equilibrium 
TFD. This means that the choice of a is not intrinsically 
related to the choice of path in the path-ordering method. 
Furthermore, the consideration in Sec. II will show that the 
formulation ofTFD has a wider choice of arbitrary param­
eters. The entire consideration in this paper is made without 
specifying these parameters. 

Once we have a formulation of the semifree field we try 
to develop the perturbative calculation in the extended TFD 
including the time-dependent situation by using a semifree 
quasiparticle field for the unperturbed field. To do this we 
need the knowledge of the interaction Hamiltonian. A meth­
od for identifying the interaction Hamiltonian is presented 
in Sec. IV. The argument there begins with the fact that the 
TFD LagranS,ian density is given by Jj> = !f - !i' and the 
Hamiltonian H in TFD follows from Jj> through the usual 
route in the canonical theory. The Hamiltonian HOof the 
semifree quasiparticle field is given in Sec. III. Then the in­
~ractio~ Ha~iltonian in the extended TFD is found to be 
Hint =H HO. 

In the perturbative calculation in the extended TFD a 
vital step is the renormalization procedure which leads to a 
set of so-called self-consistent equations.4

,5 The latter equa­
tions determine not only the renormalized energy and the 
dissipative coefficient, but also the temporal behavior of the 
average number density when the initial value of the average 
number density is given. Any renormalization procedure is 
based on the on-shell renormalization condition which is 
associated with the renormalization point. In previous pa­
pers the on-shell renormalization condition has been given 
only for the time-independent case, so in Sec. V we formulate 
the on-shell renormalization condition for time-dependent 
thermal situations. This renormalization method is applied 
to a simple solvable model to illustrate how the energy and 
dissipative coefficients as well as temporal behavior of the 
average number density can be determined. We find a non­
vanishing dissipative coefficient (spontaneous creation of 
dissipation) . 

Section VI is devoted to a brief description of the phys­
ical mechanism for the appearance of the dissipative coeffi­
cient in an isolated quantum field system. There, the impor­
tance of the infinite degrees of freedom and the presence of 
the negative energy background field (tilde quanta) is ex­
plained in terms of the (1/ N)-power expansion method. A 
similarity between the mechanism of spontaneous break­
down of symmetries and the one for spontaneous creation of 
dissipation is also pointed out. A discussion on the relation 
between the spontaneous creation of dissipation and the 
spontaneous breakdown of time-translation symmetry is 
also presented. It will be pointed out what kinds of problems 
still remain in order to complete the extended TFD. 

II. RECONSTRUCTION OF THE GENERAL SEMIFREE 
HAMILTONIAN IN TFD 

We start by introducing certain quasiparticle annihila­
tion and creation operator S (k) and 5 t (k) in the interaction 
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representation with the thermal vacua 10), (01: 

S(k) 10) = 0, 

(Olst(k) = O. 

These operators obey the commutation relation 

[s(k),st(l)]u =8(k-I), 

where the 0' commutator is defined by 

[A,B J u = AB - O'BA, 

(2.1a) 

(2.1b) 

(2.2) 

(2.3) 

with 0' = 1 for boson operators and 0' = - 1 for fermion 
operators. The other commutators vanish. We suppressed 
all indices representing spin and any other internal degrees 
of freedom other than the momentum k. For simplicity we 
will drop the momentum variable in the section below unless 
it is required. 

It is now widely known that in TFD with an operator A 
we associate with it its tilde conjugate A according to the 
rules 

(AB) - = AB, (2.4a) 

(cIA + cJ1) = cTA + c!B (C I,C2 are c numbers), 

(A t) - =A t, 
(A)-=O'A, 

10) - = 10), (01- = (01· 

Taking the tilde conjugate of (2.1) and (2.2) we get 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

~ 10) = 0, (2.5a) 
-t (Ols = 0, (2.5b) 

[~(k),~t(l)]u = 8(k -I). (2.6) 

The O'-commutation relations between tilde and non tilde op­
erators are assumed to vanish. Equations (2.1) and (2.5) are 
called the thermal state conditions. 

For later convenience we introduce the thermal doublet 
notation 

sl'=[~tr tl'=[st-O'~]I' (,u=1,2). (2.7) 

Then we write (2.2) and (2.6) compactly as 

(2.8) 

We now introduce s(t)1' and t(t)1' with the form 

s(t)1' = Eo (t)I'''sv, (2.9a) 

t(t)1' = t vE 0- I (tVI', (2.9b) 

where 

Eo(t) = exp[ - if ds{w(s) - iKo(s)'T3} l (2.10) 

We calls ( t)1' and t ( t)1' the semifree quasiparticle operators. 
Our state vector space, called the thermal space, is the 

linear space spanned by the set of bra and ket state vectors 
that are generated by cyclic operations of the annihilation 
operators S I and t 2 on the thermal vacuum (0 I, and of the 
creation operators S 2 and t I on 10). 

Let us now identify how the quasiparticle creation and 
annihilation operators are related to the variables describing 
a quantum field system. A usual choice for variables is har-

2928 J. Math. Phys., Vol. 28, No. 12, December 1987 

monic oscillator-type operators, a and at, satisfying 
[a(k),at (I) Ju = 8(k -I). In TFD these operators also 
form thermal doublets. Introducing the notations 

a(t) = S a-I(t)aSa (t), (2.11a) 

att(t) =Sa-I(t)atsa(t), (2.11b) 

where the time-translation operator Sa (t) will be specified 
later, the thermal doublets are 

a(t)1' = [a(t) ]1' a(t)1' = [att(t) - O'o(t) ]1'. 
ott(t) , 

(2.12) 

The thermal state conditions for a (t)1' and a (t)1' in TFD (cf. 
Ref. 4) can be rephrased by the statement that these opera­
tors in the interaction representation are related to s(t)1' and 
t(t)1' through a generalized Bogoliubov transformation 

a(t)1' = b -I (t)I'''s(t) v, (2.13a) 

a(t)1' = t(t)Vb(tVI'. (2.13b) 

In this paper we use these as basic relations in TFD, rather 
than the thermal state conditions for a and a. The above 
relations give the commutation relation 

(2.14 ) 

For the consistency of the tilde conjugation rules (2.4) for 
both a and S, we must have 

det b(t) = 1. (2.15) 

The observable average number density n (t) is given in 
terms of a(t) and att (t) by 

n(t) = (Olatt(t)a(t) 10). (2.16) 

Let us express the matrix b by 

b(t) = [b l1 b 12
]. (2.17) 

b21 b22 

Using (2.13) together with (2.9) and considering the defini­
tions of the quasiparticle creation and annihilation opera­
tors, (2.1), (2.2), (2.5), and (2.6), together with theunimo­
dular nature of b, (2.15), we find that 

b l2b21 = O'n(t), 

b l1b22 = 1 + O'n(t). 

(2.18a) 

(2.18b) 

From (2.18) it follows thatthe matrix b(t) contains two free 
parameters. We can therefore write b (t) as 

where 

[
1 + O'n(t) 

Bo(t) = _ 1 
- O'n(t)] 

1 ' 

WL (t) = exp[ 'T3 1n bL (t)], 

WR (t) = exp[ 'T3 1n bR (t)]. 

(2.19) 

(2.20a) 

(2.20b) 

(2.2Oc) 

The two arbitrary parameter bL and bR , which generally 
depend on time and momentum, etc., are related to b21 and 
b22 by 

b i = - b21b22, (2.21a) 

b i = - b21lb22• (2.21b) 

The parameter bR is related to the thermal state condi-
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tions (2.1) and (2.5), rewritten in terms of a(t)/l and a(t)/l, 

[a(t) 1_ F(t)a(t)2] 10) = 0, (2.22a) 

[a(t)2 + F(t)a(t) I] 10) = 0, (2.22b) 

(01 [a(t)1 + uf(t)F- I (t)a(t)2] = 0, 

(01 [a(t)2 - uf(t)F-I(t)a(t) I] = 0, 

where 

f(t) = n(t)/[ 1 + un(t)], 

F(t) = uf(t)b R2(t). 

(2.22c) 

(2.22d) 

(2.23) 

(2.24) 

The tilde conjugation of (2.22a) together with (2.21b) 
shows that F(t), and therefore, bR (t) should be real. Note 
that the parameter b L does not appear in (2.22). In compari­
son with Refs. 4 and 7 we obtain the previous thermal state 
conditions if we choose 

(2.25) 

with 0 ~ a ~ 1. This implies that the arbitrariness of b R in­
cludes the freedom of choice of a in the previous papers.4

,7 

However, the present formulation is wider than the previous 
one since bR and F(t) are quite arbitrary as far as they are 
real. 

On the other hand, the flexibility of choice of b L has not 
been discussed in the previous papers. To take into account 
this flexibility, we introduce 

E(t) = WL (t)Eo(t) 

= exp[ - i f ds{w(s) - iK(S)1'3} ] 

with 

K(t) = Ko(t) - at In bL (t). 

Now (2.13) read as 

a(t)/l =B -I (t)I'PE(t)PV5v, 

a(t)/l = t vE -I (t)VPB(t)P/l, 

with 

B(t) = Bo(t) WR (t). 

(2.26) 

(2.27) 

(2.28) 

(2.29a) 

(2.29b) 

(2.30) 

This motivates us to introduce the thermal covariant deriva­
tives, 

D +(t) =B -1(t)E(t)atE-I(t)B(t), 
~ +-
D + (t) = B -I (t)E(t)atE -1(t)B(t). 

The equations of motion for a (t) and a ( t) are 

iD + (t)/lVa(t) v = 0, 
~ 

;a(t)VD + (t)V/l = O. 

We obtain from (2.31) 

D +(t) = at + i[w(t) - iP(t)], 

D +(t) = at - i[w(t) - iP(t)], 

with 

P(t) = PI (t) + P2(t), 

PI (t) = K(t)A (t) + uiz(t)1'(t), 

P2 (t) = W R I (t)at WR (t), 

= at {In bR (t)}1'3' 
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(2.31a) 

(2.3Ib) 

(2.32a) 

(2.32b) 

(2.33a) 

(2.33b) 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

where the various matrices are defined by 

A(t) = W R I (t)Ao(t) WR (t) = B -1(t)1'~(t), 

Ao(t) = B O-I(t)1'~O(t) 

[ 
1+ 2un(t) 

= 2(1 + un(t») 

1'(t) = W R I (t) 1'0 WR (t), 

1'0= [~ = ~]. 

-2un(t) ] 

- (I + 2un(t») , 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

The equations in (2.32) show that the semifree Hamil­
tonian for a and a is 

'" H~ (t) = a(t)/l[w(t) - iP(t) ]/lVa(t)v. (2.42) 

This Hamiltonian becomes the one given in Ref. 4 when 
(2.25) is assumed. It is easy to prove that H~ (t) is tildian, 

'" - '" [iH~ (t)] = iH~ (t). (2.43) 

We have 

a(t)/l = S a-I(t)a/lSa (t), 

a(t)/l = S a- I (t)a/lSa (t), 

with 
A .""0 A 

atSa (t) = - zH a (t)Sa (t), 

'" Sa (0) = 1. 

(2.44a) 

(2.44b) 

(2.45a) 

(2.45b) 

(2.45c) 

'" The construction of the semifree Hamiltonian H ~ (t) in 
this paper is considerably simpler than the one in the pre­
vious papers. This is because our consideration in this paper 
is based on the existence of quasiparticle creation and anni­
hilation operators which form the thermal doublets 5/l and 
til, and also on the use of the generalized Bogoliubov trans­
formation. In the next two sections we formulate the semi­
free field theory, not in terms of oscillator variables (a,a) but 
in terms of field variables. There we find the thermal covar­
iant derivatives extremely useful. 

III. A GENERAL THEORY FOR SEMIFREE FIELDS 

In this section we formulate the semifree field theory in 
terms of the field variables. Our consideration is confined to 
fields of type 1 (i.e., fields that contain only the positive 
frequency part). We have not made the extension to fields of 
type 2 (i.e., fields which contains both positive and negative 
frequency parts) in time-dependent situations. In the time­
independent case fields of type 2 will be treated in the Appen­
dix. 

In this section we consider a Bose field without spin or 
any other internal degrees of freedom, the extension to gen­
eral multicomponent fields being straightforward. 

We consider thermal doublet semifree fields, say t/J(x)/l 

and ~(x)/l, which arelinearin the semifreeoperatorsa(t,k)/l 
and a(t,k)/l, considered in the last section. Following the 
assumption in the usual quantum field theory we require 
that the time development of t/J and ~ is controlled by the 
operator Sa (t) in (2.44), 

t/J(x)/l = S a-I(t)t/J(t = O,x)/lSa (t), 
_ A. _ A. 

t/J(x)/l = S;; 1 (t)t/J(t = O,x)/lSa (t), 

Hardman. Umezawa. and Yamanaka 

(3.la) 

(3.lb) 

2929 



                                                                                                                                    

where x stands for (t,x). Therefore we expand ",(x) and 
¢(x) as 

",(x)1' = J d 3k U(x,k)l'va(t,k)V, 

= J d 3k u(x,k)I'Va(k)V, 

¢(x)1' = J d 3k a (t,k) VU(x,k) VI', 

= J d 3ka(k)'U(x,k)VI', 

(3.2) 

(3.3 ) 

(3.2') 

(3.3') 

where U, U, u, and u are certain c number 2 X 2 matrix wave 
functions. According to (2.29), U and u are related to U and 
U, respectively, in the following way: 

u(x,k) = U(x,k)B -I (t,k)E(t,k)B(O,k) , 

u(x,k) = B -1(O,k)E -I (t,k)B(t,k) U(x,k). 

(3.4a) 

(3.4b) 

Here E(t,k) depends on k through (2.27) with m(s) and 
K(S) being replaced with m(s,k) and K(s,k), respectively. 

Now, in order for", and ¢ to be canonical, the wave 
functions U and u have to form a canonical complete set6 that 
will be defined shortly. In the case of type 1 field, the simplest 
choice of U and U, 

U(x,k)I'V = [6IlvI(21T)3/2]e''k'x, 

U(x,k)I'V = [6IlvI(21T)3/2]e-''k'X, 

(3.5a) 

(3.5b) 

turns out to give such a canonical set {u,u}. We are going to 
show this below. 

~ 
Since the thermal covariant derivatives D + (t) and 

D+(t) in (2.31) depend on the momentum k we denote 
~ 

them by D + (t,k) andD + (t,k). The field equations for "'and 
¢and those for U and u follow from (3.2)-(3.5) and (2.32), 

iD+(t,-iV)I'V",(x)v=O, (3.6a) 

i¢(x)VD + (t,lV) VI' = 0, (3.6b) 

iD + (t,k)IlAu(x,k)AV = 0, 

lu(x,k)VAD + (t,k)AI' = 0. 

(3.6c) 

(3.6d) 

Using (3.4) and (3.5), we can prove that u and u satisfy 
the orthonormalization relation 

J d 3x u(x,k)u(x,1) = 8(k-1) (3.7) 

at any time t. 
Furthermore, we can explicitly prove the sum rule 

G + (x,x')I'V = J d 3k u(x,k)IlAu(x',k)AV, (3.8) 

where 

G + (x,x' )I'v 

J d3k .'k·(X-X') = --e 
(21T)3 

X [B -1(t,k)E(t,k)E -I (t ',k)B(t ',k) ]I'v. (3.9) 

The function G + (x,x')I'V has the following properties: 

G + (x,x')I'V8(t - t') = 8I'v8(4)(x - x'), (3.lOa) 

iD +(t, - iV)I'AG + (X,x')AV = 0, (3.lOb) 

(3.lOc) 
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When u and u satisfy the orthonormalization conditions 
(3.7) and the sum rule (3.8) in which the function G + (x,x') 
has the properties in (3.10), the set {u,u} is called the ca­
nonical complete set. Using the properties of the canonical 
complete set, we obtain the equal-time canonical commuta­
tion relation 

["'(t,x)I',1T(t,x')V] = i6llv8(x - x'), 

where 

1T(x) = i¢(x) 

(3.11) 

(3.12) 

is the canonical conjugate of ",(x). This is the reason for the 
name "canonical complete set." 

The semifree field equations in (3.6) can be derived 
from the following Lagrangian density: 

(3.13) 

The momentum field 17' conjugate to "', already mentioned 
above, is indeed given by 

(3.14) 

which is consistent with (3.12). The usual Legendre trans-
'" formation gives us the semifree field Hamiltonian H ~, 

H~(t) = J d 3x[1T¢- yo] 

= J d 3X ¢(x)l'[m(t, - IV) - iP(t, - IV) ]I'V",(x)v, 

(3.15) 

where use was made of (2.33) in which m(t) and P(t) de­
pend on k as m(t,k) and P(t,k), respectively. Needless to 

'" say, H~ is reduced to (2.42) when it is rewritten in terms of 
oscillator variables, a(t,k) and a(t,k). 

Here some comments on the semifree fields in the time­
dependent case may be in order. As it was pointed out in Sec. 
n the generalized Bogoliubov transformation contains two 
arbitrary parameters, bL (t,k) and bR (t,k). Since the phys­
ical results are independent of these quantities we expect that 
these quantities do not cause any ambiguity in the choice of 
the Lagrangian. When we change these quantities", changes 
into "" and, at the same time, the expression for the Lagran­
gian density changes from .2:' to .2:". However, the Lagran­
gian density is really unique in the sense that 

.2:"(",') = .2:'(",). (3.16 ) 

Then the canonical momenta of '" and "" are .given by 
17' = a.2:' laip and 17" = a.2:"la",', respectively. Thus the 
Hamiltonian densities for '" and "" are [1T¢ - .2:'] and 
[1T'ip' - .2:"]. The transformation (",,17') -+ (",',17") is a ca­
nonical transformation. For example, when bR (t) is 
changed to b R (t), we have 

'" '" H~'(t) -H~(t) 

= - i d 3k a (t,k)1' at In R , 'T3 a(t,k) v. J [ { b' (t k) } ]I'V 
bR (t,k) 

( 3.17) 
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the renormalization transformations. In addition to the en-The causal two-point function has the form 

.I1c(x,x')p1' = - i(OIT [t/I(x)Ptp(x')1'] 10) (3.18) ergy renormalization 
..... 

= [B -I(t, - iV)frc (x,x')B(t ',iV') ]1'1', 
(3.19) 

with 

(x,x') 11 = - i(}(t - t')5 d
3
k eik.(X-X') 

?c (21T)3 

xexp [ - i r ds{w(s,k) - iK(S,k)}], 

(3.20a) 

(XX')22=i(}(t'-t)5 d
3
k e''k'(x-x') 

?c , (21T)3 

xexp [ - i r ds{w(s,k) + iK(S,k)}], 

(3.20b) 

?c (x,x') 12 =?c (x' ,x)21 = O. (3.2Oc) 

In practical computations using the Feynman-diagram 
method we need the knowledge of the Feynman function and 
the interaction Hamiltonian in the interaction representa­
tion. The Feynman function is given by .I1c (x,x') in (3.19). 
The interaction Hamiltonian will be studied in the next sec­
tion. 

IV. THE INTERACTION HAMILTONIAN 

Assuming a given system, we denote its Lagrangian den­
sity by .Y. Then we can construct !f by means of the tilde 
conjugation rules. It has been shown that the total Lagran­
gian density in TFD is 

A _ 

.Y =.Y -.Y. (4.1) 

Different thermal situations are covered by the different re­
alizations of operators satisfying the field equation which 

A 

follows from .Y. As it was pointed out above, when we deal 
with time-dependent thermal situations the Hamiltonian de­
pends on the choice of fiel~ variables, while the Lagrangian 
does not. In other words .Y is independent of the thermal 
situation. Therefore use of the Lagrangian is more suitable 
for the unambiguous definition of the interaction than use of 
the Hamiltonian. 

Let us consider the following Lagrangian density for an 
unrenormalized bosonic complex field "'0: 

.Y (t/lo) = t/I~ [i at - wo] t/lo - go W( tM't/lo)' (4.2) 

Here W(x) is a polynomial function of x and the subscript 0 
means unrenormalized quantities. According to the !!lde 
conjugation rules we have the total Lagrangian density .Y in 
TFD as follows: 
A __ 

.Y =.Y -.Y = t/lo(x)p[i at - Wo(IV) ]t/lo(x)p 

- go{W(tpo(x) It/lO(X) I) - W( - tpO(X)2t/10(X)2)}, 
(4.3) 

where the thermal doublet notation is made use of. The bare 
quantities should be related to renormalized ones through 
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(4.4) 

where w is the renormalized energy and ~w is the self-energy, 
we consider also the wave function renormalization. In TFD 
the wave function renormalization factor can be a 2 X 2 ma­
trix that will be denoted by V, with V being a 2 X 2 matrix. 
Thus the wave function renormalization reads as 

t/lo(x)p = V(t)I'1't/I(x)V, 

tpo(x)p = tp(x)1'V-I(t)1'p. 

(4.5a) 

(4.5b) 

We consider this wave function renormalization by requir­
ing that V is diagonal, i.e., 

(4.6) 

The reason for this will become clear shortly. In this paper 
we do not discuss the coupling constant renormalization and 
the overall wave function renormalization other than V. 

A 

Substituting (4.4) and (4.5) into (4.3) we have .Y ex-
pressed in terms of the renormalized quantities 

~ = ~o + ~int' (4.7) 

~o = tpp[i at - w + iP ]p1't/lv, (4.8) 

~int = -gO{W(Z3tplt/ll) - W( -Z3~~)} 

+tpp[iV-IV+~w-iP]p1't/l1', (4.9) 

where P(t) was given in (2.34). Comparing (4.8) with 
(3.13) 89..d (2.33a) we see thatthe unperturbed Lagrangian 
density 'yo in (4.7) is the se!!:lifree field La~angian density 
in (3.13). Note that iP in 'yo and iP in .Yint cancel one 
another. The total Hamiltonian follows from (4.7) as 

A 

whereH~ was given in (3.15) and 

Hint = 5 d 3x[go{W(tplt/ll) - W( - ~t/l1')} 

- tp I' [iV -I V + ~w _ iP ]p1't/l V] 

= 5 d 3x[go{W(tplt/ll) - W( - ~~)} 

- tpp[iV-1V + ~w - i(KA + nT) 

- iW R I WR Y1't/l1'], 

(4.10) 

(4.11 ) 

(4.12) 

where (2.34 )-(2.36) are considered. Without loss of gener­
ality we can choose 

V= WR • (4.13) 

This gives 

V-IV - W R IWR = O. (4.14) 

According to (2.2Oc), this makes V diagonal. Now the inter-
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action Hamiltonian is 

Hint = J d 3x[go{W(jJl,pt) - W( - iJ2rf)} 

- i/I'[8w(t) - i{K(t)A (t) + n (t)r(t)} ]I'V,r], 
(4.15) 

= J d 3x[go{W(jJl,pt) - W( - jJ2rf)} 

- [jJW R 1(t) ]1'[8w(t) - i{K(t)Ao(t) 

+ n(t)ro} ]I'V[ WR (t)rpr], (4.16) 

where (2.38) and (2.40) were used. NotethatAo and ro were 
given in (2.39) and (2.41), respectively. 

With the knowledge of this interaction Hamiltonian and 
the casual two-point function of the semifree field in (3.19), 
we can formulate the perturbative computation in terms of 
the Feynman diagrams. A vital step in this formulation is the 
renormalization procedure which leads to the self-consistent 
equations for w, K, and n. This will be illustrated in the next 
section by means of a simple model. There, an explicit form 
of the on-shell renormalization condition is presented. We 
will see also how the self-consistent equation determines the 
time dependence of n (t) when the initial value n (t = 0) is 
given. 

V. EXAMPLE OF TIME-DEPENDENT 
RENORMALIZATION-THE THERMAL RESERVOIR 
MODEL 

In this section we illustrate the self-consistent renormal­
ization method by taking as an example the well-known 
thermal reservoir model, which is a system with a thermal 
reservoir. We treat the entire system including the reservoir 
as one system. Therefore this example shows explicitly how 
dissipation is created spontaneously. The explicit calcula­
tion below will also indicate how the self-consistent renor­
malization method should be formulated in time-dependent 
situations. 

The model consists of a simple harmonic oscillator 
(a,at ) and a reservoir (Rk,R L k = 1,2, ... ,N) interacting 
with each other. These operators satisfy 

[a,at ]" = 1, (S.la) 

[Rk,R n" = 8k, · (S.lb) 

The total HamiltonianH is assumed to take the simple bilin­
ear form 

N 

H = woata + L fiOkR tRk 
k=1 

N 

+g L (Rta+atR k ), with N--oo. (S.2) 
k=1 

According to the usual notion of a reservoir, g2 is of order 
liN, 

g'l=Ng2. (S.3) 

The spacing of reservoir energy levels is of order liN, 

fiok =Oo+k8; 8=O(lIN), (S.4) 

and the bandwidth t::.. of the reservoir energy spectrum is 
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given by 

t::..=N8. (5.S) 

Note that the limit N -- 00 should be performed at the 
end of computation, because otherwise the (Rk,R t) system 
cannot act as a thermal reservoir. At this limit the energy 
spectrum fiOk becomes a continuum. We have previously 
treated this model in the stationary case.5 There the ( lIN)­
power expansion was made. With each finite order in this 
expansion a dissipation does appear. When N is finite we 
should sum up all of the (lIN)-power expansion terms and 
then the dissipation simply disappears (i.e., K = 0). How­
ever, since N is infinite only the leading term in the ( lIN)­
power expansion should be picked up. Then a dissipative 
effect remained (i.e., K;fO). 

Physically, the spontaneously created dissipation is a 
result of decay processes of the oscillator into the reservoir 
quanta through infinite channels, the decay probability for 
each channel being infinitesimal. This decay is the thermal 
instability that is encouraged by the negative energy of the 
tilde quanta. Thus the infinite degrees of freedom together 
with the negative energy of the tilde quanta is the origin of 
the spontaneous creation of dissipation. The role played by 
the infinite degrees of freedom is the same as the one in the 
phenomena of spontaneous breakdown of symmetries which 
require the infinite degrees of freedom. 8 We might say that 
the system behaves like an "open" system, not because of the 
elimination of reservoir variables (which we do not do), but 
because each decay product appearing with infinitesimal 
probability is not observable. The situation is very similar to 
the case of impurity scattering because the unobservable til­
de quanta act like the impurities. In other words, the dissipa­
tion is caused by the communication of non tilde quanta with 
the unobservable background field which is the tilde field. 
Intuitively this tilde field effect represents the effect of ther­
mally excited particles. It could be that this process may act 
as the coarse graining. 

In previous papers5 we studied only the time-indepen­
dent situation. The result agreed fully with the well-known 
result of the projection operator method applied to the Liou­
ville equation for the density matrix. Although the thermal 
averages are time independent, any two-point function or 
correlation function has a dissipative effect, which is a mani­
festation of the contributions from the excited states dissipa­
tively approaching the equilibrium state. The number distri­
bution of the oscillator was found to be n = 11 [ePa> - 0" ] 

with /3 = 11 k B T, with T being the temperature of the reser­
voir. This was a result of the self-consistent equations ob­
tained by the renormalization method. Therefore we may 
expect that when we prepare the initial value of n (t) differ­
ent from 11 [ePa> - a], n should become dependent on time. 
The temporal behavior of n (t) should also be determined by 
the self-consistent renormalization method. Thus our consi­
deration in this section presents the renormalization condi­
tion for time-dependent thermal phenomena which has never 
previously been presented. With the help of the consider­
ations in the previous sections we are now ready to treat the 
model (S.2) in a time-dependent situation. 

Since the (Rk,R t) system is a reservoir it should be in 
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an equilibrium state and have the number distribution 

nk=[rk-u]-I, (5.6) 

with fik being the renormalized energy. On the other hand, 
the initial value (Le., the value oft = 0) of the number distri­
bution n (t) of the (a,a t ) oscillator is not specified. 

According to (2.42) the unperturbed semifree Hamilto­
nian is 

A 

H°(t) = a(t) Il[a> - iP(t) ]Il"a(t)" 

N 

+ L Rk(t)Il[fik -iPk]Il"Rk(t)"· (5.7) 
k=1 

Sincefik andPk are time independent (2.34) together with 
(2.20), (2.38), and (2.39) gives 

Pk = KkAk 

with 

Ak = W RklAOk WRk , 

[ 
1 + 2unk 

A -
Ok - 2(1 + unk) 

W 1"3 In b Rk Rk =e . 

The P(t) was given in (2.34). 

(5.8) 

(5.9) 

(5.10) 

(5.11 ) 

We assume that the wave function renormalization 
( 4.5) with V = WR [cf. (4.13)] has already been per­
formed. Then the interaction Hamiltonian is given by 
(4.16), 

N 

g L {Rk(t)Il[WRkIWR (t) yWa(t) V 
k=1 

+ a(t)Il[ W R I(t) WRk ]IlVRk (t)"} 

- [a(t) W R I(t) ]1'[15a> - i{KAo(t) + un (t)1'o} ]IlV 

X [ WR (t)a(t)] v 

N 

- L [Rd t ) W R/ ]Il[ I5fik - iKkAOdl''' 
k=1 

(5.12) 

Note that according to (2.35) n(t) shouldcarrythefactoru. 
We first assume that a> and K are independent of time. 

We are going to justify this assumption by showing that it is 
consistent with the self-consistent equation which will be 
derived shortly. 

The casual two-point functions are 

d e (tl,t2)1'''= -i(0IT[a(tl)l'a(t2)"]10), (5.13) 

= [B -I(tl)?(tl - (2 )B(t2) ]1''', (5.14) 

d ek (tt>t2)1l"l5kJ = - ;(01 T [Rk (tl )I'RJ (t2)"] 10), 

(5.13') 

= [B k- I?k (tl - t2)Bk ]1l"l5kl , (5.14') 

where 

?(li - t2)11 

- i8(t1 - t2)exp[ - i(a> - iK) (tl - t2 )], (5.15a) 

?(tl - t2)22 

i8(t2 - II )exp[ - i(a> + iK) (tl t2 )], (5.15b) 
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?k (t l - ( 2 ) 11 

= -i8(t1-12 )exp[ -i(fik - iKd(tl-t2>], 
(5.15c) 

?k (II - t2)22 

=i8(t2 -tl)exp[ -i(fik +iKk )(tl -t2 )], (5.15d) 

?(tI-t2)1'''=?k(tt-12)l'v=0. for p,#v. (5.15e) 

It can be seen from (5.12) that the computation is very 
much simplified when we choose the arbitrary matrix WR to 
be independent of time. This choice corresponds to taking a 
time-dependent a because n (t) orf( t) change with time [see 
(2.2Oc), (2.23)-(2.25)]. Then the proper self-energy dia­
gram for (a,a) gives 

l: (t l,t2 )Il" 

= W R 1p.A[g2Ltl WRkdek (II - t2 ) W Rkl} 

{~- i(KAo (tl) + un (t1)1'O)}I5(tl - t2 ) ]ApW~, 
(5.16) 

while the one for (Rk,Rk ) is 

l:k (t l ,t2)1l" = W Rk1p.A [g2{WR de (t\Jtz) W R I} 

{150k - iKkAokM(t1 - t2) ]ApWIR". (5.17) 

The connected full propagators of a and Rk (i.e., G and Gk ) 
satisfy the following Dyson equations: 

G(lI,t2) = de (l1,t2) 

+ J dS t dS2 de (It'SI)l:(SI,s2)G(S2,t2), (5.18a) 

Gk (I.,t2) = d ek (t1,t2) 

+ J dSI dsz d ek (II - Sl)l:k (SI,s2)Gk (S2,t2)· 

(5.18b) 
The self-energies above are functions of two times, II 

and t2• As a result of this we cannot directly follow the same 
procedure for the on-shell renormalization as in the station­
ary case or in the usual quantum field theory. 

In the present model, the on-shell renormalization con­
ditions of l: and l:k are stated as follows: 

~(a>,ko) = 0, 

l:(ko,a» = 0, 

l:k (Ok,ko) = 0, 

l:k (ko,Ok ) = 0, 

(5.19a) 

(5.19b) 

(5.19c) 

(5.19d) 

for arbitrary real ko' Here the Fourier transform of any two­
time function [say f(t 1 ,(2 ) ] is defined by 

(5.20) 

These on-shell renormalization conditions are equivalent to 

l:(a>,t) = 0, 

l:(t,a» = 0, 

l:k (Ok,t) = 0, 

l:k (t,Ok) = 0, 

at any time t. 
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When (S.16) and (S.17) are considered, (S.2Ia) and 
(S.2Ic) read as 

WR~(W,t) W R) 

=eiwt[~ i I 
N k= I (w -.ok) + iKkAOk 

- t3w + i(KAo(t) + un (t)'T0)] = 0, (S.22a) 

WRk~k (.ok,t) W Rkl 

= ~ WR [f ds /O"'B -1(S)g(S - t)B(t)] W R I 

(S.22b) 

with (S.3) and (S.14). 
Equation (S.22b) is the self-consistent equation for t3.ok 

and Kk. This leads to the vanishing of t3.ok and Kk when N is 
taken to infinite with fixed~, 

t3.ok = O( liN), 

Kk = O(lIN). 

(S.23a) 

(S.23b) 

This situation is the same as the one in the stationary case 
studied previously. On the other hand, dividing another self­
consistent equation (S.22a) into real and imaginary parts, 
we have the matrix equations, 

-2 N K 

KAo(t) + u;,(t)'To = ~ L k A Ok ' 
N k=1 (W-.ok)2+Ki 

(S.24a) 

(S.24b) 

using the property A ~k = I. Equation (S.24b) again has the 
same expression as the one in the stationary case studied in 
Ref. S. 

Let us now solve (S.24a) at the limit N-+ 00. Then .ok 
becomes a continuous parameter denoted by .0 and summa­
tion becomes integration, 

KAo(t) + un (t)'T0 =~ r d.o 1rt3(w - .o)AOR (.0) 
a J4 
~ = -AOR (w), (S.2S) 
a 

whereAoR (.0) isAok in (S.IO) with nk being replaced with 
[cf. (S.6)], 

Let us introduce n by 

n=nR(w) = [efk"-UJ-I. 

Then 

A [ I +2un -2un] 
OR (w) = 2(1 + un) - (1 + 2un) . 

Now recall (2.39) and (2.41), i.e., 

A [ I + 2un(t) - 2un(t) ] 
o(t) = 2(1 + un(t») - (I + 2un(t») , 

1'0= [~ = ~]. 
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(S.26) 

(S.27) 

(S.28) 

(S.29) 

(S.30) 

The four matrix elements of the self-consistent equation 
(S.2S) give the following three equations: 

K{I + 2un(t)} + u;,(t) = (~/a){1 + 2un}, 

2uKn(t) + u;,(t) = (1r~/a)2un, 
2K{1 + un(t)} + u;,(t) = (~/a)2{1 + un}. 

(S.3Ia) 

(S.3Ib) 

(S.3Ic) 

However the addition of (S.3Ib) and (S.3Ic) leads to 
(S.3Ia), which implies that the independent equations are 
any two of (S.3Ia)-(S.3Ic). They give 

K = 1r~/a, (S.32a) 

;,(t) = - 2K[n(t) - n]. (S.32b) 

The dissipative factor K is found to be the same as in the 
stationary case.5 When the initial value of n(t) is given by 
n (0), (S.32b) determines the temporal behavior of n (t), 

n(t) = [n(O) - n]e- 2Kt + n. 

This leads to 

n(oo)=n. 

(S.33 ) 

(S.34) 

Then (S.27) indicates that n(t) in (S.33) starts with the 
initial value n(O) and approaches the equilibrium value 
nR (w) at t-+ 00. 

The fact that K =1= 0 indicates the spontaneous creation of 
dissipation. 

Note that the substitution of the solutions of the self­
consistent equation rewrite if 0 (t) in (S. 7) as the following 
form for the final equilibrium situation: 

ifO(t) = a(t),u[w - j'P ],uva(t)V 

N 

+ L Rk (t),u.okRk (t),u, (S.3S) 
k=1 

where 

(S.36) 

Thus the reservoir model is described by the time-indepen­
dent Hamiltonian for equilibrium. But this may not be true 
when the higher-order corrections are taken account of in 
general nonlinearly interacting systems. 

When we happen to choose n (0) = n then n (t) becomes 
independent of time and we have the equilibrium situation. 
This is the case studied in Ref. S. 

We now comment on the Heisenberg operators. When 
we express the Heisenberg operators alft in terms of the inter­
action representation operator a,u and R ~, we find that 

aH(ty' = e(t,O)a(t = O),u 

+ ig k~1 f dtl Rk (t))!,'e*(t),t)lJ(t - t), 

(S.37b) 

wheree(t,t1 ) is a certain c-number functionY When la) and 
1 b ) denote any two vectors in our Fock space and g2 = ~ / N 
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is considered, 

lim (alaH (t)J.'lb ) = (a le(t,O)a(t = O)J.'lb ), (S.38a) 
N-oo 

lim (aloH (t)J.'lb ) = (alo(t = O)J.'e*(O,/) Ib ), (5.38b) 
N-oo 

which means that tift (t) is weakly equal to e(t,O)aI-'(t = 0), 

w 
aifI (t) = e(t,O)aI-'(t = 0), etc. (5.39) 

However, this does not mean that 0ifI (t)an (t) is weakly 
equal to le(t,O) 1201-'(0)a"(0) because the R ~ terms in (S.37) 
contribute to 0ifI (t)an (t) even at the limitN -+ 00 .16 It can be 
shown that e(t,/I) satisfies 

(i at - mo]e(t,tl ) 

+ i ~ r dt2 i dO e- iO(t- t2 )8(t2 - II)e(t2,/1) = 0, 
1T Jo b. 

(S.4Oa) 

with 

e(t,t) = 1. (S.4Ob) 

Since 

F(t - II) = i dO e-iO(t-t,) (S.41) 

is a function that has a peak at I = I I and becomes very small 
for It - III> va, e(t,1 I) can be approximately written as 

(S.42) 

whenKissmall (i.e., aislarge). Heree(t) is a solution of the 
equation 

(i at - m + iK)e(t) = 0 (S.43a) 

with 

e(O) = 1. (S.43b) 

Note that mo is equal to m in this approximation. Thus 

A calculation shows that 

nH (t) = (OloH (t) laH (t) 110) 

= le(tW [n(o) 

(S.44) 

+ :f dO nR (0) If dtl e-iOt'e-I(tI) IT 
(S.4S) 

Use of (S.4S) gives 

nH (t)=e- 2Kt [n(0) 

+ J dOp(O)nR (O)let-i(OJ-O>t - 112]. 
(S.46) 

where 

1 K 
p( 0) = - ----::---::-

1T (m-O)2+~ 
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(S.47) 

We can rewrite (S.46) as 

nH (t) =iiR + e - 2Kt [n(O) - iiR ] 

+ 2e- Kt [iiRe- Kt 

-i dOp(O)nR (O)cos(m - O)t], (S.48) 

where 

(S.49) 

Sincep(O) is a function whose peak is at 0 = m and whose 
width is K, iiR is very close to ii when K is small. Equation 
(S.48) indicates that n H (t = (0) = ii R and 
nH(t = 0) = nCO), behaving like n(t) at t = 00 and t = O. 
The last bracket term in (S.48) gives the difference between 
nH(t) and n(t) when t is finite and nonvanishing. Since 
a>K, the presence ofp(O) makes the last integral term van­
ish quickly at t> V K. When a is large and K is small, n H (t) 
and n (t) behave similarly. At present, we are not sure which 
one should correspond to the observable value. We might 
consider also the quantity 

NH(t) = H(OlaH(t)laH(t)IIO)H 

with 

10) H = u(O, - (0) 10)/[ (Olu( 00, - (0) 10)] 1/2 

and 

H(OI = (Olu(oo,O)/[(Olu(oo, - (0)10)]1/2. 

We then find 

NH(t) = (Olu( oo,t)a(t) la(t) IU(t, - 00 )10) 

x(Olu(oo,- (0)10)-1. (S.SO) 

Since u(O, - (0) 10) may make 10) H equilibrium, NH(t) is 
the average number in the equilibrium state. This can be 
confirmed by means of an explicit computation. It is still an 
important open question as to what really corresponds to 
each observable quantity. We are planning to continue our 
study by assuming that n (t) describes the behavior of num­
ber in a reasonable approximation. 

We discussed the Heisenberg operators in the reservoir 
model, but we should be careful not to extend the arguments 
to general nonlinearly interacting systems in which the dy­
namical maps may be very complicated. The problem of the 
Heisenberg operator in general models of time-dependent 
TFD is still unsolved. 

VI. SUMMARY 

We have presented a general formalism for semifree 
field theory which includes the time-dependent thermal situ­
ation. The formalism expressed in terms of oscillator opera­
tors was given in Sec. II. The formalism expressed in terms of 
field operators was presented in Sec. III. It is due to a compli­
cation caused by the time-dependent nature of the thermal 
behavior that the consideration in Sec. III was limited to the 
semifree field of type 1. In the Appendix we discuss the semi­
free field of type 2 in a stationary situation. Using the knowl­
edge of the total Lagrangian in TFD and choosing the semi­
free field Lagrangian for the unperturbed Lagrangian, we 
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determined the general form of the interaction Hamiltonian, 
in the interaction representation, for any time-dependent sit­
uation in Sec. IV. This is the basis for the Feynman-type 
perturbative calculation in TFD in time-dependent situa­
tions. A set of self-consistent equations determine Wk, K k , 

and the temporal behavior of the average number density 
nk (t). An example of the derivation of the self-consistent 
equations in a time-dependent situation was studied in Sec. 
V. A remarkable point in this consideration is the explicit 
expression of the on-shell renormalization condition in the 
time-dependent situation which leads to the self-consistent 
equations. The latter equations were explicitly solved, and K 

and n (t) were determined. 
Since n(t) = (Ola(t)la(t)IIO), the explicit t depen­

dence of n )ndicates that the time-translational symmetry 
(based on H 10) = 0) is spontaneously broken. This is a re­
sult of the communication between the nontilde quanta with 
the background tilde field which is a manifestation of the 
effects of the thermally excited quanta which have infinite 
degrees offreedom. This communication seems to be playing 
a role similar to the coarse graining. The negative sign of the 
energy of the tilde quanta encourage the thermal instability, 
leading to the dissipation. Since there are an infinite number 
of dissipative channels, each of which participates with infin­
itesimal probability, the instability takes the form of dissipa­
tion. This becomes clear through the example in Sec. V when 
the (lIN)-power expansion method (N: number of degrees 
of freedom) with the limit N -+ 00 • 

The spontaneous breakdown of the time-translation 
symmetry suggests that, at any finite timx. there ar~ no ei­
genvectors of the basic total Hamiltonian H = H - H in our 
representation space, which is the Fock space of $'(O)P and 
t(O)P. The diagonal property of the time-translation matrix 
Eo(t) in (2.10) implies that the realization space remains 
unchanged <luring the time evolution. However, the dynami­
cal map of H expressed in terms of quasiparticle operators 
depends on time explicitly. In this sense, the realization of H 
depends on time. As a matter off act, when a system reaches 
an equilibrium ~tate, the thermal vacuum may become an 
eigenvector of Hat t = 00. Then the time-translation sym­
metry may be recovered at t -+ 00 , although K does not vanish 
at t = 00. (Remember that K is independent of time in Sec. 
V.) 

Here a comment about the quasiparticle number may be 
in order. Although n (t) = (Ola(t) la(t) 110) is the number 
of the unperturbed particles, this includes all of the loop cor­
rections, because the unperturbed particle is the quasiparti­
cle that isfully normalized. Each loop correction in the self­
energy diagram modifies the parameters such as w, K, and 
n(t) in the unperturbed Hamiltonian through the self-con­
sistent renormalization condition. 

Although the consideration in Sec. V is the first explicit 
treatment of the on-shell time-dependent renormalization 
condition, this consideration is still simple in the sense that w 
and K are independent of time. When we study a transition 
from temperature T to T', and when the quantum energy 
depends on temperature, it is obvious that the energy w 
changes in time. A study of such a case requires the most 
complete form of the on-shell time-dependent renormaliza-
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tion condition. Weare planning an application of the formal­
ism in this paper to a case in which wand K depend on time. A 
strong merit ofTFD presented in this paper is that it can be 
applied to any thermal situation including an isolated dy­
namical system. Thus TFD is suitable for treating the ther­
mal behavior of the Universe. 
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APPENDIX: THE SEMIFREE FIELDS OF TYPE 2 IN THE 
TIME-INDEPENDENT SITUATION 

In Sec. II we considered the wave functions u (x,k) with 
the positive frequency. The equation for u(x,k) was sum­
marized in (3.6), 

iD + (t,k)PVu(x,k)V = 0, 

iu(x,k)VD + (t,k)VP = O. 

(Ala) 

(Alb) 

The thermal covariant derivatives were defined in (2.31), 

D + (t,k) = B -I (t,k)E(t,k)atE -I (t,k)B(t,k), (A2a) 

D + (t,k) = B -I (t,k)E(t,k)atE -I (t,k)B(t,k). (A2b) 

Recall theform of E(t,k) in (2.27). 
In a similar manner, we can write the thermal doublet 

wave function v(t,k) with the negative frequency 

iD -(t,k)pvv(t,k)V = 0, 

w(t,k)VD - (t,k)VP = 0, 

where 

D - (t,k) = B- 1 (t,k)E -I (t,k)atE(t,k)B(t,k), - ~ D - (t,k) = B -I (t,k)E -I (t,k)atE(t,k)B(t,k). 

(A3a) 

(A3b) 

(A4a) 

(A4b) 

A difficulty in constructing a semifree field by making a 
linear superposition of u(x,k) and v(x,k) is due to the fact 
thatD + (t,k) andD - (t,k) do not commute with each other 
when we consider a time-dependent situation. Therefore, in 
this Appendix, we restrict our considerations to a time-inde­
pendent situation only. Then B(t,k), w(t,k), and k(t,k) be­
come independent of time. These quantities will be written 
simply as B(k), w(k), and K(k). Then according to (2.27), 
E (t,k) takes the following simple form: 

E(t,k) = exp[ - i{w(k) - iK(k)1'3}t]. (AS) 

According to (2.33), we have 

D + (t,k) = at + i{w(k) - iK(k)A (k)}, 

D + (t,k) = at - i{w(k) - iK(k)A (k)}. 

ThematrixA(k) was given in (2.38). 
Similarly, we obtain 

D - (t,k) = at - i{w(k) - iK(k)A (k)}, 

D - (t,k) = at + i{w(k) - iK(k)A (k)}. 

(A6a) 

(A6b) 

(A7a) 

(A7b) 

We also construct the wave functions in such a manner 
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that 

u(x,k) = u(t,k)e''''''', 

u(x,k) = u(t,k)e-''''''', 

(ASa) 

(ASb) 

v(x,k) = v(t,k)e - ''''''', (A9a) 

v(x,k) = v(t,k)e''''·''. (A9b) 

Then (Al), (A3), (A6), and (A7) lead to the orthogona­
lity condition at any time t, 

J d 3X u(x,k)rv(x,l) = 0, (AlOa) 

J d 3X v(x,k) ru (x,1) = 0, 

where ..... ... 

(AlOb) 

whereF[A (k)] is a function of the matrix A (k). Equations 
(2.3S) and (A5) show that B -1(k)E(t,k)B(k) is also a 
function of A(k), implying that A(k) commutes with 
B -1(k)E(t,k)B(k). Now (A16) lead to 

v(x,k) = [1!(21T)3/2]B -1(k)E -I (t,k)B -IT(k) 

XF [A T(k) ]vo(k)e - ''''''', (A19a) 

v(x,k) = [1!(21T)3/2]vo(k)F [A T(k)] 

(A19b) 

Feeding (A17) with (A1S) into (A13a), we obtain 

2F2[A(k) ]{liJ(k) - iK(k)A (k)} = PU' (A20) 

When we choose 

Pu = 1, (A21) 
r=iat =i(at -at). (All) we have 

Therefore we define the inner product of two wave functions 
by 

(A12) 

It is obvious from (AS) and (A9) that we can choose 
the wave functions to satisfy 

J d 3x u(x,k)ru(x,1) = Pu t5 (k -I), 

J d 3x v(x,k)rv(x,l) =Pv t5(k -I). 

(A13a) 

(A13b) 

Here Pu = 1 or - 1 and Pv = 1 or "'7" 1. Thus {u(x,k), 
v(x,k)} forms an orthonormalized complete set. 

In order to relate u to v, we note that 

D + (t,k)T = B T(k)E -1(t,k)atE(t,k)B -IT(k), (A14) 

= B T(k)B(k)D - (t,k)B -1(k)B -IT(k), 
(A15) 

D + (t,k)T = B T(k)E -I (t,k)atE(t,k)B -IT(k), (A14') 

= B T(k)B(k)D -(t,k)B -1(k)B -IT(k), 

(A15') 

which follow from (A2) and (A4). Here Tmeans the trans­
position. Thus (AI) leads to (A3) when we choose 

v(t,k) = vO(k)uT(t,k)B T(k)B(k), (A16a) 

v(t,k) = B -1(k)B -IT(k)uT(t,k)vo(k), (A16b) 

where Vo and Vo satisfy 

vovo = 1 

and are arbitrary otherwise. 
According to (3.4) we have 

u(x,k) = U(x,k)B -1(k)E(t,k)B(k), 

u(x,k) = B -1(k)E -1(t,k)B(k)U(x,k). 

(A16c) 

(A17a) 

(Al7b) 

Since the normalization condition in (A13a) differs from 
the one in (3.7) by the presence of r, we should modify the 
definition of U(x,k) and U(x,k). Since A(k) commutes 
withD± (t,k) according to (A6) and (A7) we choose 

U(x,k) = [1!(21T)3/2]F [A(k) ]eb
, (AISa) 

U(x,k) = [1!(21T)3/2]F[A(k)]e-''''''', (AlSb) 
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F[A(k)] = (1!~){liJ(k) -iK(k)A(k)}-1/2. (A22) 

On the other hand, (A13b) together with (A19) and 
(A16c) gives 

Pv = - 2F2[A T(k) ]{liJ(k) - iK(k)A T(k)} = - 1. 
(A23) 

We now construct the field 

f/!(xY'.= J d 3k [u(x,k)~"a(k)" + v(x,k)~"b T(k)"], 

(A24a) 

¢(x)~ = J d 3k [a(k)"U(x,k)"~ + b T(k)"jj(x,k)"~], 
(A24b) 

where we introduced two sets of thermal doublet oscillators, 
{a(k),a(k)} and {b(k),b(k)}. Note that the positive- and 
negative"frequency parts of the fields ~ and fi!' are trans­
formed separately under the tilde operation (2.4) if Vo and vo 
in (A16) are kept arbitrary. Therefore we choose Vo and Vo as 

vo(k) = vo(k) = B T(k)'T3B(k), (A25) 

so that ~ and fi!' have the definite transformation property 
of the tilde conjugation: 

[f/!(X)l]- = - ¢(X)2, 

[f/!(X)2]- = ¢(X)l, 

[¢(X)l]- = f/!(X)2, 

[¢(X)2]- = _ f/!(X) 1. 

The semifree field equations are 

D + (t, - iV)D - (t, - IV)f/!(X) = 0, 

¢(x)D - (t,lV)D + (t,lV) = 0, 

which read as 

(A26a) 

(A26b) 

(A26c) 

(A26d) 

(A27a) 

(A27b) 

[a:+{w( -IV) -iKe -IV)A( -IV)PY"f/!(x)"=o, 
(A2Sa) 

(A2Sb) 

These equations of motion can be derived from the Lagran­
gian density 

£0= -¢(x)~[a:+{liJ(-IV) 
- iKe -IV)A( -IV)P]~"f/!(x)". (A29) 
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This gives the canonical conjugate momentum field of t/J as 

1T = ~ ¢. (A30) at 
We can easily derive the following sum rules: 

ill. + (x - x' )I'V = f d 3k U (x,k)""u (x',k)"V, (A31a) 

iA-(x-x')I'V= - fd3kV(X,k)I'''jJ(X',k)''V, (A31b) 

where 

A± (x) 

-'f d
3

k = + I (217)3 

X exp[ + i{w(k) - iK(k)A (k)}t ] exp[ + ik-x] 
2{w(k) - K(k)A (k)} 

(A32) 

The functions A ± have the following properties: 

A+(-x)= -A-(x), (A33a) 

15(t)~A±(x) = -~I5(x)I5(t), (A33b) at 2 
[a; + {w( -IV) - iK( -IV)A( -IV)P]A ± (x) = O. 

(A33c) 

The sum rules (A31) lead to the commutation relation 

[t/J(x)I',¢(x')V] = iA(x - x')I'V, 

where 

A(x) =A + (x) + A - (x). 

(A34) 

(A35) 

We call (A31) the canonical sum rules, since (A33b), 
(A34), (A30), and (A24) give the equal-time canonical 
commutation relation 

(A36) 

Thus we have explicitly constructed the canonical for­
malism for the semifree field of type 2 in the time-indepen­
dent thermal situation. Note that the parameter bR was nev­
er fixed in this formulation. This freedom includes the 
freedom in choice of the a parameter which was discussed in 
several previous papers.4

•
7 We have not succeeded in extend-
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ing this formulation of type 2 semifree fields to a time-depen­
dent situation. 
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There is no isolated p-p wave 
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A theorem is presented that basically states that there are no nontrivial well-behaved, spatially 
asymptotically flat space-times which are POp waves at infinity. 

I. INTRODUCTION 

Space-times with a constant null vector (p-p waves) 
have been studied extensively in the literature. I Almost al­
ways, these space-times are interpreted physically as infinite 
plane gravitational waves. There are, however, attempts to 
construct POp waves to represent, instead of waves, particles 
moving at the speed of light.2

,3 But any notion of isolated 
particles would naturally restrict the space-times under con­
sideration to the class of spatially asymptotically flat space­
times. Of all the solutions proposed, only one3 is clearly spa­
tially asymptotically flat (this solution is also vacuum and 
axisymmetric). Perhaps, the most intriguing aspect of the 
solution is that it has a vanishing ADM momentum, and yet 
it is not flat. On closer examination, we see that it gets 
around the positive mass theorem4

•
5 because it does not have 

a complete spacelike surface. A natural question thus arises: 
can one construct ap-p wave that is well behaved (spatially 
complete) and spatially asymptotically flat? In this paper, 
we present a theorem which basically states that a spatially 
complete space-time satisfying the dominant energy condi­
tion and that is a pop wave at least at infinity cannot be as­
ymptotically flat unless it is flat. Thus we see that no well­
behaved space-times based on the pop waves can be con­
structed to represent an isolated particle. 

In Sec. II we will briefly look at the solution proposed in 
Ref. 3. Section III contains the precise statement and the 
proof of the theorem mentioned above. 

II. A METRICAL SOLITON 

The space-time (M,gab) of interest reported in Ref. 3, 
representing a "metrical soliton," has the metric in the fol­
lowing form: 

dr = ~dp2 + (p2 + X)df/l + [1 -
p2+X 

_ [1 + (aXlaz)2] (dX4)2 
4(p2 + X) 

_ .l a(ax1az)2 dzdx4, (1) 
2 (p2 + X) 

where (p,,p,z,x4) are the standard cylindrical coordinates. 
Here X is a compact supported function of (z + at), with 
a = ± 1. The basic facts concerning this metric (axisym­
metric, pop wave) can be easily verified. Of special interest is 
that the space-time admits a spatially asymptotically flat hy­
persurface l:. In fact, the desired surface is given by X4 = O. 

To see this more clearly, introduce on l: = {x4 = O} the 
usual rectangular coordinates (x,y,z) with x = p cos,p, 

y = p sin ,p. Then on l: the components of the first and sec­
ond fundamental forms, hij and tTij' respectively, in the rec­
tangular coordinates, have the following asymptotic proper­
ties: 

hij = 8ij + D( lIr), tTij = D( lIf3). 

Thus l: is asymptotically flat. Moreover, since the fall­
offs are one power of lIr faster than the standard ones, the 
ADM four-momentum of M on l: has to vanish. 

To understand how the space-time can be reconciled 
with the positive mass theorem, it suffices to examine the 
induced metric hij on l:. It has the form, in the (p,,p,z) co­
ordinates, 

spatial metric = (~) dp2 + (p2 + X)d~ 
P2+X 

To ensure that l: is spacelike, the conditions X;;;.O and 
4(p2 + x);;;. (axlaz) 2 must hold. Even with these provi­
sions, the spatial metric is degenerate at the linep = 0, unless 
X=O, in which case the space-time metric is flat. To remove 
this irregularity, one can, for example, cut out the linep = 0 
from l:. But then l: will be incomplete. In conclusion, it is 
obvious that the only well-behaved (nondegenerate and 
complete) space-time metric of the form (1) is flat. 

III. THERE IS NO ISOLATEDp-p WAVE 

Of course it would be tempting to patch up the metric 
( 1 ) so that it becomes complete and still retains the Pop wave 
nature of the solution. However, any attempt in this direc­
tion, without violating the dominant energy condition, 
would be unsuccessful. The following theorem elucidates 
this situation. 

Theorem: Let (M,gab) be a spatially asymptotically flat 
space-time with l: as an asymptotically flat spacelike com­
plete surface. Suppose (a) there exists a covariantly constant 
null vector lC' in a neighborhood of (l: - K), where K is a 
compact set of l:, and (b) the dominant energy condition 
holds on l:; then (M ,gab) is flat along l:. 

The proof of the theorem follows easily from the follow­
ing two lemmas. The conditions in the theorem are assumed 
in the following discussion. 

Lemma: There exists a covariant constant spinor SA in a 
neighborhood of (l: - B), where B is a compact set of l:. 

Proof: Consider the covariant null vector lC', in the 
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theorem. Anticommuting second derivatives of k" leads to 
Rabed k d = 0, and by contracting, Rad kd = O. The dominant 
energy condition further implies that Rab = fka kb for some 
f Finally, it is easy to conclude that Cabedkd = O. 

Now, let SA be the spinor such that SA SA' = k a. Here 
Va kb = 0 implies (in a neighborhood of l: - K) that 

VaSB = iVaSB' 

where Va is a real vector field. Anticommuting second de­
rivatives gives 

V[a Vb ISC = iV[aVb ISc' 

The left-hand side of the above equation actually vanishes. 
To see this, consider the standard spinor representation of 
the curvature tensors (see, e.g., Ref. 6), 

and 

Cabed = ¢ABCDEA'B·Ec'D' + C.c., 

Rab = - 2<1>A'B'AB + 6AEA'B,EAB , 

R = -24A. 

Then 

V[a Vb ISC = VI1BC EA'B'SD + <I>~'B'cEABSD 
+ A(EAC~ + EBC~)EA'D'SD' 

Since Cabedk" = 0 and Rab =fkakb' the right-hand side of 
the above equation vanishes. Thus 

V[aVb I = O. 

Now take a compact set B ( ~ K) of l: such that l: - B is 
simply connected (for instance, take B to be the coordinate 
R ball, B R for R sufficiently large). Therefore, Vb = V bg, for 
some gin l: - B. Finally, the following rephasing of SA: 
SA .... exp( - ig)SA, yields VaSB = 0 in l: - B. Q.E.D. 

The following definition (see also Refs. 5, 7, and 8) is 
relevant for the second lemma. 

Definition: A spinor field SA on l: - B, where B is a 
compact set of l:, is called asymptotically constant if 

SA .... SA + O( 1/r), 
r-oo 0 

where r is the asymptotically flat radial coordinate of l:, and 
SA is a constant spinor as defined by a tetrad associated with 
o 
the asymptotically flat coordinates on l:. 

Lemma: A covariantly constant spinor is asymptotical­
ly constant. 

Proof Introduce a norm (see, e.g., Ref. 9) on the spinors 
by (SA, 1] A ) = SA 1]A 't AA ' , where t AA' is the unit normal to l:. 
Choose two constant spinors S A and ~ at infinity such that 

o 0 

SA1]A = 1, and they are orthonormal with respect to ( , ). 
o 0 

Now 

SA = as A + P~, for some a andp. 
o 0 

For SA to be asymptotically constant, a and P should have 
the correct asymptotic properties, namely, 
a .... r_oo ao + O(1lr) and P .... r-ooPO + O(1/r), with ao 
and Po constant. We will first establish that the norm 

IsA I = (SA,SA )1/2 = (aa + PP)1/2 

has the right asymptotic properties. 
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Taking a derivative and noting that VaSA = 0, give 

Vb IsA 12 = SASA'Vbta' 

Projecting by h b' we obtain 

Db IsA 12 = s"1Tba , 

with s" = h i,k b. Now let Vb be any unit vector of l: (with 
respect to hab ); then 

vbDb IsA 12 = s"Vb1Tba' 

IvbDb IsA II = ISeh edvb1Tbd I 

< 1s"llvb1T/ I, 
where Imal, forinstance, is ( - habma mb ) 1/2 for any ma on 
l:. [Note that since the space-time metric has signature 
( + , - , - , - ) in accordance with the spinor convention 
hab , the induced metric on l: is negative definite; hence the 
negative sign in the above inner product for vectors on l:.] 
Now 

kaka =SASA'gabSBS B' 

=SAA'(hab +tatb)SASB' 

= _ 1s"12 + IsA 14. 

Since k" is null, 

Ixal = IsA 12. 

Thus 

IvbDb IsA 121< ISA 12Iv1T"l. 

By the assumption of asymptotic flatness, Iva 1Ta b 1= 0(11 
r). Therefore, there exists positive constants C and ro such 
that 

IvbDb lnls A II<C Ir for r>ro' (2) 

Now, suppose Vb = r" , the vector (a I ar) a • Though r" is 
not strictly a unit vector, its norm differs from unity only by 
terms of order (1/r) and higher. Therefore we can still use 
the above inequality, which yields 

l:rlnlsAII <~. 
Upon integration, the above gives 

C Ir - C Iro< In Is A(r,8,¢) 1- lnls A(ro,8,¢) I 

<Clro - Clr. 

It is then clear that limr_ 00 In ISA (r,8,¢) I exists. Let 

limr_co lnls A(r,8,¢)I =lnN(8,¢), 

which implies limr_ oo IsA (r,8,¢) 1= N(8,¢). The above in­
equality further asserts 

Is A(r,8,¢)I .... N(8,¢) + O(1lr). 
r_ 00 

The following argument establishes that N( 8,1,6) is, in 
fact, independent of 8 and 1,6. Define M(r) > 0 such that 

InM(r) = -1-I lnls A(r,8,¢) I sin8d8d¢. 
41T 

Now, 
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maxlln M(r) - lnlsA(r,O,~) II 
<C 'r maxlvaDa Inis A (r,O,~) II, 

where C' is a positive constant and va is any unit vector on 
the sphere S,; and 

maxllnM(r) -lnlsA(r,O,~)II<C"lr, 

where C" is a positive constant. Consequently for sufficient­
ly large r, 

maxlln M(r) -In N(O,~) I <C m Ir, 

C'" is a positive constant. 
Now it is obvious that N( O,~) is independent of (O,~) 

up to order l/r. Finally we conclude that 

where N is a constant. 
Similar considerations lead to the desired results 

a ..... ,-co ao + O(1lr), andp ..... ,_copo + O( l/r). Q.E.D. 

The previous two lemmas can now be employed to es­
tablish the theorem. Consider the following integral: 

S = r ds" tb TJ~a TJB', 
JS2 

with ds" the surface element of S 2, a sphere at infinity, ~ the 
unit normal to l:, and TJA a spinor. If TJA is an asymptotically 
constant spinor satisfying the Wittenequation,D AA' ~. = 0, 
whereDa =habVb,then5.7 

P';..OM is the ADM four-momentum of (M,gab) along l:, ~ 
o 

is the constant spinor to which TJA approaches, and K is a 
constant. But by the previous lemmas, there exists outside a 
compact set of l:, a covariantly constant spinor SA (thus 
satisfying the Witten equation), which is also an asymptoti­
cally constant spinor. Here S must vanish for this spinor SA, 
and thus 
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P';..OM SA SA' = O. 
o 0 
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But since P ';..OM is strictly timelike, 10,11 it therefore van­
ishes. In conclusion, by the positive mass theorem, (M ,gab) 

is fiat along l:. Q.E.D. 

IV. CONCLUSION 

Thus we have shown that a truly well-behaved isolated 
object which is a pop wave at infinity cannot exist. We would 
like to point out in closing that if one were to relax any of the 
conditions in the theorem, one could easily obtainp-p waves 
which are spatially asymptotically fiat. 3 Thus the conditions 
in the theorem are the weakest one can assume for the 
theorem to hold. 
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The Einstein field equations in the presence of a polytropic fluid performing self-similar 
motion are reduced to a dynamical system. Qualitative properties of the dynamical system are 
investigated in the case when the fluid motion is with shock waves. 

I. INTRODUCTION 

Solutions of Einstein's equations with shock waves can 
be relevant in several areas of astrophysics. In particular, 
relativistic fluid motions with shocks occur in (1) nonlinear 
evolution of an initial adiabatic perturbation in the radiation 
dominated phase of the universe (in the standard scenario, 
neglecting the presence of collisionless particles) I; (2) non­
linear collapse of an adiabatic perturbation in the matter 
dominated phase l

; (3) explosions in the intergalactic medi­
um and hydrodynamical models of galaxy formation2

; and 
( 4) bubble growth in the phase transition assumed to occur 
in some models of the early universe.3 

The problem of the evolution of cosmic thin shells has 
been tackled by using a general relativistic numerical code by 
Sato and co-workers.4-6 A thin shell is to be distinguished 
from a shock wave, because in the former there is a source of 
energy-momentum within the surface layer (and this is 
modeled as a 8-function discontinuity in the energy-momen­
tum tensor). Thin shells could be reasonable models for 
propagating detonation waves. 

Here we shall limit ourselves to shock waves which cor­
respond to the approximation of neglecting the source of 
energy-momentum within the surface layer compared to the 
total explosion energy. 

Cases (3) and (4) have been investigated by looking for 
similarity solutions in the framework of Newtonian fluid dy­
namics2

•
7

•
8 and special relativistic fluid dynamics, respec­

tively. 3 

From the mathematical point of view it is very difficult 
to study general relativistic fluid motion without any sym­
metry. Therefore we choose to work in spherical symmetry 
(which is a very good approximation in the case when the 
source of the motion can be considered a point explosion). 
Even with this limitation the resulting equations are partial 
differential equations (PDE's) and a full analysis is still very 
difficult and in general one has PDE's to resort to numerical 
calculations. 

In order to obtain a mathematically tractable problem 
we restrict ourselves to self-similar motion (which should be 
a good approximation asymptotically far from the source) 
and in this way the system ofPDE's is reduced to a dynami­
cal system to which we can apply the qualitative theory.9 In a 
previous paperlO one of us talked about the problem of the 
behavior of a self-similar shock wave in an expanding uni­
verse in the case of a barotropic fluid. In the present paper, 

among other things we also provide analytical proofs of 
some features of the fluid motion which were discovered by 
numerical integration. 

The plane of the paper is the following: In Sec. II the 
basic equations in the case of a polytropic state equation are 
derived. In Sec. III the barotropic fluid case is revisited and a 
Lyapunov function for the dynamical system is found. In 
Sec. IV qualitative properties of the expanding self-similar 
shock wave in a barotropic fluid are studied. In Sec. V con­
figurations with two expanding shock waves are analyzed. 
In Sec. VI some qualitative properties of the dynamical sys­
tem in the politropic case are discussed. In Sec. VII still in 
the polytropic case a numerical integration is performed for 
an expanding shock wave in a Friedmann dust universe. 

II. BASIC EQUATIONS 

In Ref. 11 it is shown that the most general self-similar 
spherically symmetric space-time, in a fluid comoving refer­
ence frame, is 

dr = e2",(z) dt 2 _ e2.p(Z) dR 2 - R 2&P(z)do2, 

d02 = dO 2 + sin2 0 dX2, 
(1) 

where z = R It, the fluid velocity is U a = (e - "',0,0,0) and 
the vector va = (t,R,O,O) is a homothetic Killing vector, 
that is, LVgab = 2gab , whereL v is the Lie derivative along V. 

In a reference frame adapted to the vector field V the 
metric (1) takes the following conformally static form9

: 

ds2 = e 2T(ev(r) dr - eA(r) dr - r d02 ), 

and the vector fields U and Vbecome, respectively, 

ua = (e- T
-

v12I..Jf=1,i1, 

ue- r - A12I..Jf=1,i1, 0, 0), 

Va = (1,0,0,0). 

(2) 

(3) 

(4) 

where u = u (r) is the spatial velocity of the fluid with re­
spect to the hypersurfaces r = const. 

In the following, the energy momentum tensor of a per­
fect fluid will be considered, that is, 

(5) 

where p and € denote, respectively, the pressure and the total 
energy density, which by self-similarity have the following 
form: 

p(1',r) = e- 2T p(r), €(1',r) = e- 2T E(r). (6) 
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Furthermore, it will be assumed the state equation 

p= (y-1)(E-ep), (7) 

wherep( 'T,r) = e - 2p (r) is the total density of matter, and y 
and e are constants such that 1 < y < 2 and e = 0 or e = 1. In 
the first case Eq. (6) is the barotropic state equation and in 
the last one is the polytropic state equation. 

In both cases the sound velocity a is given by 

a2 = yp/(p + E). (8) 

From Eqs. (7) and (8) it follows that 

E = (y - a2)(ji + E)/y, 

ji = a2(ji + E)/y, 

and ife = 1, 

p= (y-l-a2)(ji+E)/(y-1). 

(9) 

(10) 

(11 ) 

By letting z = In r, = d /dz, Q = re(A. - v)/2, W = V = r dvl 
dr, Einstein's equations ROo - R II = /!. ( TOo - Til)' R 22 

- ~R = /!'T22' the energy-momentum conservation laws 
TOo;o = 0, TOI;Q = 0, and the baryon number conservation 
law (pUQ);Q = 0 give the following evolution equations: 

Q=Q(l-W-Q2_ WQ(1 +u2)/(2u»), (12) 

w= -w(1 +w+Q 2 _ (Qlu)((1 + (w/2»)(1 +u2) 

+ (2a2/y)(1 - u2», (13) 

u = - (1- U2)(Q(U2 - 3a2 + 2(a2Iy)(1- u2») 

+ (w/2)u(1-a2) _2ua2)/(u2_a2), (14) 

a=a(y-l-a2)«w/4)(1-u2) _u2 _ (Qlu) 

X(u 2 - (a2/y)(1- u2 »))/(u2 _a2). (15) 

By letting L =~, Einstein's equation R II - !R = /!.T II' 
gives the constraint equation 

L= 1 +W_Q2+ (wQlu)(u2+ (a2Iy)(1-u2»)>0, 
(16) 

and the equation ROl = .!? TOl gives 

ji + E = - wQ(1 - u2)/(/!.ruL). (17) 

From Eqs. (9)-( 11) and (17) one obtains the functionsji, E, 
p when a solution of the dynamical system (12)-(15) is 
known. Furthermore, Eq. (17) gives the constraint 

sgn(u) = - sgn(w). (18) 

The mass conservation law (pUO);a = 0 may be written in 
the following form: 

(pip) + (Q lu) + (w/2) + 2 + ul(u(1 - u2 ») = O. 
(19) 

By deriving the expression for p which follows from Eqs. 
(11) and (17), one obtains 

w = - (pip) + (wlw) - (Q /Q) 

- 2aal(y - 1 - a2) - (1 + u2)u/(u(1- u2»), 
(20) 

and by Eqs. (14) and (15) 

ul(u(1 - u2») + 2a/(a(y - 1 - a2») 

= - 2 - (w/2) - 3(Qlu). 

From Eqs. (19)-(21) one obtains 
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(21) 

4 + 2(plp) - (Q /Q) + (u/u) 

+ (wlw) -2(1 +a2 )a/(a(y-l-a2»), 

which gives the following first integral: 

(22) 

Qw3a-21(r-I)(1_u2)2(y_l_a2)(3r-2)/(r-I)/(uL2) 

= e l <0, (23) 

where e I is an integration constant. 
The invariant manifold a2 = y - 1 (e l = 0) corre­

sponds to the barotropic case. On this invariant manifold 
equation (15) is identically satisfied and the dynamical sys­
tem becomes9 

Q = Q(l- w - Q2 - wQ(1 + u2)/(2u»), (12') 

w = - w(l + w + Q2 - (Qlu)((l + (wI2»)(1 + u2) 

+ 2k(1- u2)/(1 + k»), (13') 

u = - (1 - u2)( (1 - k)u(wI2) - 2ku + Q 

X (u2(1 - k) - k(1 + 3k»)/(1 + k) )/(u2 - k), 
(14') 

with the constraint equations 

L = 1 + w - Q2 + wQ(k + u2)/(u(1 + k»)>O, (16') 

E= -wQ(1-u2)/(/!.(1+k)urL), (17') 

sgn(u) = - sgn(w), (18') 

where k = y - 1. 

III. COMMENTS ON THE BAROTROPIC CASE 

The qualitative features of the dynamical system in the 
barotropic case has been studied extensively in Ref. 9. Here, 
after an outline of the behavior of the solutions, we prove a 
new result. The main features of the dynamical system in the 
region u < 0 are pictured in Fig. 1 (in the region u > 0 there 
are no physical solutions because they cannot be continued 
until the center even if a discontinuity is introduced). 

There are two kinds of solutions in the subsonic region 

( - Jk < u < 0): solutions which cross the plane u = - Jk 
in a point of the line I, and solutions which arrive in the 
region L r of the plane u = - Jk. These latter solutions can­
not be continued in the supersonic region (u < - Jk) be­
cause on L r the dynamical system change direction; the only 
way to continue these solutions is to join them across a dis­
continuity (shock wave) to a solution in the supersonic re­
gion. 

We recall that a shock wave is a timelike discontinuity 
hypersurface such that the first and second fundamental 
forms are continuous and such that the following continuity 
conditions hold true: 

(24) 

where the brackets indicate the jump across the discontin­
uity. The continuity of the first and second fundamental 
form is equivalent to the continuity of the variables Q, w, and 
L, and these latter together with Eq. (16') give the following 
jump conditions9•

lo
: 

[Q] = [w] = [(k + u2)/(u(1 + k»)] = o. (25) 

The first of Eqs. (24) does not give further constraints, and 
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FIG. 1. Phase space of the dynamical system (12')-( 14') (barotropic state 
equation). 

the second is an identity in the barotropic case. 
In the subsonic region the solutions in the interior of 

phase space which start from some singular point are the 
following. 

(a) Solutions filling the two-dimensional separatrix Z 
of the singular point ZI (it is possible to identify the separa­
trix Z in Fig. 1 by taking into account that it intersects the 
component of the boundary u = 0, W = 0, and L = 0, re­
spectively, in the line L I , L 2 , and L 3). 

(b) The limit line X of the separatrix Z which starts 
from the singular point Z3 and corresponds to the Oppenhei­
mer-Volkov solution. All other trajectories come from the 
unphysical region u > 0 across the line N (u = W = 0, 
Q>O). 

The behavior of the latter solutions has been studied in 
Ref. 10 and it has been proved that it is necessary to join 
them across a discontinuity at u = 0 to some solution of the 
full spherically symmetric Einstein equations and if this lat­
ter solution contains the center of symmetry it must possess a 
trapped surface and therefore a space-time singularity. 

However, it is possible to avoid the singularity by mak­
ing a change in the topology of solution in such way that the 
center of symmetry does not belong to the space-time. A 
trivial example in which this last solution may be realized is 
obtained by stopping the self-similar solution at u = 0 and 
then by continuing it with its mirror image. 

The qualitative behavior of the solution obtained in Ref. 
9 is based on the assumption that all solutions start (end) 
from (to) some singular point or from the characteristic 
plane u = - (k, that is, it is assumed that there are no com­
pact invariant manifolds near which solutions wind around. 

Now we shall prove that there are no invariant compact 
manifolds. Because on a compact manifold any continuous 
function has a maximum, to prove the statement it is suffi-
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cient to show the existence of a Lyapunov function, that is a 
C I function F( Q,w,u) defined in the interior of the dynami­
cal system which is increasing on the solutions ofEqs. ( 12')­
(14'). 

By Eqs. (12'), (13'), (14'), and (16'), 

L= -L(w+2Q 2 +wQ(I+u2)/u). (26) 

By deriving the function 

F= L l-kQ -1-kW3k-IU -2k(1 - U2)k-1 >0 (27) 

and by using Eqs. (12'), (13'), (14'), and (26), one obtains 

F= (1-k)(1 +3k)FQ(1-u2)/(u(1 +k»), (28) 

which is always positive in the region u > 0 and negative in 
the region u < O. Therefore, Eq. (27) gives a Lyapunov func­
tion in the regions u > 0 and u < 0 separately. 

In particular, if k = lone obtains the first integral 

w/(Qu) =c2<0. (29) 

IV. EXPANDING SELF-SIMILAR SHOCK WAVE IN THE 
FLAT FRIEDMANN UNIVERSE (BAROTROPIC CASE) 

The exact solution F of the dynamical system (12')­
(14') corresponding to the flat Friedmann solution has the 
form9 

Q = u/([3 - 1 - pu2), 

W = - 2"{3u2/ ( P - 1 - pu2
), 

U = (p - I)Jl, 

r( Jl) = C2Jl(1 - (P - 1)2Jl2)1/(2,8-2>, 

p = 2/(3(1 + k»). 

(30) 

This solution belongs to the separatrix Z and crosses the 
plane L of nonextensibility of solutions (u = - (k) in a 
point FI of the line of singular points 1. 

Proposition 1: The intersection of the separatrix Z with 
the plane L in the neighborhood of the point FI at 0 < k < j 
coincides with a segment on the line 1. 

Proof In coordinates a, /3, and parameter 1'1 such that 

a=~ /3= (1-k)w_J!5... 
Q' 2Q Q' 

d1'l Q 
Tz= - u2 _k' 

(31) 

the eigenvalues of singular points of the segment I are9 

A ± = {k (1 - k)( - 1 + (1 ± 2Zo(1 - k) -1)1/2), 

A3 =0, 

with 

Zo = (2k(1 + 3k)/(1- k»)a2 - (2{k/(1- k 2») 

X((1 + k)3 + 2k(3 + k2»)a + 6k 

+ 16k 2(1 + k 2)/( (1 - k)( 1 + k)2). 

(32) 

After substituting in Eqs. (32) the value of parameter 
a = (1 + 5k)/(3{k (1 + k»), corresponding to the singular 
point F I , one obtains, in the case 0 < k < j, the formulas 

A+ = - 2{k(1 + 3k)(l- k)/(3(1 + k»), 

A_ = -4{k(1-k)/(3(1 +k»). 

Anile, Moschetti, and Bogoyavlenski 
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The corresponding eigenvectors are 

V+ = (l/3k, - 4/(3(1 + k»),l), 

V_ = «(1 + 3k)/6k, - 2(1 + 3k)/(3(1 + k»),l). 
(34) 

From the formula (33) we have A. + > A. _, so the qualitative 
behavior of the dynamical system near the singular point FI 
is like in Fig. 2, where L + and L _ denote the invariant mani­
folds filled by the separatrix of the singUlar points of the 
segment!. 

By calculating the tangent to the trajectory F in the 
point FI it is easily seen that F corresponds to the eigenvalue 
A. +, so the trajectory F is tangent to the stable two-dimen­
sional invariant manifold L+ filled with the separatrices of 
singular points of the line I corresponding to the greatest 
eigenvalues A. +. 

Therefore all trajectories on the two-dimensional separ­
atrix Z, which are close to the trajectory F, are tangent to the 
invariant manifold L +. Hence all of them enter a segment I z 
of the line I in a neighborhood of the point Fl' This proves 
the statement. 

In the following we consider self-similar solutions with 
an expanding shock wave such that in front of the shock 
wave there is the Friedmann solution with state equation 
p = klE and inside there is the solution, with state equation 
p = k2E (k l < k2 <!), corresponding to the initial data deter­
mined by Eqs. (25). 

The initial data are not uniquely determined but depend 
on the radial velocity - U2 of the shock wave which respect 
to the interior fluid. Therefore there is a line G in the phase 
space such that the solutions defined previously (but with 
different Mach numbers) arrive at different points of G be­
fore the jump. 

L F 
+ 

LI . ___________ -"\<. ___ -+ ____ _ ( 

FIG. 2. Qualitative behavior of the dynamical system (12')-( 14') near the 
singular point Fl. 
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The line G intersects the plane L of nonextensibility of 
solutions u = - Jk; in some point Go in the region L', 
which is at a finite distance from the segment I z. 

Because Go depends continuously on parameter k2 and 
tends to ZI when k2 tends to kl' it follows that for k2;::::;k l 
there exists some segment Gx on the line G (beginning from 
the point Go) which does not intersect the separatrix Z (see 
Ref. 12). From this fact and from the presence of the Lya­
punov function, it follows that all trajectories of the dynami­
cal system (12')-( 14') starting from the line Gx , with de­
creasing parameter z, arrive to the singular line N. This 
proves the following. 

Corollary: All self-similar solutions, which may be 
matched with the Friedmann solution across a shock wave at 
k2 ;::::; k I and small enough Mach number, belong to the class 
of solutions which come from the region u > 0 (see Sec. III). 

This corollary gives an analytical proof of the numerical 
results obtained in Ref. to. 

v. SELF-SIMILAR SOLUTIONS WITH TWO EXPANDING 
SHOCK WAVES 

The existence of self-similar solutions with two shock 
waves in general relativity is connected with the presence of 
segment II of saddle singular points of the line!. For these 
points there exists a two-dimensional separatrix LI filled 
with the trajectories T passing through the segment II from 
supersonic to subsonic domain (see Fig. 3). 

We consider two points K I , K2 on such trajectory T, at 

the point Kl we have u < - /k, at the point k2' u> - /k. 
The points JK1 and JK2 correspond to the points K 1, K2 by 
means of jump conditions (25). We denote TI and T2, the 
trajectories passing through the points JK I and JK2 for de­
creasing and increasing self-similar parameter r, respective­
ly.2 

The whole self-similar solution is described by three tra­
jectories T 1, T, T2, and has two shock waves, corresponding 
to the jumps at the pointsJKI-+KI andK2-+JK2. In general 

~ l' 
-----

I 

/; KI 

FIG. 3. Solutions with two expanding shock waves. 
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the trajectory T I , for decreasing values of parameter r, tends 
to some point on the segment N and hence its behavior is 
described like in the Sec. III. But if the point JK I belongs to 
the separatrix Z then the trajectory TI tends to the point ZI 
for r .... O and the corresponding self-similar solution is con­
tinued to the center of symmetry without singularity. The 
trajectory T2 for increasing values of the parameter r tends to 
some point on segment DE (see Fig. 1), then it may be con­
tinued without singularity in the domain u > - 1. This tra­
jectory describes the solutions in front of the first expanding 
shock wave. 

These solutions depend on six parameters: one param­
eter determines the position of the singular point on the seg­
ment II, two parameters determine the positions of the 
points K I , K2 on the trajectory T, and three parameters kl' 
k2' k3 determine the state equationp = k€ for three trajector­
ies T I , T, T2• By means of variations of these six parameters 
one may try to obtain a self-similar solution with some extra 
properties. Some of these extra properties may be that the 
point JK2 belongs to the Friedmann trajectory or to the Op­
penheimer-Volkov trajectory, and the point JKI belongs to 
the separatrix Z. 

The problem of the existence of the points JKI and JK2 

with these properties may be solved by means of numerical 
calculations or by analytic methods at small Mach numbers 
M:::: 1. These new solutions with two expanding shock waves 
are analogs of the known Landau solution with two shock 
waves in classical gas dynamics. 13 

VI. SOME QUALITATIVE REMARKS IN THE 
POLYTROPIC CASE 

In this section some qualitative results related to the 
general dynamical system (12)-( 15), which are helpful for 
the investigation of the solutions described in the next sec­
tion, will be found. Because of Eqs. (16) and (23) the dy­
namical system is defined in the region - 1 < u < 1, Q> 0, 

L > 0, 0 < a < fY=T, which may be divided in two regions 
A: - 1 < u < 0 and B: 0 < u < 1. 

In region A we have the following results. 
(i) Equation (16) can be written in the following form: 

_W+Q2_ (wQ/u)(u2 + (a2/y)(1-u 2 »)<1 (16") 

and Eq. (18) will give the following bounds for the regionA: 

O<Q<l, -l<w<O, O<u<l, O<a<fY=T. 

(ii) The dynamical system changes direction on the hy­
perplane u = a, in fact it is easily seen that the numerator of 
the right-hand side ofEq. (14), 

- (1 - U2)(Q(U2 - a2 + 202(1 - u2 
- y)/y) 

(35) 

is positive in the region u < a (u < 0) and in a neighborhood 
of the hyperplane u = a in the region u > a (u > 0). There­
fore there are no solutions that cross the hyperplane u = a 
but all solutions exit in both sides of this hyperplane (Fig. 4). 

(iii) It is easy to see that in the region u < a there are no 
singular points and in the region u > a there are only saddle 
singular points with separatrices belonging to the boundary 
of phase space. This means that there are no interior solu-
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tions starting from some singular point, hence all interior 
solutions start with a positive value of parameter r from the 
hyperplane u = a. 

From (ii) and (iii), as in the barotropic case, the follow­
ing holds. 

Proposition: All trajectories lying in the interior of re­
gion u > 0 cannot be continued until the center even if a dis­
continuity (shock wave) is introduced. 

Solutions starting from the hyperplane u = a in the side 
u < a arrive to the region u < 0 across the hyperplane u = 0 
with a finite value ro of parameter r, because in this hyper­
plane there are no singular points of the dynamical system. 
For these solutions it must be w(ro) = aero) = O. The first 
equation follows immediately from Eq. (18), the second one 
follows from the first and from Eq. (23) by taking into ac­
count that by Eq. (16) the function wQ /u cannot tend to 
- 00 when r tends to roo 

Following this section we will study the behavior of the 
dynamical system in the neighborhood of the line N 
(w = u = a = 0). Before making this study it is necessary to 
regularize the dynamical system on N by taking the new 
parameter Z I such that dz/ dz I = U (u 2 

- a2
). 

In this way the points of N become singular points for 
the new dynamical system, but unfortunately they are de­
generate (all eigenvalues are zero). This difficulty may be 
avoided by considering the following new coordinates 
x = (Q - a)/a, y = w/a, z = u/a, a in a neighborhood of 
the singular point Q = a, w = u = a = O. In these new co­
ordinates the dynamical system becomes 

x = (Z2 - 1 )(xa + a)(z(l - ya - (xa + a)2) 

- (y/2)(xa + a) (1 + z2a2» - xFa/a, (12" ) 

FIG. 4. Behavior ofthe dynamical system (12)-(15) near the hyperplane 
u=a. 
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y = - Y«Z2 - l)(za(l + ya + (xa + a)2) 

+ (xa+a)((1 + (ya/2»)(1 +z2a2) 

+ (2a2/r)(1-z2a2 » + Fa/a), (13") 

Z = - z( (1 - z2a2
)( (xa + a)(z2 - 3 + (2Ir) (1 - z2a2 ») 

+ (yz/2)(1-a2
) - 2za) + Fa/a), (14") 

a =Fa(x,y,z,a), (15") 

where 

Fa =a(y-1-a2 )«yzI4)(1-z2a2) _Z3a 

- (xa+a)(z2- (l/y)(1-z2a2»). 

The system (12" )-( 15") after linearization has the follow­
ing eigenvalues: 

Ax = - a(y - l)ly, Ay = aly, 

Az = a(2y - l)ly, Aa = a(y - l)/y. 
(36) 

This means that for any a and therefore for any point P of the 
line N there exists a three-dimensional unstable separatrix 
that is an invariant three-dimensional manifold filled by tra­
jectories exiting from P. Furthermore for r-.ro, u, 
a<3r- 2)/(r- 0, w(3r- 2)lr are infinitesimal of the same order. 
From this and from Eqs. (9), (10), and (17) it follows that 
for such trajectories, for r-+ro, the pressure tends to a posi­
tive constant and the density of energy tends to infinity. By 
defining the total mass enclosed within the sphere of radius 
e'f"r as 

m(r,r) =eTr(l +re- v -e- A )/2, 

it follows that the function 

M(r) = 2ml(eTr) 

(37) 

= (w + (Qwlu)(u2 + (a2Iy) (1 - u2)))IL (38) 

must be negative on ro because the ratio wa
21u tends to a 

negative constant. In Ref. 10 it has been proved that the 
condition M(ro) < 0 implies the existence of a trapped hy­
persurface in the interior solution (0 < r < ro) holding the 
center of symmetry. 14 

Thus for trajectories coming from the region u > 0 we 
obtain the following conclusions. 

( 1) As in the barotropic case the only possibility of ob­
taining a complete solution is to join these solutions at r = ro 
with non-self-similar solutions containing the center of sym­
metry, across a shock wave [contact discontinuity because 
u(ro) = 0] or to change the topology of interior solution; in 
the first case the interior solution possesses a trapped sur­
face. 

(2) The behavior of these solutions near the contact 
discontinuity at r = ro is different from the corresponding 
barotropic solutions, II because in this case the density of 
energy tends to infinity. 

VII. EXPANDING SELF-SIMILAR SHOCK WAVE IN THE 
FLAT FRIEDMANN UNIVERSE (POLYTROPIC CASE) 

In Sec. IV we have considered solutions of the dynami­
cal system (12')-( 14'), which are matched with flat Fried­
mann solution across a shock wave with a small Mach num-
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FIG. 5. Behavior of energy density and pressure for the solution of the dy­
namical system (12)-( 15) with r =~, matched to the Friedmann solution 

with dust for u = - 0.3. 

ber. In this section we will look for solutions of the general 
dynamical system (12)-( 15) which may be joined to the flat 
Friedmann solution with dust (p = 0) across a shock wave, 
without restriction on Mach number. 

In the polytropic case the continuity of Q, w, and L give 
the following jump conditions: 

[Q] = [w] = [u + a2(1- u2)/(yu)] = o. (39) 

As in the barotropic case the first of Eqs. (24) does not give 
further constraint, but the second becomes 

I 
1, ......... , I 

L 
o 

FIG. 6. Like Fig. 5 with u = - 0.2. 
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FIG. 7. Like Fig. 5 with u = - 0.05. 

(40) 

Equations (39) and (40) are the jump conditions on a shock 
wave. The Friedmann solution with dust, is obtained from 
Eqs. (30) by letting k = 0: 

9rO' 4r 
QF = 902 + 2r' WF = 902 + 2r ' 

r 
U F = -Tu' 

(41) 

where O'(r) is defined implicitly by the equation 

02 = c3(902 - r)312 (42) 

and C3 is an integration constant. 
By calculating the density of matter ( = density of ener­

gy) and by taking into account that a = 0 it follows that the 
matching conditions (39) and (40) become 

(r - 1 - a2 ).JI=U'Z/(r - 1) = ~1 - u}, (45) 

where it is understood that the variable in Eqs. (44) and 
( 45) are calculated at r = r 0 (equation of shock wave). 

By using the third equation of (41) and Eq. (42), Eqs. 
(44) and (45) give 
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ro = - u(y - 1- u2)(r- 1)2 

+ (2r-l)u2)2/(9(1- u2)3/2(r_1)2 - U2)3) (47) 

and 

UF = u(y - 1 + u2)/(r - 1)2 + (2r - l)u2). (48) 

Equations (43), (46), and (47) give the initial data for the 
interior solution for any choice of u. 

From Eq. (46) it follows that 0 < a2 < r - 1 if and only 
if u belongs to the interval (1 - r,O). And from Eq. (48) it 
follows that - uF ( = velocity of the shock wave with re­
spect to the exterior fluid) is nonzero and less than the veloc­
ity oflight ( = 1) if u is different from 0 and 1 - r. 

Therefore solutions in the interior of the shock wave are 
parametrized by the variable u belonging to the interior of 
the interval (1 - r, 0). For some value of u in the previous 
interval and for r =~, the corresponding numerical solu­
tions of the system (12 )-( 15) have been found. These solu­
tions come from the region u > 0, then qualitative analysis 
made in the previous section may be used. 

The numerical behavior of the pressure and energy den­
sity for any solution is pictured in Figs. 5-7. 
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The gravitational field equations for a spherical symmetric perfect fluid are completely solved. 
The general analytical solution obtained depends on an arbitrary function of the radial 
coordinate. As illustrations of the proposed procedure the exterior and interior Schwarzschild 
solutions are regained. 

I. INTRODUCTION 

In this paper we derive the whole set of exact spherically 
symmetric solutions of Einstein gravitational field equations 
(with cosmological constant) when a perfect fluid is as­
sumed to be the source of the gravitational field. 

An extension of the solution to plane and hyperbolic 
symmetries can easily be obtained and our previous result l 

for the (exact solution of the) plane symmetric case is re­
gained. 

In what follows we pose the mathematical problem and 
then we mimic the procedure used in our recent work 1 to 
reduce the problem to mere quadratures. 

The line element considered here is 

(1) 

which represents the most general static line element admit­
ting spherical transformations. 

Einstein field equations with cosmological constant are 

G,J-V + Agp.v = Tp.v 

with 

(2) 

Gp.v =Rp.v -!8'vp.R. (3) 

In Ref. 1 we proved that if the right-hand side of Eq. (2) 
models a perfect fluid with pressure P and energy density p, 

Tp.v = (p + P )Up.uv - pgp.v' (4) 

and whose flow lines are tangent to the unit vector 
up. = (l/g)80, the change of variable 

p = p - A, P = p + A, (5) 

transforms Eq. (2) into an equivalent system with A = o. 
Therefore, twirls can now be dropped keeping in mind that 
the A =I: 0 case is already included. The field equations (2) 
for the metric given by (1) are (see, for instance, Ref. 1) 

2r" Ir + r'21r - l/r = - p, 

r,2Ir+2r'g'lrg-l!r=p, (6) 

r" Ir + g" Ig + r'g'lrg = p, 

and the equation of hydrostatic support (Bianchi identities) 
is 

0) Permanent address: Instituto de Ffsica, Universidad Austral de Chile, 
Casilla 567, Valdivia, Chile. 

(p + p)(g'lg) + p' = 0, (7) 

where the prime denotes x differentiation. 

II. INTEGRATION 

The system of equations can be reaccommodated if the 
first equation of ( 6) is mUltiplied by rr' and integrated over 
x. Then 

r'2 = 1 - 2m (r)/r, 

where 

dm = ..!..pr. 
dr 2 

(8) 

(9) 

Replacing Eqs. (7) and (8) in the second equation of (6) 
one obtains 

(1 2. 1) 1 
(r-2m) r - r dr p+p =p+ r· 

Defining 

G= - (r - 2m)/(p + l!r) 

Eq. (10) becomes 

rG(G-r) dp +r(G+r)(dG +r\M 
dr dr jY 

+ (G + r) (r + r ~~ - 2G ) = o. 

( 10) 

(11) 

(12) 

Equation (12) can be integrated at once for p(r) ifG(r) is a 
given function, in fact, 

(r) = ex [f (G + r)(dG Idr + r) ] 
p p G(r - G) 

x{ -f (G+r)(r+r(dGldr) -2G) 
Po rG(G-r) 

Xex [-J (G + r)(dG Idr + r) dr]dr} (13) 
P G(r - G) , 

where Po is an integration constant. 
The functionp(r) can be obtained with the help ofEq. 

(9) and the definition of G 

p ="!"(G dp + dG p _ 2G + dGldr + 1), (14) 
r dr dr r r 
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wherep(r) is given by Eq. (13). The metric coefficientg can 
be found by direct integration ofEq. (7) and then using Eq. 
(10) and the definition (11) 

g2(r) = to exp( - 2 f ;~~ dr) 

(15) 

To complete the integration we can recover the link 
between the metric coefficient r and the original variable x. 
From Eq. (8) 

x-f dr 
-j1-2mlr 

(16) 

with m (r) constructed from Eq. (11). 
As we have remarked in our previous work the crucial 

step to get the general solutions (13 )-( 16) is the definition 
(11) of the arbitrary function G(r).1t is worthwhile to em­
phasize that any choice of G(r) does provide a solution to 
field equations (6), (7) and no spurious solutions are intro­
duced anywhere as it can be straightforwardly shown by 
replacing p, p, g, and r given, respectively, by expressions 
(13), (14), (15), and (16) in the original field equations. It 
is rather simple and illustrative to see how the prescription 
works. 

By using the plane symmetric version of the above-de­
picted procedure,l the most general function G that pro­
duces a r law equation of state was found. 2 Also, the asso­
ciated fluid pressure, energy density, and metric coefficients 
were explicitly written down. In particular, after a change of 
variables, the solutions given by Tabensky and Taub,3 and by 
Teixeira, Wolk, and Som4 were reencountered. 

III. EXAMPLES 
A. Exterior Schwarzschlld solution 

In the present case, choose for instance 

G(r) = - r(r - 2M) 

(where Mis a constant) and 

Po=O. 

Under such conditions 

dG 
~+r--2G=0 

dr 
and consequently [see Eq. (13)] 

p(r) = O. 

Equations (14), (19), and (20) imply 

p(r) = o. 
Also, comparing Eq. (11) with Eq. (17) 

m(r) =M. 

Thus, Eq. (16) can be written as 

dx2= dr . 
1- 2M Ir 

Finally, from Eq. (15) 

g2 = (1 - 2M Ir). 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

As it can be readily recognized, Eqs. (20), (21), (23), and 
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(24) represent the well known exterior Schwarzschild solu­
tion. 

It is perhaps worthwhile to notice that in this case 
p + p = 0 and Eq. (10) seems to loose its meaning. How­
ever, by virtue of Eq. (7) the finiteness of the quotient p'l 
(p + p) is ensured if we assume g' I g to be finite everywhere 
(except for some r). 

B. Interior Schwarzschlld solution 

Now takeS 

G= _~ A.,Jl-?IR2-B(1-rIR2) 

A.,Jl-?IR2 -B(1-3rIR2) 

where A, B, and R are constants. 

(25) 

By choosing Po = 0 in the expression ( 13) for p (r), it is 
found after a lengthy calculation that 

() 
1 3B .,J 1 - ? I R 2 - A 

pr =- . 
R2 A-B.,Jl-?IR2 

Also, from Eq. (14) 

p(r) = 31R 2. 

Finally Eqs. (15) and (16) give 

g2(r) =to(A -B.,Jl-?IR2)2, 

1- 2mlr 

(26) 

(27) 

(28) 

(29) 

Equations (26)-(29) represent the interior Schwarzs­
child solution. 6 

As a final comment, let us say that any other solution 
can be cast in the above scheme as well. In fact, given any 
metric that solves Eqs. (6) and (7), the associated function 
G can be obtained from Eq. (15) as 

2 

G= -~ g (30) 
(d Idr) ('1f) 

The other relevant functions (p,p,h 2) are related to G 
through the above stated formulas. 

In Ref. 5 the generating functions G leading to Tolman, 
Einstein, Schwarzschild--de Sitter, many other known8 and 
some new explicit solutions are exhibited. 
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A si~~le ~riterion for colliding gravitational plane waves is developed. This colliding wave 
condltlon IS preserved by a new realization of the Geroch group augmented by a Kramer­
Neu~ebaue~ involutio~. A three-~ar~mete~ generalization of a two-parameter family of 
solutlons with noncolhnear polarIZatIOn discovered recently by Ferrari, Ibanez, and Bruni is 
presented, and two additional solutions are derived that demonstrate that much larger families 
are likely to be constructed in the near future. 

I. INTRODUCTION 

In an earlier paper' we discussed the derivation of new 
colliding wave solutions of the vacuum Einstein solutions 
from old ones through the use of coordinate and Ehlers 
transfonnations. As an example, we gave explicit results for 
the metric and the curvature tensor of the first new solution 
obtained by applying such transfonnations to the famous 
Nutku-Halil solution. 2 In the collinear limit the new solu­
tion reduced to the n = 2 solution of the Ferrari-Ibanez fam­
ily3 of solutions. (The Kasner parameter n was defined in 
paper I.) In principle, additional coordinate and Ehlers 
transfonnations would yield noncollinear generalizations of 
all the even n Ferrari-Ibanez solutions. Similarly, starting 
with the Chandrasekhar-Xanthopoulos n = 1 solution,4 a 
series of such transfonnations would in principle yield non­
collinear generalizations of all the odd n Ferrari-Ibanez so­
lutions. 

As we were going to press we learned that Ferrari, 
Ibanez, and Bruni5 had actually obtained closed fonn ex­
pressions for a two-parameter family of colliding wave solu­
tions with noncollinear polarization. Interestingly, for even 
n their solutions agreed with ours, while for odd n their solu­
tions were distinct. In particular, their n = 1 solution was 
not the Chandrasekhar-Xanthopoulos (Kerr) solution. We 
soon discovered that the Ferrari-Ibanez-Bruni family could 
easily be extended to a three-parameter family such that all 
the known solutions were special members of this family. 
That resolved the mystery, for it became apparent that the 
Ferrari-Ibanez-Bruni n = 1 solution bears the same rela­
tion to the Schwarzschild-NUT solution as the Chandrasek­
har-Xanthopoulos n = 1 solution bears to the Kerr solu­
tion. In our three-parameter family the n = 1 solution 
corresponds to Kerr-NUT! 

In Sec. II, Eq. (2.30) of this paper we shall describe a 
simple criterion for distinguishing a colliding wave solution 
from other solutions. That section will culminate in explicit 
metrical expressions, Eqs. (2.45)-(2.48), for our three-pa­
rameter generalization of the Ferrari-Ibanez-Bruni family 
of solutions. 

It is quite apparent that our three-parameter family of 

solutions can be further enlarged. In Sec. II we shall describe 
a simpler realization Go(l:,) of a Geroch group6 oftransfor­
mations which transfonn one colliding wave solution into 
another. That section will culminate in the description of a 
new three-parameter n = 2 solution, Eqs. (3.29)-(3.31), 
obtained from the Nutku-Halil n = 0 solution by employing 
transfonnations which are members of our realization of the 
Geroch group. The new parameter in this solution is denoted 
bya. 

In principle, one should be able to extend the three-pa­
rameter family of solutions described in Sec. II to a four­
parameter family with the additional parameter a. For inte­
gral values of n one can proceed as follows. One can employ a 
Kramer-Neugebauer involution 7 to obtain from the three­
parameter n = 2 solution a new three-parameter n = 3 solu­
tion. The augmentation of our realization of the Geroch 
group by the Kramer-Neugebauer involution is fonnulated 
in Sec. IV, which culminates in the new three-parameter 
n = 3 solution, Eqs. (4.12) and (4.13). Additional coordi­
nate and Ehlers transfonnations can, of course, be used to 
derive analogous three-parameter solutions for arbitrary in­
teger values of n. 

It remains to find an effective way to construct the four­
parameter generalization (including a) of our own three­
parameter generalization of the Ferrari-Ibanez-Bruni solu­
tions. In a subsequent paper we shall fonnulate a 
homogeneous Hilbert problem, the solution of which may 
bring this objective within our grasp. 

II. A COLLIDING WAVE CONDITION 

A. The set CW 1 of vacuum metrics 

We shall be considering certain vacuum solutions of the 
Einstein field equations for which there exist coordinates x' 

2 ' 
X , U, v such that the line element has the fonn 

gab (u,v)dxadxb + 2guv (u,v)du dv (a,b= 1,2), (2.1) 

a lax' and a lax2 are Killing vectors, gab has signature 
+ + ,guv <0, and 

p: = [gllg22 - (gl2)2j1/2>0 (2.2) 
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over the domain of the chart which consists of all (x I ,X2 ,U ,V) 

such that (X I,x2)ElR2 and (u,v) is a member of a union of 
four contiguous regions 

IUIIUIIIUIV, 

where 

I 

II 

III 
IV 

: = {(U,V)ElR2: u.;;;O, v.;;;o} , 

: = {(U,V)ElR2: u.;;;O, 0.;;; v < 1}, 

: = {(U,V)ElR2: O.;;;u<l, v<O}, 

: = {(U,V)ElR2: ° <p(u,v).;;;I, O.;;;u, O.;;;v}. 

(2.3) 

The intersection of these four regions of lR2 is the singlet set 
whose element is the origin (u,v) = (0,0). The coordinates 
x a have been scaled so thatp(O,O) = 1. 

One requires, of course, that the metric be continuous 
over the entire domain. In region I, it is assumed that gab and 
guv are uniform fields; i.e., 

gab (U,V) = gab (0,0), guv (U,V) = guv (0,0) , 

p(U,V) =p(O,O) = 1 for all (U,V)E I. 

In other words, the space-time domain in which (U,V) EI is a 
closed subregion of Minkowski space whose boundary con­
sists of two null hypersurfaces that intersect at the Euclidean 
two-surface U = v = 0. One can always subject the ignorable 
coordinates xa to an SL(2,R) transformation and the null 
coordinates U,V to a scaling transformation to make 

gab (U,V) = {jab' guv (U,V) = - 1 for all (u,v)EI. 
(2.4) 

This option will be kept open but not imposed now. 
It is next assumed that the metric components in region 

II depend only on v, while the metric components in region 
III depend only on u. Thus 

gab (U,V) = gab (O,V), 

guv (U,V) = guv (O,v) for all (u,v)EII, 

and 
gab (U,V) = gab (U,O), 

(2.5 ) 

guv (U,V) = guv (u,O) for all (u,v)EIII. (2.6) 

Thus regions II and III are each occupied by a p-p type N 
gravitational field, i.e., a plane-fronted gravitational wave. 
Consider the timelike coordinate t = ! (u + v) and spacelike 
coordinate s = ! (u - v). One defines "the future" as being 
in the direction of increasing t. For fixed t < 0, the two wave 
fronts are at s = t and at s = - t, respectively. As t increases 
and approaches 0, the spatial "interval" 12t I between the 
wave fronts decreases until they collide at t = 0. 

We now introduce an assumption which holds only for a 
restricted set of p-p type N waves in II and III. So far, we 
have made no particular choice of the null coordinates U and 
v. We now assume that if we define U and v by the equations 

p (O,v) = 1 - v2 in II, 
(2.7) 

p(U,O) = 1 - u2 in III, 

then the metric components in these regions are C 2-differen­
tiable8 functions over the intervals 0.;;; V < 1 and O.;;;u < 1, re­
spectively. We shall adhere to the choices (2.7) in this paper. 

We now come to the region occupied by the scattered 
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waves; viz., IV. The field equation which governs p is 

P 
. _ a2

p -0 
uv' - au av - . 

Hence, from Eqs. (2.7), 

p = 1 - u2 
- v2 in IV . (2.8) 

We next seek a C 2-differentiable solution in IV of the vacu­
um field equations for gab (u,v) and guv (u,v). This must sat­
isfy the continuity conditions for the metric at the bounding 
null hypersurface at U = ° and v = 0, respectively; i.e., the 
solution must match the prescribed gab (O,v), g uv (O,v) over 
the interval O';;;v < 1 and the prescribed gab (U,O), guv (u,O) 
over O.;;;u < 1. Moreover, the solution must satisfy the re­
quirementguv (u,v) <0 at all (u,v) in IV. Such solutions do 
not exist in all cases. 

Definition: CW I will denote the set of all vacuum met­
rics that satisfy all of the conditions prescribed above in Sec. 
II. 

Our main interest in this paper will be the members of 
CW I for which colliding wave polarizations are not collin­
ear. So far, every explicitly known vacuum metric regarded 
as representing the collision of two plane-fronted gravita­
tional waves with noncollinear polarizations is a member of 
CW1• 

B. The field equations 

The field equations governing the metrical components 
gab can be reduced to the Ernst equation 

F(d*pdE) =pdE(*dE) , (2.9) 

where E is the complex potential 

E = F + iw: = (g22) -I(p + ig12 ) , 

F:=ReE, 
(2.10) 

and * is a two-dimensional duality operator such that 

*du = du, *dv = - dv . 

In terms ofu and v, Eq. (2.9) becomes 

F[Euv -p-l(uEu +vEu)] = EuEv 

over the region IV. 

(2.11) 

(2.12) 

The only remaining independent field equations are 
those that can be used to compute guv when E is given: 

2uru = I-pIEj2FI 2, 

2v rv = I-pIEj2FI 2
, 

where r is the real field defined by 

- (p)I/2guv = exp(2r) . 

(2.13) 

(2.14) 

Equation (2.12) guarantees that the integrability condition 
for Eqs. (2.13) is satisfied. The solution ofEqs. (2.13) in an 
instructive form will be given later in Sec. II. 

c. The field equations in terms of ~ 

The Ernst potential 

~=f+iX' f=Re~:= -g22 

may be defined in terms of E by the equations 

fF= -p, f-1dX= -F-1*dw. 
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The Ernst equation (2.9) guarantees that the integrability 
condition for the second Eq. (2.16) is satisfied. As is well 
known, 'If is also a solution of the Ernst equation, and Eqs. 
(2.13) are expressible as 

2u r" = 1 - pi 'If J2/12 , 

2v rv = 1 - pi 'If v/2/12 , (2.17) 

where r is defined by 

- g21K"v = exp(2r) . (2.18 ) 

The reasons for introducing the potential 'If as well as the 
potential E are to be found in various methods that have been 
developed for transforming given solutions of the Ernst 
equation into new solutions of the equation. In particular, as 
we shall discuss in detail in Sec. III, new colliding wave solu­
tions with any desired finite number of parameters can be 
constructed by alternately subjecting E and 'If to certain ra­
tionallinear transformations. This is equivalent to a method 
originally devised by Geroch.6 

D. The determination of the colliding wave solution by 
E(u,O) and E(O,v) 

As is known from the theory of quasilinear hyperbolic 
equations such as Eq. (2.12), the solution E( u,v) in the scat­
tered wave region is uniquely determined by its values 
E(u,O), E(O,v) on the respective null hypersurfaces which 
constitute the interfaces between the colliding waves and the 
scattered wave. In particular, the first partial derivatives on 
the interfaces; viz., Ev (u,O), E" (O,v) are uniquely deter­
mined by E(u,O) and E(O,v), respectively. Specific equa­
tions which give these first partial derivatives in terms of 
E(u,O) and E(O,v) are of some interest and will now be de­
rived. 

The derivations proceed by first setting v = 0 in Eq. 
(2.12). The result is an ordinary differential equation that 
can be expressed in the form 

~ {In[ UEv(U,O)]} = iOJ,,(u,O) , 
du F(u,O) F(u,o) 

where the capital letters U and V will be used to designate the 
non-negative valued fields 

U: = (1- U2)1/2, V: = (1- V2)1/2. (2.19) 

By setting u = 0 in Eq. (2.12) a similar ordinary differential 
equation is obtained for E" (O,v). Integration ofthese ordi­
nary differential equations gives us our final results, 

UEv (u,O) Ev (0,0) { i" [i OJa (a,o)]} ---- = exp da , 
F(u,O) F(O,O) 0 F(a,O) 

VEIl (O,v) E" (0,0) { iV [i OJb (O,b)]} --=--- = exp db . 
F(O,v) F(O,O) 0 F(O,b) 

(2.20) 

Equations similar to the above hold for 'If; these are simply 
obtained by replacing E by 'If, F by 1 and OJ by X in Eqs. 
(2.20). Moreover, from Eq. (2.16) one obtains 

'If,, E" 2u 'If v Ev. 2v -+-= -+-= --. (2.21) 
1 F P 1 F P 

Therefore, 
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'If,, (O,v)lj(O,v) = - E" (O,v)IF(O,v) , 

'If v (u,O)II(u,O) = - Ev.(u,O)!F(u,O) . 
(2.22) 

From Eqs. (2.20) and (2.22) we obtain the following rela­
tions, which will be used later: 

k: = lEv (0,0)/2F(0,0) 12 = I UEv (u,O)/2F(u,O) 12 

= I U'lf v (u,0)/2/(u,0) 12
, 

I: = lEu (0,0)/2F(0,0) 12 = I VEIl (O,v)/2F(O,v) 12 

= 1V'lf u (0,v)/2/(0,vW . 

(2.23) 

The particular case of colliding wave with collinear po­
larization is defined by the statement that there exists a 
choice of the ignorable coordinates xa such that g 12 vanishes 
at all points. In this case, OJ = 0 and one can select the arbi­
trary additive constants in X so that X = 0 as well. Upon 
introducing the real scalar field r/J defined by 

- 'If = g22 = exp(2r/J) , (2.24) 

one finds that the Ernst equations for E and for 'If are each 
equivalent to the single linear equation 

r/J"v - p-1(Ur/Jv + vr/J,,) = 0 . (2.25) 

Moreover, Eqs. (2.23) become 

k= [r/Jv(0,0)]2= [Ur/Jv(U,0)]2, 

1= [r/J,,(0,0)]2= [Vr/J,,(0,V)]2. 
(2.26) 

E. A necessary and sufficient condition for a solution of 
the Ernst equation to yield a member of CW 1 

Let E by any solution of the Ernst equation over the 
domain 

{(u,v)ER2: 0<u2 + v2 < 1, O<u, O<v} , 

such that E is of differentiable class C 2 and such that 
F(u,v): = ReE(u,v) >0 for all (u,v) in the domain. From 
the Ernst equation (2.12), one can readily prove that 

:u (pF -21E v 12) = v F -2(E"Ev• + E" .Ev ) , 

:v (pF-
2
IE" 12) = uF-

2
(E"Ev• + E" *Ev ) . 

Now let us introduce the scalar field 

(2.27) 

1 i" i V 

A(u,v): =- da db [F(a,b)]-2[Ea (a,b)Eb*(a,b) 
400 

+ Ea*(a,b)Eb(a,b)] . (2.28) 

Then, from Eqs. (2.23) and (2.27), we obtain 

!pF-2IEvI2-I=vAv, 

!pF-2IE" 12 - k = uA" . 

Substitution of the above into Eqs. (2.13) yields 

r"={1-k)lu-A,,, r v ={1-/)lv-Av ' 

Hence, from Eqs. (2.14), one obtains the following result for 
g"v: 

(2.29) 
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The positive constant factor in guv is arbitrary unless one 
imposes an auxiliary condition to fix it. 

It is apparent from Eq. (2.29) that not every E yields a 
guv which fits our definition of the class CW1 of colliding 
wave solutions. The following key theorem results. 

Theorem: E determines a metric in CW 1 by the relation 

if and only if 

k=l=l. (2.30) 

Let us consider examples. 

F. Some old examples of Ernst potentials that yield 
colliding wave solutions In CW 1 and other examples 
that fall In that respect 

An Ernst potential which satisfies the conditions 
k = 1 = I is the Kerr metric ~ which is given by 

- ~. = (1 - 5)( 1 + 5) -I , (2.31) 

where 

5: =px+iqy, 

x: = uV + vu, y= uV - vu, 
(2.32) 

and where the real parameters q and p are related by 

(2.33 ) 

The colliding wave solution corresponding to this Ernst po­
tential wave analyzed in depth by Chandrasekhar and 
Xanthopoulos.4 

Another example is the Nutku-Halil solution,2 for 
which Chandrasekhar and Ferrari9 observed that 

(2.34) 

which equals the Kerr - If· given by Eq. (2.31). 
The potential given by Eqs. (2.34) is one member of a 

larger family of Ernst equation solutions called the Tomi­
matsu-Sato (TS) familia and which involves an additional 
real parameter {j. {j = 0 yields Minkowski space; {j = 1 yields 
the potential (2.34); and {j = - 1 yields (2.34) with 5 re­
placed by - 5' The fact is that the only members of the TS 
family for which k = I = 1 are those for which {j2 = 1. 

The TS family Ernst potentials are very complicated. 
Let us, therefore, look at the Zipoy-Voorheesll

,12 (ZV) 
family, which is the collinear version of the TS family. For 
the ZV family, 

tP=i. ln 1 +x or tP=i. ln l-y. (2.35) 
2 I-x 2 l-y 
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A brief calculation employing Eqs. (2.26) and (2.32) yields 

k=I={j2. 

Thus the only members of the ZV family in CW 1 are the 
Khan-Penrose13 (collinear specialization of Nutku-Halil) 
and Schwarzschild solutions, for which 

E = exp(2tP) and If = - exp(2tP) , 

respectively, where tP is given by Eqs. (2.35) with {j = ± 1. 
As an example which does not satisfy the colliding wave 

condition, consider the Kasner solutions, for which 

It is clear that k = 1= O. Infact, any Ernst potential that is 
expressible as a function of the Weyl canonical coordinates 

(2.36) 

and is an analytic function of z and p in a neighborhood of 
(z,p) = (0,1) satisfies k = I = o and cannot, therefore,yield 
a member of CW I' The reader can easily prove this assertion. 

G. Recent examples of members of CW1: A new three­
parameter family of colliding wave solutions 

The Nutku-Halil solution is itself a member of a two­
parameter family of noncollinear members of CW 1 which 
has been obtained by Ferrari, Ibanez, and Bruni.5 In paper I 
we reported our discovery of a three-parameter extension of 
their family, the derivation of which will be given in a sequel 
to the present paper. The Ernst potentials E and If of our 
three-parameter family are given by 

E(n,v,v') =pnT(n + l,v',v)IT(n - l,v',v) , 

If(n,v,v') =pl- n[T(n - 2,v,v')IT(n,v,v')]. , 

where n, v, v' are any real numbers, where we let 

p: = cos v, q: = sin v , 

p' = cos v', q': = sin v' , 

and where 

T(n,v,v'): ="'!"X[(P +p,)(I_X)nI2 
2 l+x 

+ (p - P')C ~ :y/2] 
+ ...!..y[(q + q,)( 1 _ y)nl2 

2 l+y 

+ (q-q')C ~~yI2], 

where x andy were defined by Eqs. (2.32), and 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41 ) 

When q' = 0 and p' = 1, i.e., v' = 0, the above family re­
duces to the one found by Ferrari et al., except that we 
should caution that their parameter p differs from ours. 
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Whenn =OinEqs. (2.37), (2.38), and (2.4O),oneob­
tains the Nutku-Halil solution. The parameter v' is not es­
sential for the Nutku-Halil solution, since it can be removed 
by an SL(2,R) transformation of the coordinates xa. How­
ever, both v and v' are essential parameters for all n #0. 

When Inl = I in Eqs. (2.37), (2.38), and (2.40), one 
obtains the Kerr-NUT family, except that we should warn 
the reader that it is v which is the NUT parameter in this case. 
(Therefore the n = I member of the solutions of Ferrari et 
al. is not the Kerr metric; it is the Schwarzschild-NUT met­
ric.) 

Finally, when n = 2 and v' = 0 in Eqs. (2.37), (2.38), 
and (2.40), one obtains a solution reported in paper I. When 
n = 2, one obtains a specialized version of a three-parameter 
family which we shall give in Sec. IV. 

In evaluating the metric tensor it is convenient to ex­
press Eq. (2.37) in the form 

E=AB- I
, 

where 

A =pn(n+2)/4T(n + l,v',v) , 

B=pn(n-2)/4T(n -l,v',v) , 

and T(n,v,v') is defined by Eq. (2.40). 

(2.42) 

(2.43) 

The metric tensor components gab' guv are computed 
fromEqs. (3.7) and (3.9) inpaperl. The components gab in 
region IV are there expressed in the form 

gll=pKIN, gI2=pLIN, g22=pMIN. (2.44) 

We obtain 

N= Re (AB*) 

= pn212 ! {X2[ (p + p')2 C ~ =r 
+ (p _p,)2 C ~=r] + Y2[ (q + q')2(! ~~r 

+ (q _ q')2(! ~ ~r] + 2(q2 _ q'2) (x2 _ y2) } 

= pn2121 T(n,v,v') 12 , (2.45) 

K = IA 12 = p(n
2
12) HI T(n + l,v',v) 12 , (2.46) 

M = IB 12 = p(n212) - nl T(n _ l,v',v) 12 , 

L = Im(AB*) 

(2.47) 

1 {[ (I x)n/2 =pn2/2"2 (x-y) (p+p')(q+q') I ~x 

(
l_y)nI2 (l+x)n12 X -- - (p-p')(q-q') --
l+y I-x 

xC ~~r/2] + (x+ y )[ (p -p')(q+q') 

X( 1+ x)nl2 (I - y)nl2 _ (p + p')(q _ q') 
I-x l+y 

(2.48) 

To obtain the explicit expression for IT(n + l,v',V) 12 in Eq. 
(2.46), simply replace n by n + 1 and interchangep withp' 
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and q with q' in that expression for IT(n,v,v') 12, which is 
given by Eq. (2.45). A like rule yields IT(n - l,v',vW in 
Eq. (2.47). 

The remaining metrical component guv is 

guv= _p-I/2NI(Uv) , (2.49) 

where N is given by Eq. (2.45). 
Interesting relations between members of the family 

corresponding to different n are given in Sees. III and IV. 

III. A REALIZATION OF A GEROCH GROUP 

A. Objectives 

Regarding the set of metrics CW I' our ultimate goal is to 
find an effective way of constructing an exact solution for the 
metric in the scattered wave region IV when the metrics of 
the two plane-fronted waves in regions II and III are given. 
Equivalently, we would like to be able to obtain ~ (u,v) 
when ~(O,v) and ~(u,O) are given. 

If the polarizations of the p-p waves are collinear, a gen­
eral solution of this problem is obtained by applying Rie­
mann's method to the hyperbolic linear equation (2.25), and 
this has already been done under varying assumptions by 
Szekeres l6 and by Xanthopoulos.17 When the polarizations 
are not collinear, the quasilinear Ernst equation cannot be 
converted by any known way to an equivalent linear partial 
differential equation involving only a finite number of de­
pendent and independent variables. One must seek a differ­
ent approach. 

The approach which we are seeking is a generalization 
of methods that several people, including two of the present 
authors, have applied to stationary axisymmetric gravita­
tional fields in the Einstein theory. There, the problem is to 
determine the Ernst potential ~ (z,p) when its values 
~ (z,O) on the axis are given. 

In the particular method developed by Hauser and 
Ernst,18 a 2 X 2 matrix function u (t) of a complex variable t 
is constructed by algebraic means from ~ (z,O). The func­
tion u (t) is an element in a realization of a group central to 
our entire discussion. This group was first effectively formu­
lated and applied by Kinnersley and Chitrel5 and is an exten­
sion of one originally conceived by Geroch.6 

The method continues with the use of u (t) to construct 
the kernel of a Fredholm equation of the second kind or an 
equivalent homogeneous Hilbert problem whose solution is 
a 2 X 2 matrix function F(t,z,p). The Ernst potential ~ (z,p) 
is one of the matrix elements of aF lat at t = O. [Also, the 
elements of the real part of aF I at at t = 0 are the negatives of 
the metric components gab (z,p).] 

Thus the problem of determining if (z,p) from if (z,O) 
is reduced to the (not necessarily easy) problem of solving a 
linear integral equation or homogeneous Hilbert problem. 
This method may be described as a synthesis of a group theo­
retical theme of Geroch and a type of inverse scattering tech­
nique. We wish to formulate a similar synthesis for the col­
liding wave problem. 

To approach the ultimate goal we have described above, 
we must first go through several stages. In this section we 
shall present the first stage which is to provide a realization of 
the original Geroch group, specifically one suitable for our 
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present purposes. The Geroch group is infinite dimensional 
and can be used to construct colliding wave solutions with 
any desired finite number of parameters. In fact, we shall 
give a simple example of the way in which the group realiza­
tion is used to build a new solution out of a given known one. 
However, we stress that our central objective here is to provide 
the first link in a conceptual chain. We are not concerned in 
this paper with providing any effective modes of calculation; 
that will come in sequels. 

B. A realization of SL(2,R) that Induces rational linear 
transformations of E 

The Geroch group is constructed by taking the free 
product of two groups of transformations, both of which are 
realizations of SL(2,R), and both of which transform a 
vacuum metric with a line elment of the form (2.1) into the 
same vacuum metric or into another one with a line element 
of the form (2.1). In this subsection we shall describe one of 
these realizations of SL (2,R ) . 

We start by considering the group of SL (2,R) transfor­
mations of the ignorable coordinates, or, equivalently, the 
set of transformations 

(+)=w(a;.), 
ax2

' ax2 

(3.1) 

where w is any member ofSL(2,R), 

w = w* = (~ !), a/) - /3r = 1 . (3.2) 

Correspondingly, the metric component guv remains invar­
iant while the metric components gab undergo the transfor­
mation into 

h ' h T h h ~1I g 12) =ww, were := . 
21 g22 

(3.3 ) 

As a result, E as defined by Eq. (2.10) becomes 

E' = i(aE + i/3)(rE + i/)-I, (3.4) 

where 

E': = (g~2 )-I(p + ig;2) . 

Thus we obtain, in general, a new solution of the Ernst equa­
tion, though, of course, the transformation has not changed 
the physical field; i.e., the transformation has not altered the 
value of the line element at any point of the manifold. It is the 
same space-time. 

What about the way ~ transforms under this group? 
From the defining relations (2.6) between E nd ~, one de­
duces that 

~'(u,v) = - [p/F'(u,v)] + iX'(O,O) 

+ i{ (U dar (1 - a2)w~ (a,O) ] 
Jo F'(a,0)2 

r" db [ (1- u
2 

- b 2)W~ (u,b) ]} 
+ Jo F'(u,b)2 ' (3.5) 

whereF' = Re E' andw' = 1m E' are given by Eq. (3.4) and 
where X' (0,0) is arbitrary. Thus the transformation of ~ is 
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non local. Incidentally, we shall henceforth adopt the conven­
tion 

x' (0,0) = X(O,O) (3.6) 

in Eq. (3.5). [However, w'(O,O) does not generally equal 
w(O,O) in Eq. (3.4).] 

Before we proceed with our discussion of the group, let 
us pause to introduce two helpful notations. 

Definition: l: will denote the set of all ordered pairs 
(E, ~) of C 2-differentiable solutions of the Ernst equation 
such that (1) region IV is the domain of E and ~; (2) 
F(u,v): = ReE(u,v) >0 andf(u,v): = Re ~(u,v) <0 for 
all (u,v) in IV; (3) the relations (2.6), whereE=F+iw 
and ~ = f + iX, hold throughout IV. 

For each (E, ~) in l:, ther!! is exactly one metric (2.1) 
such that 

E = (g22)-I(p + ig12 ) • 

Definition: For each win SL(2,R), let rl (w) denote that 
mapping whose domain is l: such that 

rl(w)(E,~) = (E',~'), (3.7) 

where E' is given by Eqs. (3.2) and (3.4) and where ~' is 
given by Eqs. (3.5) and (3.6). 

We shall also find it helpful to use the mnemonic 
symbols 

rl (w)E and rl (w) ~ 

to stand for the first member E' and the second member ~' 
in the ordered pair (3.7). 

Let us look at two examples of rl (w). A much used set 
of generators of SL (2,R) consists of its elements 

Wa:=(~ ~) for all aElRI, (3.8a) 

E:=(~l ~). (3.8b) 

From the definition of r 1 (w) given by Eqs. 
(3.2), (3.5), and (3.6), one can see that 

rl(wa)(E,If) = (E+ia,~), 
rl(E)(E,~)(E-\If') . 

(3.7), (3.4), 

(3.9a) 

(3.9b) 

As regards ~' = rl (E) If in Eqs. (3.9b), the expression for it 
is not trivial and is not required here. Note, by the way, that 

rl( ± I)(E,~) = (E,~) ; 

i.e., rl ( ± I) is the identity mapping on l:. 
In the following theorem, 0 denotes the mapping com­

position symbol, and the factors in a composition are read 
from right to left. 

Theorem: (1) r I (w) maps l: onto l: and is one-to-one. 
(2) For all wand v in SL(2,R), 

(3.10) 

(3) F -2(dE ® dE *) is invariant under rl (w). (3.11) 

We shall not supply any details of the simple proof of the 
above well-known statements. Equation (3.11) is most easi­
ly proved by showing that it is true for w = Wa and E. Note 
that lEu 12 and lEv 12 are components of the tensor product in 
Eq. (3.11). Therefore, the following corollary is implied by 
Eqs. (2.23) and (3.11). 
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Corollary: The colliding wave condition k = I = 1 is 
preserved by YI (w). 

YI (w) is our first realization ofSL(2,R). We next con­
sider the second realization of SL (2,R) which will be used to 
construct a realization of the Geroch group. 

c. A realization of SL(2,R) that Induces rational linear 
transformations of If 

Let us start by inspecting the simple transformation 

If-+If+ia. (3.12) 

If + ia is also a solution of the Ernst equation. Note that 
E -+ E under this transformation. 

Next consider 

(3.13) 

The reader can easily verify that If' = If - I is also a solution 
ofthe Ernst equation such that Re If' <0. This is the trans­
formation which was applied to the Nutku-Halillf potential 
in paper I in order to construct a new solution. It is the first 
transformation, among those explicitly considered so far in 
Sec. III, which actually changes the space time into a new one. 

Repeated alternate applications of the transformations 
( 3.12) and (3.13), with different values of the parameters a, 
generate the group of rational linear transformations 

'If-+ 'If" = i(a'lf + i/3)( y'lf + i8) -I , (3.14) 

where a8 - /3y = 1. It is apparent at this point that much of 
what we did in Sec. III B is applicable when E and 'If are 
interchanged. Therefore, we proceed onwards to a formal 
development that parallels what we did in Sec. III B. 

Definition: For each w in SL (2,R ), let Y 2 (w) denote that 
mapping whose domain is l: such that 

Y2(w)(E,'If) = (E ",'If") , (3.15) 

where 'If" is given by Eq. (3.14) and where 

E" (u,v) = - [pi/" (u,v)] + iw(O,O) 

i{ f" dar (1- a
2
)x;(a,0) ] 

+ Jo f" (a,0)2 

fV db [(I-U
2
-b

2
)Xi:(U,b)]}. 

+ Jo f"(u,b)2 (3.16) 

f" = Re 'If" and X" = 1m 'If" are given by Eq. (3.14). 
We have fixed the constant of integration in E" by the re­
quirement that 

m" (0,0) = m(O,O) . 

The reader should compare Eqs. (3.14) and (3.16) with 
Eqs. (3.4)-(3.6) and with Eq. (3.7). 

We shall find it helpful to use the mnemonic symbols 
Y2(w)E and Y2(W) 'If to stand for the first member E" and 
the second member 'If" in the ordered pair (3.15). 

The transformations (3.12) and (3.13) are now ex­
pressible as 

Y2(w~)(E,'If) = (E,'If +ia), 

Y2(€)(E,'If) = (E",'If- I ), 

(3.17a) 

(3.17b) 

which should be compared with Eqs. (3.9). Furthermore, 
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we have the following theorem and corollary corresponding 
to the ones given in Sec. III B. 

Theorem: (1) Y 2 ( w) maps l: onto l: and is one-to-one. 
(2) For all wand v in SL(2,R), 

Y2(W)OY2(V) = Y2(WV) . 

(3)f- 2(d'lf ®d'lf*) 

(3.18) 

(3.19) 

is invariant under Y2(W). 
Corollary: The colliding wave condition k = I = 1 is 

preserved by Y2(W). 
We now have two realizations ofSL(2,R); viz., YI (w) 

and Y2(W). The key idea of Geroch, when expressed in the 
language of our SL(2,R) realizations, was to construct a 
new group by alternate applications ofYI (v) and Y2(W) with 
different choices of v and w in successive transformations. 
This creates a nontrivial infinite-dimensional group. 

D. The realizations Go(:I) and GO(I1) of the Geroch 
group 

Definition: Let Go( l:) denote the set of all compositions 
oftheform 

Yr .. (wm)o" 'oYr, (WI) 

for all choices ofm>l, the SL(2,R) members wl, ... ,wm and 
the subscript values rl>r2, ... ,rm = lor 2 (taken in any or­
der). 

The following theorem is an immediate consequence of 
the ones presented in Secs. III B and III C. 

Theorem: Go(l:) is a group of one-to-one mappings ofl: 
onto l:. 

Definition: Let l: I denote the set of all members of l: that 
satisfy the colliding wave condition k = I = 1 as defined by 
Eqs. (2.23). 

Definition: Let Go( l:1) be the set of restrictions to l:1 of 
all members ofGo(l:). 

It follows from the preceding theorem and the corol­
laries in Secs. III B and III C that Go (l: I) is a group of one­
to-one mappings of l:1 onto l:1' 

E. An example of the generation of a new colliding wave 
solution by employing members of GO(I1) 

We shall start with the Nutku-Halil solution. The Ernst 
potential ENH = Eo was given by Eq. (2.34) and 'lfNH is 
given by 

'If 0 = XY - 2(pY - iqX - xY) (pX - iqY) -I, (3.20) 

wherex,y,X, Yare defined by Eqs. (2.32) and (2.41). We 
want to obtain 

(3.21) 

where w~ and € are defined by Eqs. (3.8), and w is any 
member ofSO(2,R), which we parametrize as follows: 

w = (cO~(v'/2) Sin(V'/2»). 
_ stn(v'/2) cos(v'/2) (3.22) 

Let 

(E ~,'If~): = YI (w)(Eo,'If 0) . (3.23) 

Then Eqs. (3.4), (3.7), and (3.22) yield 

E~ = YI(w)Eo = (1- $")(1 + $")-1, (3.24) 
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where 

t': = (p' - iq')t 

and 

p': = cosv', q': = sin v' . 

The corresponding 1f potential is 

1f6 =YI(w)1fo 

=XY - 2[pY - iqX - (p'x - iq'y)Y] 

X (PX - iq Y) -I . 

We shall comment on the mode of calculation later. 
Next, from Eq. (3.17a) we obtain 

(3.25) 

(3.26) 

Y2(Wi1 ) (E 6,1f6) = (E 6,1f6 + it::..) , (3.27) 

where E 6 and 1f 6 are given by Eqs. (3.24 )-( 3.26). It is easy 
to see that Y2(w i1 )E 6 = E 6 since adding an imaginary con­
stant to 1f 6 does not alter the metric components. That does 
not mean, however, that this imaginary constant will not 
show up in the metric after further transformations. In fact, 
from Eqs. (3.17b) and (3.18), 

Y2(E)(E6,1f6 + ill) = (Y2(E)E6,(1f~ + ill)-I) 
= (E2,1f2 ), (3.28) 

where we have combined (3.24), (3.27), and (3.28) to give 
us (E2,1f 2) as defined by Eq. (3.21). The computation of 
E2 = Y2(E)E ~ is not trivial. The result is 

E2 =AB- I , 

where 

B = (p' + iq') - (px + iqy) , 

A= _Bp2+2[(p'_2px+p'X2)y2 

+ i(q' - 2qy + q'y2)X 2] 

(3.29) 

(3.30) 

+ 2ill[py(x2 
- 2) + iqX(y2 - 2) + xy(p' + iq')] 

+ 1l2(p' + iq' + px + iqy) . (3.31) 

When Il = 0, q' = 0, and p' = 1, the above result re­
duces to the solution given by Eqs. (3.7)-(3.9) in paper I. 
When Il = 0, the result reduces to the n = 2 solution given 
by Eqs. (2.37)-(2.41) in the present paper. 

For Il = 0, q' = 0, andp' = 1, we computed the results 
given above by several means, including direct integration, 
as in Eqs. (3.5) and (3.16). However, to obtain the solution 
with all parameters, we employed a more powerful and effi­
cient method which involves solving a homogeneous Rie­
mann-Hilbert problem to effect the transformation 
(Eo,1f 0) -+ (E ~,1f~). This method will be detailed in a sub­
sequent paper. 

From theA andB given by Eqs. (3.30) and (3.31), both 
gab andguv can be computed by simple algebraic means with 
the aid of equations given by Ernst. 19 Also, one can employ 
Eqs. (3.7) and (3.9) in paper I. 

Of course, gab can always be algebraically computed 
from E by using the definition (2.10) of E. 

As regards the computation of g uv' we shall now see that 
there is a striking shortcut that is generally applicable to the 
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transformation of a metric induced by Yr (w) for any w in 
SL(2,R). 

F. The transformations of 9uv Induced by 'Y1(W) and 
'Y2(w) 

First consider YI(W). Since Eq. (3.11) implies that 
IEuI2P-2 and IEv12p-2 are invariant under YI(W), Eqs. 
(2.13) and (2.14) imply that 

g~v =guv , (3.32) 

where (E ',1f') = YI (w)(E,1f). This is to be expected, since 
E-+YI(w)Eis equivalent to an SL(2,R) transformation of 
the ignorable coordinates. 

ConsiderY2(w). In this case, it is lEu 12/-2and 11f v 12j-2 
that are invariant, since 1f -+ Y 2 ( w ) 1f. Hence, from Eqs. 
(2.17) and (2.18), 

(3.33 ) 

G. Some interesting relations Involving 'Y1(E) and 'Y2(E) 

For the Kasner metrics of index n, 

E=En=pn,1f=1fn=-pJ-n. 

Therefore 

YI(E)(En,1fn ) = (E_ n,1f -n)' 

Y2(E)(En,1fn) = (E_ n+ 2,1f -n+2)' 

Y2(E)oYI(E)(En,1fn ) = (En+ 2,1fn+ 2). 

(3.34) 

(3.35 ) 

The interesting thing about the above relations is that they 
essentially carry over to other families of metrics that are 
obtained by applying a significant class of Kinnersley­
Chitre transformations to the Kasner metrics. 

For example, consider the family given by Eqs. (2.37)­
(2.41). From Eqs. (2.39) and (2.40), 

T( - n,v,v' + 17') = T(n,v,v') , 

T(n,v,v' ± 217') = T(n,v,v') , 

T(n,v + 1T,V' + 17') = - T(n,v,v') . 

Therefore, from Eqs. (2.37) and (2.38), 

YJ (E)(E(n,v,v'),1f (n,v,v'») 

= (E( - n,v + 1T,V'),1f ( - n,v + 1T,V'») , 

Y2(E)(E(n,v,v'),1f (n,v,v'») 

(3.36) 

(3.37a) 

= (E( - n + 2,v,v' + 1T),1f( - n + 2,v,v' + 17'»), 
(3.37b) 

Y2(E)OYI (E)(E(n,v,v'),1f (n,v,v'») 

= (E(n + 2,v,v'),1f(n + 2,v,v'»). (3.37c) 

The general theory behind these remarkable results will be 
given in a subsequent paper. 

IV. AUGMENTATION OF THE GEROCH GROUP BY THE 
KRAMER-NEUGEBAUER INVOLUTION 

A. The augmented Geroch group realization G1(l:) 

The set Go(~) does not contain two obvious idempotent 
mappings of~ onto ~ which we shall denote by Ycc and YKN 

and which are defined by 
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Yee (E,'lf'):_= (E·,'lf'·), 

YKN(E,'lf'): = (- 'If'., -E·). 
(4.1 ) 

Note that (Yee)2 = (YKN)2 is the identity mapping on :I, 
and 

YeeoYKN (E,'lf') = ( - 'If', - E). 

Here rKN will be called the Kramer-Neugebauer involution 
and it is central to the discussion in Sec. IV. 

Definition: G I (:I) will denote the group of all composi­
tions 

/m o ·· ·0/1' 

for all m> 1, such that/H ••• '/m are any members of 

Go(:I)U{Yee'YKN} . 

Since Eqs. (2.2) imply that the colliding wave condition 
k = I = 1 is preserved by both Yee and rKN. we obtain the 
following theorem. 

Theorem: Yee and YKN map:I1 onto :II; i.e., GI (:II) is a 
group of one-to-one mappings :II onto :II. 

B. The transformation of gull' Induced by 'YKN 

A relation we shall now derive supplies the new guv re­
sulting from a Kramer-Neugebauer involution in terms 0/ 
theoldg22 andguv . Thus it resembles Eq. (3.33), which does 
the same for the transformation Y 2 (w). 

We start with Eqs. (2.21), from which we derive 

..!..[I_pWuI2]=..!..[I_PIEuI2]_~_Fu . 
u 4j2 U 4F2 P F 

(4.2) 

From Eqs. (2.17), (2.18), and (4.2) we obtain 

(g~2 )1/2 g~v = (g22)1/2guv , (4.3) 

where (E','lf") =YKN(E,'lf'). However, g~2 =P(g22)-I. 
Therefore 

, -1/2 
guv=P g22guv' (4.4) 

which is our final result. 

C. The effects of 'YKN on the Kasner Index n 
From the expressions for En and 'If' n given by Eqs. 

(3.34) for the Kasner family and from Eqs. (3.35), 

rKN(En,'lf'n) = (E_n+I,'lf' -n+I)' 

YKNOYI(E)(Enf'lf'n) = (En + p'lf',,+ I ). 
(4.5) 

This effect on n carries over to other families which are ob­
tained from the Kasner one by Kinnersley-Chitre transfor­
mations. As an example, for the family given by Eqs. (2.37)­
(2.41), with the aid ofEqs. (3.36) and (3.37) one finds 

YKN(E(n,v,v'),'lf' (n,v,v'») 

= (E( - n + l,v,v' + 1T),'lf' ( - n + l,v,v' + 1T»), 

YKN OYI (E)(E(n,v,v'),'lf' (n,v,v'») 

= (E(n + l,v,v'),'lf'(n + l,v,v'»). 

Note that, from Eq. (3.37c), 

r2(E)orl(€) = [rKNOYI(E)]2. 

(4.6) 

(4.7) 

The generalization of the above relations for arbitrary Kin-
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nersley-Chitre transformations will be proven in a subse­
quent paper. 

D. A new n=3 solution 

We shall now apply the transformation YKNOYI(E) to 
the n = 2 solution ofEqs. (3.28)-(3.31). We first compute 

YI (E)(E2,'lf' 2) = (E 2- I'YI(E) 'If' 2) , (4.8) 

where E2 was given explicitly by Eqs. (3.29)-(3.31), and 

'If'2=('lf'o+ia)-I, (4.9) 

where 'If'o was given explicitly by Eq. (3.26). The result for 
YI (E) 'If' 2' i.e., for the second member of the right-hand side 
ofEq. (4.8), was obtained from the solution of a homogen­
eous Riemann-Hilbert problem and is given by 

YI(E)'lf'2 

= -4rp-p3+(4-iap)(p-ia) 

+ AB -1{[2(p - ia)3(pY + iqX + p'xY + iq'yX) 

+ 8zp(p - ia) (p'yX + iq'xy)] (pX + iqy)-I 

- 4rp2 - 4(p - ia)2}, (4.10) 

where B and A are given explicitly by Eqs. (3.30) and 
(3.31), and 

p2 + q2 = p,2 + q'2 = 1 . 

Next we apply YKN to obtain 

(E3,'lf' 3): = YKNOYI (E) (E2,'lf' 2) , 

where 

E3 = - (rl(E)'lf' 2]·' 

'If'3= - (AB- I ].; 

(4.11) 

( 4.12) 

(4.13) 

and YI(E) 'If' 2 is given by Eq.(4.1O), whileA andB are given 
by Eqs. (3.31) and (3.30). 

V. FUTURE DEVELOPMENTS 

Even when other more elementary methods suffice in 
principle, we have often found it convenient to solve a homo­
geneous Hilbert probleml4 (HHP) instead. In the next pa­
per of this series we shall present the formulation of the HHP 
that we have utilized in deriving new colliding wave solu­
tions. In particular, we shall provide a detailed derivation of 
our three-parameter generalization of the Ferrari-Ibai'iez­
Bruni two-parameter family of solutions. The HHP is cer­
tainly an important piece of artillery to have in one's arsenal 
as one attempts to enlarge further the family of known col­
liding wave solutions of the Einstein equations. 
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The definition and some general properties of the generalized Weyl correspondence between 
stochastic processes and operator-valued real functions on a Hilbert space plus a trace class 
operator are given. The relation between the derivatives of an operator-valued function and the 
derivative of the corresponding stochastic process are studied. When the operator-valued 
function is the position (or momentum) in the Heisenberg picture, a condition for the 
positivity of the joint distribution functions of the corresponding process is given, provided that 
the evolution Hamiltonian be quadratic in the position and momentum. Finally, the case of an 
arbitrary Hamiltonian evolution for the position operator is studied and the two-dimensional 
density functions of the process is related to the Wigner function associated to some state p, 
and a necessary condition for the positivity of the densities is given. 

I. INTRODUCTION 

The idea of a generalized Weyl correspondence (OWe) 
has already been presented in previous papers. 1-3 This corre­
spondence shows a relation between random variables and 
linear operators on a separable Hilbert space ~ as well as 
between signed measures on a certain sample space and trace 
class operators on ~. We here recall its definition. 

Let (X) )jeJ be a set of real random variables and (Xj )jeJ 

a set of linear operators on~, where I is an arbitrary index 
set. If there exists a trace class operator p such that for any 
finite set of indices {j;, ... ,jn}CI and any real numbers 

E{exp[i(aj,X}, + ... + ajnxj) P 
= tr{p exp[i(aj,xj , + ... + aj.xj) P (1) 

holds, then we say that there exists a owe between the 
random variables and the operators. Here E{ ... } means ex­
pectation value. Each of the random variables acts on a sam­
ple space n which is endowed with a finite measure such that 
'" (n) = 1. Here", is not necessarily non-negative [i.e., there 
may exist a measurable set A en such that '" (A) < 0] . 
Usually, n will be the Cartesian product of the ranges ofthe 
variables (X) ) je J and X} the projection of n on its jth coordi­
nate, although this construction of n is not always neces­
sary. 

References 1-3 deal with the general properties of this 
owe as well as with particular examples. On the other 
hand, it is a generalization of the classical Weyl correspon­
dence (eWe) which assigns a Hermitian operator to a real 
function of the coordinates of the position Q and the momen­
tum P in phase space.4--6 Here Q and P have the role of the 
random variables X}. The ewe also assigns a finite measure 
on the phase space to any quantum state (positive operator 
on ~ with trace 1). As in the general case, this measure is 
not non-negative in general. Here, the index set I contains 

2N elements, where N is the dimension of the configuration 
space. 

A stochastic process is a set of random variables. 7 

Usually, this set is indexed by an interval I of the realline 
which eventually is the whole realline R. For any tE I, we 
have a random variable we call X (t). Here X (t) is a measur­
able mapping from a certain sample space n into R. 

To adapt the original definition of owe to this particu­
lar case is now simple. Let x (t) be a set oflinear operators on 
~, where tE I. Here X(I) and x(t) are related through a 
owe if there exists a trace operator p on ~ and a signed 
measure", on n such that 

E{exp[i(aIX(tI) + ... + anX(tn »)]} 

= L exp[i(aIXU1) + ... +anXUn»)]d", 

= tr{p exp[i(a1xU1) + ... + anx(tn »)]} (2) 

for any finite set of times {tl, ... ,tn } and whatever real 
numbers of al, ... ,an , where n is also arbitrary. 

We define a stochastic vector as an N-dimensional vec­
tor whose components are stochastic processes. For any tE I, 
(X1U), ... ,xNU») is a measurable mapping from n onto a 
subset of RN . 

A stochastic field is a further generalization of a stochas­
tic process. Let A be any set. A stochastic field is a set of 
stochastic proceses indexed by A. In particular, a stochastic 
vector is a stochastic field with A = {1,2, ... ,N} and a sto­
chastic process is also a stochastic field with A = {t,6} (or any 
set containing one element only). The denomination of a 
stochastic field is properly used when A CR 3. Then the map­
ping a-+XU,a) assigns a stochastic processs to any point of 
the region A which is the physical space in which the phe­
nomenon described by the stochastic field XU,a), aEA, oc­
curs. 

For a stochastic process X(I), we define the finite-di-
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mensional distribution function as 

F(xt,tt) =1t{X(tt)';;;xt}, 

F(xtt t; . ;xn,tn ) =1t{X(tt).;;;xt;···;X(tn ).;;;xn}, 

for all t t,t2 , ••• ,tn in J, and the joint densities as 

( ) _ aF(xt,tt) 
P xt,tt - , 

aX t 

a nF(xt,tt; ... ;tn ,tn ) 
p(xt,tt;···;xn,tn ) = ------­

ax t .. ·axn 

(3) 

(4) 

The partial derivatives in (4) should be understood in 
the sense of the derivatives of distributions, which coincides 
with the usual sense of the derivative when the finite-dimen­
sional distribution functions are absolutely continuous. If It 
is a positive probability measure all the distribution functions 
are non-negative. 

The finite-dimensional distribution functions do not fix 
the process X(t) uniquely. There are many examples of two 
different stochastic processes having the same finite-dimen­
sional distribution functions. 

Let us go back to Eq. (2). It can be written as 

( exp{i(ajx t + '" + anxn)} 
JR" 

Xp(Xt,tt; .. ·;Xn,tn )dx1" ·dxn 
= tr{p exp[i(atx(tt) + ... + anx(tn )l]}, (5) 

whence 

p(Xt,tt;···;Xn,tn ) 

= _1_ ( exp{ - i(a1x1 + '" + anxn)} 
(21T)n JR" 
Xtr{pexp[i(atx(tt) + ... +anx(tn»)]} 

Xda t' ··dan. (6) 

Equation (6) is a consequence of the properties of the 
Fourier transform, and gives us the following information: 
Since the finite-dimensional distribution functions and 
hence their corresponding densities do not fix a process 
uniquely, in general we shall have more than one process 
associated to the set of operators x (t) andp through a G we. 

Ifwe have a stochastic vector, the measure It on n deter­
mines the following distribution functions: 

F(Xtt"",XN1 ,tt;",;Xls"",XNs,ts) 

= It{Xt (tt)';;;XW···,xN (tl )';;;XNI ;···;Xt (ts) 

';;;xls,.··,xN(ts ).;;;xN,} 

and the corresponding densities: 

p(XW···,xNI tt;···;Xts;",;XNs,ts) 

aSXNF(xtt,·.·,xNS) 

ax l1 " ·axNs 

(7) 

The definition of Gwe can also be used to associate 
stochastic vectors to operator-valued real functions with N 
components, as for example the position or momentum op­
erators on L 2(RN) in the Heisenberg picture. Let X(t) 
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= (Xt(t),···,xN(t») be a stochastic vector and ~(t) 
= (xt(t), ... ,xN(t») be an N-dimensional operator-valued 
real function, where t runs over an interval J of the real line. 
Here X(t) and ~(t) are related through the Gwe if there 
exists a signed measure It on n with It (n) = 1 and a trace 
class operator p on 7t" such that 
E{exp[i(al1X tUt) + ... + aNtXn UI ) 

+ ... +alsXI(ts) + ... +aNsXNUs»)]} 

= ( exp(i(a l1x lI + '" + aNlxNI JR NXS 

+ ... +alsxts + ... +aNSxNs )]' 

f p(x l1 ,···,xNt ,tt;",;xIs"",XN"ts )dx lI " 'dxNs 

=tr{pexp[i(a l1x l(tl) + ... +aNlxNUt ) 

+ ... +atsxt(ts) + '" +aNsxN(ts»)]} 

for any {t t, ... ,t,} CJ and any real numbers a 1I, ••• ,a Ns' 
From (9), it follows that 

= 1 ( da l1 ' "daNs 
(21T)NXS JRNX' 

(8) 

(9) 

xexp{ - i(a l1x lI + ... + aNsxNs ) 

+tr{pexp[i(a l1x t(tt) + ... +aNsxN(tS»)]}' 

(10) 

The present paper contains three main sections. In Sec. 
II, we study the relation between the derivative of the pro­
cess and the derivative of the operator-valued function x(t). 
Section III starts with a one-dimensional problem. Here, 
x(t) is the position operator ofa particle on the Heisenberg 
picture. The time evolution of xU) is controlled by a qua­
dratic time independent Hamiltonian. In this case, the den­
sity function of each of the random variables in the process 
X( t) can be interpreted as the classical probability density of 
finding the particle in the configuration space at the time t, 
provided that all the joint densities of the process are posi­
tive. We give a sufficient condition for this positivity: The 
Wigner function of p must be positive at t = O. This result is 
easily generalized to the case of N dimensions. In Sec. IV, we 
discuss a necessary condition for the positivity of It whenp is 
a pure state and we are in the situation described in Sec. II. 

II. GENERAL CONSIDERATIONS 

We start with the assumption of the existence of a GWe 
for a stochastic process XU) or a stochastic vector 
(XI (t),···,xn (t»). This means that Eqs. (2) and (9) make 
sense and, in particular, their right-hand sides are well de­
fined, which in (2) happens if exp{i(ajx(tl) + '" 
+ anx(tn»)} is a bounded operator for all the a j and all the 
values of the time parameter. There are two interesting situa­
tions in which this occurs: (1) all the xU) are bounded for 
all tE J, and ( 2 ) all the operators of the form 
atx(tt) + ... +anx(t,,) are essentially self-adjoint on a 
common domain dense in 7t". This occurs, in particular, 
when x(t) = h(t)x(O) + g(t)jJ(O) + 1] (t)I, where X(O) 
andjJ(O) are, respectively, the position and momentum op­
erators in one dimension, I is the identity operator, and h (t), 
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g(t), and 1/(t) are real functions. This case and its general­
izations to N dimensions is studied in this paper. 

In order to simplify our notation, we mainly deal here 
with stochastic processesX(t). However, most of our results 
are trivially extensible to stochastic vectors. 

We can look at the random variable X (to) for each toE J 
in two ways. First, X(to) can be properly considered as 
something which "transports" measure from 0 to R. Under 
this point of view, what really matters of X(to) is its prob­
ability distribution and its joint distributions with the other 
random variables in the process. The other possibility is to 
look at X(to) as a measurable function from 0 into R. Both 
points of view are quite different, since the first one depends 
critically on the measure,u on 0 while the second is indepen­
dent on,u. To visualize the difference, one can imagine a 
situation in which XU) =X(O) 'rJtEJ in measure (this 
means that ,u{w/[X(t)] (w) ¥- [X(O)] ~w) for some 
tE J} = 0 if,u is positive; if,u is not positive and,u =,u 1 - ,u2 
is the Jordan decomposition of ,u, we have to require that 
,ui{W/[XU)](w)¥-[X(O)](w), for some tEJ}=O with 
i = 1,2) and the measurable functions are all different. Such 
a process can be easily constructed.8 

Henceforth, a stochastic process will be a set of measur­
able functions X (t) on a sample space 0; where t belongs to 
an open interval J of the real line; plus a bounded signed 
measure,u on 0 with,u (0) = 1 (a signed measure is bound­
ed if,u =,ul - ,u2, where,ul and,u2 are positive and finite). If 
,u is a probability measure, we say that the process is verita­
ble. All the finite-dimensional distribution functions and 
their corresponding densities are well defined provided the 
boundedness of,u. A process is veritable if and only if all the 
densities are positive (a.e. with respect to the Lebesgue mea­
sure). 

The stochastic relation among the X(t) can appear in 
many other ways. An interesting case arises when the identi­
ty X(t) = hl(t)XI + ... + hn (t)Xn holds in measure, 
where hi U), ... ,hn (t) are realfunctions onJ andXI, ... ,xn are 
n random variables on O. The interest of this kind of process 
will be evident later. 

For any tE J, the GWC mapsX(t), considered as a mea­
surable function on 0, into xU), provided that certain con­
ditions are satisfied. 1.2 Assume now that XU) and xU) ad­
mit a derivative with respect to t in some sense. Are these 
derivatives related through a GWC? If the derivative for 
x(t) exists at some point, does it for X(t) and vice versa? Our 
next objective is to give an answer to these questions. In 
order to make our procedures and results comprehensible to 
a wide audience, we start with the basic definitions. 

III. DEFINITIONS 

( 1) Let X (t) be a veritable stochastic process. If all the 
second moments existed, we define a norm for the random 
variables in the process as 

(11 ) 

If X(t) were not veritable, we still could define a norm 
for each of the random variables X(t), provided that their 
second moments existed with respect to the measures,u 1 and 
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,u2' where,u = ,u 1 - ,u2 is the Jordan decomposition of,u. The 
square of this norm is given by 

IIX(t) 112 = L X2(t)d,u1 + L X 2 (t)d,u2 (12) 

and the second moment of X(t) with respect to,u is 

E{X 2(t)} = L X2(t)d,u1 - L X 2 (t)d,u2 

= L X 2
(t)d,u. (13 ) 

In the two cases considered here, we have that 
E{X(t)X(t ')} < 00 forany t,t 'E J and 

(14) 

(2) X(t) is continuous at t = to if IIX(t) - X(to) 11-0 
when t --+ to. Here X( t) is continuous if it is so at any tE J. 

(3) X(t) admits a derivative at to if there exists a ran­
dom variableX(to) with finite second moment such that 

limll [X(to + s) - X(to)]ls - X(to) II = o. 
s_o 

If X(t) admits a derivative at any tE J, we have a stochastic 
process X(t) that we call the derivative of X(t). 

Definitions (2) and (3) are independent of whether the 
process is veritable or not. 

( 4) Let Y( t,s) be a collection of stochastic processes 
indexed by a continuous real index s. A process X(t) is the 
limit of Y(t,s) when s goes to zero if 

lim II Y(t,s) - X(t) II = o. 
s_o (15) 

Ifall the Y(t,s) are veritable, its limitX(t) is also verita­
ble. In this case, the joint characteristic function 

E{exp({aIY(t\,s) + ... + an Y(tn's)})} 

=f{Js.t, ..... tn(al, .. ·,an ) (16) 

converges pointwise to the characteristic function 

E{exp(i{a\X(t\) + ... + anX(tn )})}. (17) 

This result is also true even if the Y(t,s) were not veritable. 
(5) Now assume that all the operators in the family x(t) 

are defined in a common domain ~ dense in the Hilbert 
space Yr. Here xCt) admits a strong derivative or simply a 
derivative at toE J ifthere exists a linear mapping ~(to) from 
~ to Yr such that 

lim II{[x(to + s) - x(to)]ls - ~Cto)hp II = 0 (18) 
s-o 

'rJ rpE~. In (18) we have used the standard Hilbert space 
norm. If x (t) admits a derivative at any tE J, we say that it is 
derivable. 

When all the x (t) are bounded and there is a bounded 
operator ~(to) such that in the norm operator sense 

limll [xCto + s) - x (to) ]Is - ~(to) II = 0, 
s-o 

(19) 

we say that ~(to) is the uniform derivative of x(t) at to. The 
existence of the uniform derivative implies that ofthe deriva­
tive but the converse is not true. 
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Definitions ( 1 )-( 5) are standard and appear in the text­
books.9-12 

Our next goal is to prove that, under certain conditions, 
if X(t) and x(t) are related through a GWC so are their 
derivatives. Henceforth, we shall assume that for any tE J the 
operators x (t) and ~ ( t) and their linear combinations are 
essentially self-adjoint on a common domain IP dense in JY. 
In this case exp{i(a1x(tl) + '" +anx(tn»)} and 
exp{i(al~(tl) + ... + an~(tn»)} are well defined unitary 
operators on JYfor any real values of al> ... ,an and arbitrary 
tl> ... ,tn in J. For our purpose, we need to begin with some 
results in functional analysis. 

Theorem I: Let {A n } neN, A be self-adjoint operators and 

Corollary n· 

IP a common core for them. If An -A for any lpEIP, then 
/'A nlp _eitAlp, VlpeJYand VteR. 

The proof can be seen in Ref. 12. 
Corollary L' Assume that V lpEIP , 

{a1x(t1 +s) + ... +anx(tn +s)}lp 

-+{a1x(tl) + ... + anx(tn )}lp, (20) 

wherever s -+ 0 V lpEIP. Then 

exp(i{a1x(t1 +s) +anx(tn +s)})lp 

-+exp(i{a1x(tl) + ... + anx(tn )})lp 

VlpEJY and any al, ... ,an in R. 

(21) 

(22) 

Corollary IlL' Assume that p is a trace class normal operator (in particular p can be positive). Then 

Proof: Since p is normal, the following spectral decom­
position worksl2: 

00 

p= L AkltPk)('hl, (24) 
k=1 

whereptPk = AktPk' 1::,= IIAk 1< 00, and IItPkll = 1. Assume 
that all the A k but a finite number are zero. Then, Corollary 
III follows from Corollary II trivially. The proofin the gen­
eral case is a little more involved. In order to simplify the 
notation, we shall here demonstrate (23) for n = 1. The case 
of n =1= 1 does not require more sophistication. 

Therefore consider 

tr { p exp {ia [_x....:.(_t ...;.+_s-,-~_-_x..:..(t-,--) ]}} (25) 

and usedy(s) = [x(t + s) - x(t) ]Is. Thus 

tr{peia,(S)} = i Ak(tPkleia'(S)ltPk) 
k=1 

00 

= L Ik(s), (26) 
k=1 

(27) 
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(23) 

Sincey(s) is self-adjoint and a is a real number, eia,(S) is 
unitary. Thus I/k(s)I<IAkl and 

Itr{peia'(S)}I< i I/k(s)l< i IAkl < 00. 

k= 1 k= 1 
(28) 

Hence the Weierstrass M criterion 13 says that the series 
(26) converges uniformly in s. Since 

lim(tPk leia,(S) ItPk) = (tPk leiai(t) ItPk) 
s_o 

exists for any k = 1,2, ... , the limit of the series exists for s-+O 
and is tr{p exp{ia~(t)}}. 

Theorem II: Assume the following. 
( a) X (t) is a stochastic process on nand,u is a bounded 

signed measure on n. 
(b) The derivativeX(t) exists at each tEJ. 
(c) P is a normal trace class operator on JY. 
(d) The operators x(t) and their real linear combina­

tions are e.s.a. on a common domain IP dense in JY. 
(e) The derivative ~(t) exists for any tE J and any real 

linear combination of these operators is e.s.a. on JY. 
(f) There exists a GWC relatingX(t) tox(t) and,u top. 
Then, the GWC relates X(t) and ~(t) with,u and p 

being the same. 
Proof: After Corollary III, the following limit is well 

defined: 
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1
. A .{ X(tl+ S)-X(tI)+ + AX(tn+S)-X(tn)} 
1mtrp exp I a l ... an -------
._0 S S 

=tr{pexp{i[al~(tl) + ... +an~(tn)]}} 

=!~E{exp{il[ X(tl +S: -X(tl) + ... +an X(tn +S: -X(tn)]}}, 

the derivative of X(t) exists by hypothesis. Thus after the comments in Definition 4, this limit is 

(29) =E[exp[i(aIX"(tI) + '" +anX(tn»]]' 

(29) 

(30) 

The next question we want to answer is if the existence of ~ (t) says something about the existence of the derivative of 
X( t). In the next theorem we do not assume the existence of the moments of X( t). 

Theorem III: Assumptions (c)-(f) in Theorem II are also valid here, but X(t) is veritable. Then the functions 

. { [.( X(tI+S)-X(tI) X(tn+S)-X(tn»)]} 
!~ E exp I a l S + ... + an S = cpt" ...• t. (al,· .. ,an ) (31) 

are the characteristic functions of a certain process. 
Proof Since p is a normal operator, the limit (31) equals to 

00 

tr{pexp{i(al~(tl) + ... +an~(tn»}}= L Ak(tPklexp[i(al~(tI) + ... +an~(tn»]ltPk)' (32) 
k=1 

where the A k are the eigenvalues of p and the tPk their corresponding eigenvectors. If we prove that (32) is continuous on 
Zi = (al, ... ,an ), Theorem III would be proved. 

The series in (32) converges uniformly on Zi. To show this assertion, we use the Weierstrass M criterion as we did it in the 
proof of Corollary III. Furthermore, we know after the Stone theorem that 

(tPklexp{i{al~(tI) + ... +an~(tn)}}ltPk) 
is continuous on Zi. Therefore the series in (32) is continuous on Zi, since it is the limit of a sequence of continuous functions on 
Zi converging uniformly on ii. 

This result cannot be extended to the case in which", is nonpositive. In this case the limit (31) could not be the difference 
between two characteristic functions. 

Obviously, if X( t) is derivable, (31) are the joint characteristic functions of the derivative. However, we cannot claim that 
we have proved the existence of the derivative of X(t). 

Its existence requires a further assumption. We start the discussion with four lemmas. 
Lemma I: Assume that we are in the conditions of Theorem III and that any real combination of the form 

alx(tl) + ... +anx(tn) +f3I~(tI) + ... +f3n~(tn) is self-adjoint. Then the limit 

limE [exPi{aIX(tI) +f31 X(tl +s) -X(tl) + ... +f3n X(tn +s) -X(tn)}] (33) 
.-0 S S 

is well defined and represents the characteristic function of a stochastic vector with two components. 
Proof: It is simple to realize that 

1· t {A .{ A(t) +f3 X(tl +s) -X(tl) + ... +f3 x(tn +s) -X(tn)}} 1m r p exp I aix I I n 
._0 S S 

= tr{p expi(alx(tl) +f3I~(tI) + ... +anx(tn) +f3n~(tn»)} (34) 

is continuous at zero function of (ai' f31,. .. ,an, f3n). 
If X(t) admits a derivative, this stochastic vector is (X(t),x(t»). 
Remark: If (X(t),1T(t») is some stochastic vector having (33) as joint characteristic functions, we can write 

E{exp(i{aIX(tI) + f31 1T(tI) + ... + anX(tn) + f3n 1T(tn )})} 

= tr{p exp i{alx(tl) + f31~(tI) + ... + anx(tn) + f3n~(tn )}}. (35) 

Iffor any tE J, X(t), and 1T(t) admitted moments of second order, we would have 

(1) E{(X(t+S: -X(t) -1T(t)Y}, (36) 

(2) - ::2 E {exp(ia [XU + S: - XU) - 1T(t) D} la=o = E {(XU + S: - XU) -1T(t) y} . (37) 
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Lemma n· Let A be a self-adjoint operator andp a trace 
class normal operator with ,0 = 1:k= IAkl'l/lk)<'I/lkl with 'I/lk 
E.@ (A), the domain of A. Iftr{ piA In} < 00, 

~ tr{peiaA}la=o = (i)n tr{pA n}. (38) 
dan 

Proof: See Appendix A. 
Lemma IlL' Let ,0 be as in Lemma II, with 'I/lk in the 

domains of two self-adjoint operator A and Band B'I/lk 
E.@(A). If tr{pA 2}<00 and tr{pB 2} < 00, then 
tr{ pAB} < 00. 

Proof: See Appendix B. 
Lemma IV: Under the conditions in Lemma I, if 

tr{ px2 (t) } and tr{ px2 (t) } are both finite andp is a normal 
trace class operator, then 

tr {p[ (x(t + s~ - x(t») - ~(t) r} (39) 

for any tE J and s in a neighborhood of zero. 
Proof: It is obvious after Lemmas II and III. 
Theorem IV: We are under the conditions of Theorem 

III and the two following hypothesis: (a) X(t) and 1T(t) (see 
remark after Lemma I) have finite second moments VtE J; 
and (b) either 

N 

,0 = L Akl'I/lk)<'I/lk I 
k=1 

with N finite and the 'I/lk belong to proper domains so that 
Lemmas II and III can be used, or the operators x(t) and 
~(t) are bounded and the derivative exists in the norm oper­
ator sense. 

Then, X(t) = 1T(t). 
Proof: A proper choice of the constants in (35) yields 

E{exp(ia[X(t+s~ -X(t) -1T(t)])} 

t {
A (. [x(t+S) -x(t) ;'(t)])} =rpexpla -x. 

s 
(40) 

If we take second derivatives on a at the point a = 0, we 
have 

E{(X(t+S~ -X(t) -1T(t)Y} 

=tr{p[x(t+s~-X(t) -~(t)r}. (41) 

Hypothesis (b) implies that the lhs of (41) has a limit when 
s -+ 0 and that this limit is zero. Since the derivative of a pro­
cess is unique, Theorem IV follows. 

Theorem V: We are under the conditions of Theorem 
IV, but we ignore that 1T(t) have finite second moments. 

Then, the derivative of X(t) exists. 
Proof: A sufficient condition for the existence of the de­

rivative is the existence of the limit lO 

lim .l {E [X(t + s)X(t' + 1")] - E [X(t + s)X(t')] 
S,T-O S1" 

- E [X(t)X(t' + 1")] + E [X(t)X(t')]} 

= lim E {X(t +s) -X(t) X(t' +X) -X(t')}. 
S,T_O s 1" 

(42) 
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The existence of a GWC betweenX(t) and x(t) implies 
that 

E{exp(ia{aIX(tI) + a~(t2)})} 

= tr{p exp(ia{alx(tl) + a~(t2)})}' (43) 

where a, ai' and a2 are arbitrary real numbers and t l , t2 
belong toJ. 

Deriving twice with respect to a yields 

E{(aIX(tI) + a~(t2W} 
= aiE(X2(t1») + 2ala~(X(tI)X(t2») 

+ a~E(X2(t2») 

= tr {p(alx(tl) + a~(t2W} 
= ai tr{p(X(tIW} + a la2 

xtr{p(X(tI)X(t2) +X(t2)X(tI»)} 

+ a~ tdp(X(t2)f}. 

The arbitrary character of a I and a 2 gives 

E{X(tI)X(t2)} =! tr [P{X(tI)X(t2) +X(t2)X(tI)}]' 

From (45), one obtains 

(42) =! lim tr {p{ [x(t + s) - x(t) ] 
S,T_O s 

(44) 

(45) 

+ [x(t' +1"~ -x(t')][ x(t+s~ -x(t) ]}}. 

(45') 

Under the stated conditions this limit exists and is 

pr [P{~(t)~(t') +~(t')~(t)}]. (46) 

One may ask whether an operator-valued real function 
x(t) can exist fulfilling all the required conditions. We have 
already mentioned that if x and p are the position and mo­
mentum operators in one dimension, respectively, and x(t) 
= h(t)x + g(t)p + 'TJ(t)I, where h(t), g(t), and 'TJ(t) are 

real functions, any real linear combination of the x(t) is 
e.s.a. on the Schwartz space S(R) .14 Furthermore, if h (t), 
g(t), and 'TJ(t) arederivable,~(t) = h(t)x + g(t)p + ",(t)1 
and any real linear combination of the x(t) and the ~(t) is 
e.s.a. on S(R). Moreover, the x(t) and the derivatives to all 
orders (if they existed) leave S(R) invariant. 

Remark: We know that the CWC in one dimension as­
signs to p a signed measure p, on the phase space R 2. Here R 2 

can naturally be viewed as the Cartesian product of the 
ranges of the measurable functions representing, respective­
ly, the position Q and the momentum P of a one-dimensional 
classical free particle. Here p, represents the quantum state of 
the particle given by p in the Hilbert space formalism. If p, 
were positive definite, the quantum mechanical state p 
would be equivalent to the classical statistical state given by 
p, on the phase space R 2. The CWC gives the following rela­
tion: 
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E{ei(aQ+Pl] = L ei(aQ+PPldf-l 

= L ei(aq+PPlp(q,p)dqdp 

= tr{pei(a.i+~l}. (47) 

The density p(q,p) is called the Wigner functionS asso­
ciated to the operator p. 

Assume now that x(t) = h(t)x + g(t)ft + 1/(t)1 and 
·take Y(t) = hU)Q + g(t)P + 1/(t)f, where f maps R 2 

into 1. Since we know p (q ,p ), the joint distribution functions 
of the Y(t) can be calculated, provided thatf-l were bounded. 
LetX(t) be any stochastic process having the same distribu­
tion functions as YU). The XU) and x(t) are related 
through a GWC. 

The proof is based on the idea according to which the 
joint distribution functions fix the joint characteristic func­
tions uniquely, if two stochastic processes have the same dis­
tribution functions, they have the same characteristic func­
tions. Hence 

E{exp(i{aIX(t,) + .,. + anX(tn )})} 

= E{exp(;{a , [hU,)Q + g(tI)P + 1/U, )f] + ... 
+ an [hUn)Q + g(tn)P + 1/Un )f])} 

= tr{p exp(i{a , [h(ta)x + g(tl)ft + 1/(t1)1] + .. , 
+ an [h(tn)x + g(tn)ft + 1/(tn)1 ]})} 

= tr{p exp(i{a,x(tl) + ... + anx(tn )})}. (48) 

IV. QUADRATIC HAMILTONIANS AND VERITABLE 
PROCESSES 

This section deals with a particular case. Here x (t) rep­
resents the position operator in the Heisenberg picture. The 
evolution from x(O) to x(t) is given by a time-independent 
Hamiltonian H. We assume that H is a quadratic function of 
the position and the momentum, i.e., H = aft2 + PX2 
+ o(ftx + qx) + rft + 1/X + E. Herep is usually a positive 
trace class operator on J¥', although its positivity is not nec­
essarily required. The question we want to pose here is the 
following: If x(t) is related to a stochastic process X(t) 
through the GWC, when is this process veritable? The an­
swer obviously depends on p. 

If X(t) were veritable, we could give a physical meaning 
to it whenever p is positive. For any tE J, the distribution 
function of XU) would give the probability of finding a clas­
sical particle in some region of the configuration space. This 
classical particle has at any IE J the same expectation values 
for the position as a quantum particle evolving under the 
action of the Hamiltonian H and whose state in the Heisen­
berg picture is given by the positive trace class operator p. 

If X(t) were not veritable or p were not positive, we 
could not give a physical meaning to X( t). 

The processX(t) is veritable if and only ifitsjoint den­
sity functions are positive definite. We shall calculate these 
joint densities for the case of a quadratic Hamiltonian. We 
start with the most simple cases including those of the free 
particle and the harmonic oscillator before solving the prob-
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lem in its full generality. We finally find a sufficient condi­
tion for these density functions to be positive. 

In the case of N dimensions, the position operator has N 
components (x, (t), ... ,xN (t») and the condition for the posi­
tivity of the joint densities is the same as in the one-dimen­
sional case. 

A. The one-dimensional case 

1. Calculus of p(x,t) 

In order to find the densities of the random variables in 
the processX(t), we assume thatp is positive first as in (2). 
Thus we have . 

,., 
p = L AkItPk)<tPk I 

k=' 
withAk>O, and (2) gives 

E{eiaX(tl} = f:,., eiaxp(x,t)dx = tr{peiax(tl} 

,., 
= L Ak(tPkleiax(tlltPk)' (49) 

k=' 

In the SchrOdinger representation for states and obser­
vables, tPk is a function inL 2(R) andx(O) is the multiplica­
tion by the variable x. Furthermore, if we use the Schro­
dinger picture, we have that 

(tPkleiax(t)ltPk) = f:,.,ltPk(X,t)IVaxdX. (50) 

Hence 

f:,., eiaxp(x,t)dx = kt, Ak f:,., ItPk (x,t) 1
2
e

iax 
dx. 

(51 ) 

Since Ak>O and 1:;:,= IAk = 1, we can apply the monotonic 
convergence theorem so as to find the following result: 

f:,., eiaxp(x,t)dx = f:,., kt, Ak ItPk (x,t) 1
2
e

iax 
dx. 

(52) 

Hence 
,., 

p(x,t) = L Ak ItPk (x,tW· (53) 
k=' 

Note that this result is independent on the evolution 
Hamiltonian H. The case in which p is normal but not posi­
tive is not more involved and yields the same result. How­
ever, p (x,t) is positive if p is positive, as is clear from (53). 

2. Calculus of the joint densities for the free partIcle 

In the present case the Hamiltonian is H = ft2/2m and 
the position and the momentum operators in the Heisenberg 
picture are 

x(t) =x(O) +ft(O)(t/m), ft(t) =ft(O). (54) 

To find the joint densities we make use ofEq. (6). Rela­
tions (54) give 
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tr{p exp(i{atx(tt) + '" + anx(tn )})} 

= tr{p exp(i{(a t + ... + an)x 

+ (lIm)(a tt t + ... + antn )p})}, (55) 

where x = X(O) andp = p(O) for simplicity. If we write 

(56) 

then 

(57) 

Therefore, (6) yields 

where,8 contains the dependence on t t, .. ·,t n • 

To perform the integration in (58), we have to change 
variables: 

atXt + .,. + anxn 

= aA +,8B + a 3C3 + '" + anCn 

= atA + ... + anA + (attt/m)B + .. , 
+ (antnlm)B + a 3C3+ '" +anCn· (59) 

Sinceal, ... ,an are arbitrary real numbers, we obtain the 
following equations: 

A + ttBlm =x t , 

A + tJJ 1m = X 2, 

A + t3B 1m + C3 = X 3' 

A + tnBlm + Cn =Xn, 

from which we find the values of A, B, and Ck : 

A = X t - ttl (x2 - x t )I(t2 - tt)], 

B = m[ (x2 -x t )/U2 - tt)], 

Ck =Xk -Xt - (tk -ttl 

X [(x2 - x t )/(t2 - tt)], k~2. 

(60) 

(61) 

Here B is the mean value of the momentum of a classical 
free particle with mass m moving from Xt to X 2 in a time 
interval t2 - tt, and A and Ck represent positions of this 
particle. 

We relabel the variables as follows: 

a = ,8t, ,8 = ,82' a 3 = ,83' ... , an =,8n; 

A=St, B=S2' C3=S3' ... , Cn=Sn' 
(62) 

In order to write the integral in (58) in terms of these 
new variables, we first need to find the Jacobian correspond­
ing to the change of variables (62). The inverse of this J aco­
bian is 

1 

tt /m t21m t31m tnlm 

0 0 0 = (t2 - tt)lm. 

0 0 0 
(63) 

Hence 

P(XI,tl, ... ;Xn,tn) = _1_ m f d,8\>' .. ,d,8n exp( - i(,8IS1 + ... + ,8nSn »)tr{p exp(i(,8lx + ,8jJ»)} 
(217")" It2 -tl l JR" 

= _1_ m f d,81 d,82 exp( - i(,8IS1 + B2S2»)tr{p exp(i(,8lx + ,8jJ»)} 
(217')2 It2 - ttl JR2 

where 

Wp (SI,s2,o) = f d,81 d,82 exp( - i(,8IS1 + ,82S2») JR2 
xtr{p exp(i(,8lx + ,8jJ»)} (65) 

is the Wigner function associated to the state p. 
From (64) and (65) we conclude that the process XU) 

is veritable if and only if the following propositions are ful­
filled: 

( 1) the Wigner function for p is positive at t = 0, and 
(2) the sum in (53) is positive. 

This happens in particular if p is a Gaussian pure state. 15 
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3. The case of the harmonic oscillator 

xU) = x(O)cos wt + p(O) (sin wt)lmw, 

p(t) = - x(O)mw sin wt + p(O)cos wt. 

(64) 

(66) 

The procedures to find P(xl,tl; ... ;Xn ,tn ) are always the 
same. After a more or less lengthy calculation, we find 
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- _1_ mw lIn 8(S) W (S,s 0) 
- (2 )2 I . [( )] I k P I 2' , 'IT sm w t2 - tl k=3 

(67) 

which is well defined provided that W(t2 - t l ) =I='lTk with k 
integer and also that the Sk be well defined. We see again 
that a sufficient condition for X(t) to be veritable is the posi­
tivity of the Wigner function associated to p at t = O. Here, 
the Sk have the following form: 

S _ XI { tan(wt2 ) } 

I - cos(wt l ) tan(wt2 ) - tan(wt l ) 

X 2 { tan(wt l ) } 

- cos(wt2 ) tan(wt2 ) - tan(wt l ) , 

S _ mw {X2 _ XI } 

2 - tan(wt2 ) - tan(wt l ) cos(wt2 ) cos(wt l )' 

{ 
sin (wtk ) cos(wtk ) } 

Sk = Xk + XI - tan (wt2) 
cos(wt l ) cos(wtl ) 

In this situation we arrive at 

where 

SI = [x2 - h(t2) ]g(tl) - [XI - h(tl) ]g(t2) , 

g(tl )/(t2) - g(t2)j(tI) 

S2 = [XI - h(tIHf(t2) - [x2 - h(t2) ]f(tl) 

g(tI)/(t2) - g(t2)/(tI) 

Equation (70) leads to the same conclusion: if p is positive 
and g(t2)/(tI) =l=g(tl )/(t2)' the finite-dimensional distribu­
tion functions are positive if and only if the Wigner function 
for p is positive at t = 0 (n>2). 

B. The N-dimensional case 

Here we want to obtain the density given by formula 
(10). First, we have to find a new expression for the trace, 

tr{pexp{i(allxl(tl) + ... +aNsxN(tS»)}}' (72) 

for which we need to write xk (t) as a function of the coordi­
nates of the position (xl(O), ... ,xn(O») and the momentum 
WI (O),···,Pn (0») at t = O. 

The transition from X(O) to x(t) is due to a dynamics 
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X ____ 1=----__ _ 
tan(wt2) - tan(wtl ) 

{
COS(wtk ) sin(wtk ) } +X2 tan(wtl) ----
cos (wt2 ) cos(wt2 ) 

1 
X , k>~ (~) 

tan(wt2 ) - tan(wt2 ) 

If the Hamiltonian was of the form H = p2 - X2 or 
H = p2 + ax, we would obtain a similar result. Thus we 
could conjecture that if H were any quadratic Hamiltonian 
we would arrive at the same conclusion. This conjecture is 
true and we shall prove it in the following two subsections. 

4. The general quadratic Hamiltonian in one dimension 

Assume that H = ap2 + {3x2 + y(xp + px) + 8x + 1lP 
+ E. This Hamiltonian gives us a simple behavior for x(t). 
After having solved the equations of motion, we obtain 

x(t) = /(t)x(O) + g(t)p(O) + h (t)I, (69) 

where/(t),g(t), andh(t) are real functions on t, and lis the 
identity on J¥'. 

(70) 

(71) 

given by a quadratic Hamiltonian which is H = p/Bp, + C tp, 
+D, where 

xl(t) 

p,= 

AN (t) 

HereB is a symmetric 2N X 2N real matrix, Cis a 2N X 1 real 
matrix, and D is a real function. The equations of the motion 
are (Ii = 1) 

iik(t) = [Xk(t),H), iA(t) = [Pk(t),H). (73) 
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Equations (73) yield the following linear system: 

.il(t) xl(t) 

+T. (74) 

;. N(t) 

Here M is a 2N X 2N real matrix and T is a 2N X 1 real ma­
trix. The system in (74) can be easily integrated. Its solu­
tions are of the form 

- IJ I f dr .. 'dr exp( - i(r q + ... + r q ») - (21T)NXS I Ns 1 1 Ns Ns 

N 

xi(t) = L {J;k(t)xdO) +gik(t)Pk(O)}+hi(t)I 
k=1 

(75) 

and (72) becomes 

tr{,o exp(i{ylxl (0) + ... + YNXN (0) + OIPI (0) 

+ ... + ONPN(O) + sJ})}, (76) 

where YI""'YN' OI, .. ·,ON' depend on tl,· .. ,ts and a l1 , ••• ,aNs' 
This dependence is given by a suitable change of variables 
transforming (10) into the following formula for the joint 
densities: 

X tr{,o exp(i{rixi (0) + ... + rNxN (0) + rN + IPl (0) + ... + r 2NPN (0) + r2N + 1 I})} 

_ IJI Nxs . • • 
- ----zN 0 (1 - q2N+ I) L O(qk) Wp (ql,qN+ 1,. .. ,qN,qN+N'O), 

(21T) k=2N+2 

r i = Yo i = 1, ... ,N, rk = 0k_N, k = N + 1, ... ,2N, r2N + 1 = 5, (77) 

where 

Wp (ql,qN + I ;···;qN,qN + N;O) 

= f dYI,. .. ,dyNdol,···,doN 

Xexp( -i(Ylql + ... +ONq2N») 

xtrCo exp(i{ylxI (0) + ... + ONPN (O)})} (78) 

is theN-dimensional Wigner function at t = O. Here IJ I is the 
Jacobian of the change of the variables. It depends on tl, ... ,ts 
and on the Hamiltonian H as well as the q k • 

A detailed calculation ofthe qk is not necessary to con­
clude that, after (77), the joint densities are positive if and 
only if the N-dimensional Wigner function is positive at 
t=O. 

C. Joint densities in phase space 

Assume that the stochastic vector (X(t),P(t») and 
(x(t),p(t») are related through a GWC, wherex(t) andp(t) 
are again the position and momentum, respectively, of a 
quantum Hamiltonian. The stochastic vector (X(t),P(t») is 
veritable ifand only if the joint densitiesp(xI>PI,tl;"';Xm ,Pm' 
t m ) are positive. Performing the same kind of calculations, 
we find out that the positive of the densities is equivalent to 
the positivity of the corresponding Wigner function at t = O. 
This result is immediately extended to the N-dimensional 
case. 

v. TIME-INDEPENDENT HAMILTONIANS IN ONE 
DIMENSION 

So far, we have studied the case in which H is a quadratic 
Hamiltonian. The objective of the present section is the 
study of the situation produced by a general time-indepen-
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I 
dent Hamiltonian in one dimension and of the form H = p2 I 
2m + Vex). Quantum mechanics gives us the time develop­
ment for the observable position as 

x(t) = eiHtx(O)e - iHt. (79) 

Assume that x (0) and H have a common dense domain 
Pfl stable under the action of these operators. From (79) we 
conclude that x (t) is strongly differentiable as a function of t 
and the following equations make sense on Pfl : 

i.i(t) = [x(t),H], 

x(t + at) = x(t) - i[x(t),H ]at + D(at). 

Since [x(t),H] = ip(t)lm, (80) yields 

(80) 

x(t + at) = x(t) + (at Im)p(t) + D(at). (81) 

Now, we are seeking a necessary condition for X ( t) to be 
veritable. Equation (6) gives us the following equation: 

p(x,t;x',t + at) 

= _1_2 J dal da2 exp( - i(alx + a:zX'») 
(21T) 

xtrCo exp(i{alx(t) + a~(t + at)})} 

= _1_2 f da l da2 exp( - i(alx + a:zX'») 
(21T) 

xtr{p exp(i{(al + a 2 )x(t) 

+ (a2at Im)p(t) + D(at)})}, (82) 

where we have made use of (81). Now, we perform the 
change of variables 

a = a l + a 2, {3 = a 2(at 1m), 

whose Jacobian is at 1m. Thus 
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p(x,t;x',t + At) 

1 m f 
= (21T)2 IAt I da dfJ 

xexp( - i{ax +fJ [(m/At) (x' -x)]}) 

xtr{p exp(i{a.x(t) + fJpU) + D(At)})}. (84) 

From a physical point of view, if X(t) is veritable, 
p(x,t;x',t + At) is the joint probability density of finding the 
corresponding classical particle at x at the time t and x' at the 
time t + At. Therefore, the joint density p (x,t;x' ,t) does not 
have physical meaning when x #x'. In addition, if At ..... 0 the 
point x' has to approach x, if we want to be consistent with 
this physical interpretation. Thus peAt) = m(x' - xl/At 
goes to the classical momentum of the particle at x when 
At ..... O. 

Obviously, if P (x,t;x' ,t + At) has to be positive for any 
values of t, At, x, and x', it has also to be positive at the limit 
when At-O. Hence 

0< lim fda dfJ exp( - i{ax + fJm/ At(x' - x)}) 
.11-0 

xtr{p exp(i{ax(t) + fJp(t) + D(At)})} 

= f dadfJexp( -i{ax+fJp}) 

xtr{p exp(i{ax(t) + fJp(t)})} 

= Wp(x,p,t). (85) 

Thus a necessary condition for XU) to be veritable is 
that the Wigner function for p be positive at any value of the 
time. 

Whenp is a pure state, Soto and Claverie16 have proved 
the following statement: The positivity of the Wigner func­
tion at t = 0 guarantees its positivity at any t> 0 if H is a 
quadratic Hamiltonian of the type ap2 + fJq2 + rq + 8. 
Conversely, if His not ofthis kind, the two-dimensional joint 
functions are not positive definite for any value of time, and, 
therefore, X(t) cannot be veritable, ifp is a pure state. 

To close this section, we give here a new characteriza­
tion of the Wigner function. Consider the following func­
tion: 

F(x,p,t) = lim IX dx' 
.4.t_O+ _ 00 

f
X'+PAllm 

X -00 dx"p(x',t;x",t+At) 

(86) 

Under sufficient regularity conditions, we can take on 
FAI (x,p,t) partial derivatives with respect to the variables x 
and p, so as to have 

a 2FAI (x,p,t) At ( At A ) 
----=-p x,t;X+p-,t+l.J.t 

aXap m m 

2971 

1 At f -1 d'{3 - i{ax + IJp} =---- ua e 
(21T)2 IAt I 

xtr{p exp(i{a.x(t) + fJpU) + D(At)})}. 

(87) 
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Therefore 

. aFAI (x,p,t) 1 
hm = --2 Wp (x,p,t). 

.11-0+ ax ap (21T) 
(88) 

Note that, if the two-dimensional joint densities are 
positive, the Wigner function is also positive. 
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APPENDIX A: PROOF OF LEMMA II 

Let us give the proof for n = 1. For higher values of n, 
this proof does not involve new arguments. Thus assume 
that 

(Al) 

SinceA is self-adjoint, the spectral theorem gives a posi­
tive measure,uk for each 1h E9J (A) such that 

and 

(tPkllA ItPk) = f:oo IA Id,uk' 

Let 
00 

p= L AkItPk)(tPk I 
k=l 

(A2) 

(A3) 

with tPkE9J (A) and assume first thatp is positive. Then, we 
have 

tr{plA I} = k~l Ak f: 00 IA Id,uk' (A4) 

Since 1::,= lAk < 00, the Lebesgue theorem gives 

whered,u = 1::,= lAk d,uk is a finite measure onR. Now take 

00 

tr{peiaA } = L Ak(tPkleiaAtPk) 
k=l 

= k~l Ak f: 00 eiaA. d,uk = f: 00 eiaA. d,u. (A6) 

Our next goal is to obtain the derivative of (A6) with 
respect to a at zero. This derivative can be introduced inside 
the last integral in (A6) if 

(1) f: 00 IU IleiaA Id,u < 00, (A7) 

(2) /:a eiaA./ <f(A)EL l(d,u). (A8) 
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Here (1) and (2) are fulfilled, since f(A) = A and 
f~ 00 l...t Idp < 00. Thus 

d AiaAl -trpe 
da a=O 

=_ eiaAdp d foo I 
da -00 a=O 

= f: 00 iA. dp = i ktl Ak f: 00 dpk = i tr{,oA}. 

(A9) 

If jJ were any normal trace class operator, the proce­
dures ofthe demonstration would be identical. The only pe­
culiarity to be noted in such a case is that p would then be a 
complex bounded measure. 

APPENDIX B: PROOF OF LEMMA III 

Assume that jJ is positive. Then, 

tr{jJA 2}= f Ak(tPkIA2tPk) = f AkIlAAkIl 2, (Bl) 
k=l k=l 

tr{jJB 2} = f AkllBtPkll2, (B2) 
k=l 

00 00 

tr{jJAB} = L Ak(tPkIABtPk) = L Ak(AtPkIBtPk)' 
k=l k=l 

Itr{jJAB}I< f AkllAtPkllllBtPkll· 
k=l 

(B3) 

(B4) 

We want to find a upper bound for the rhs in (B4). This 
can be easily done by noting that if a and b are positive 
numbers, we have 

0<ab<!(a2 + b 2). (B5) 

Thus, 
00 

0< L Ak IIAtPk IIIIBtPk II 
k=l 

(B6) 
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If jJ were not positive, we would have to assume that 

flAk IIIAtPk 112 
k=l 

and 

00 

L IAk IIIBtPk 112 
k=l 

are both finite. 
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Hilton, March, and Curtis [Proc. R. Soc. London Ser. A 300,391 (1967)] have earlier 
focused on the utility of the effective potential U(r,f:J) in determining the Slater sum 
Z(r,f:J) = Zo(8)exp( - pU(r,f:J»). Here an explicit, though highly nonlinear, partial differential 
equation is derived for determining the effective potential U(x,f:J) in one-dimensional 
problems. Direct solution of this equation by power series expansion in P leads readily to 
Husimi's results obtained from off-diagonal density matrix calculations. Perturbation theory in 
the potential is also developed, and thereby it is shown that an infinite subseries of the Husimi 
expansion is readily summed, and that a scaling property is exhibited. 

I. INTRODUCTION 

This work is concerned with some formally exact results 
for the effective potential l U(x,f:J) which determines the 
one-dimensional Slater sum 

Z(x,f:J) = Zo(p)exp( - PU(x,f:J»). (1) 

In terms of the eigenfunctions f/!; (x) and the corresponding 
eigenvalues E; of the one-rarticle Hamiltonian 

H = - (fr/2m)V2 + Vex), (2) 

the Slater sum is defined by 

Z(x,f:J) = It/1'(x)f/!;(x)exp( -PE;), P= (kBT}-l, 
; 

(3) 

Zo(P) in Eq. (1) being its free-particle value corresponding 
to Vex) = o. 

As was proved by March and Murray2 in their treat­
ment of central field problems, which, of course, corre­
sponds to dealing with one-dimensional Schrodinger equa­
tions, the Bloch equation satisfied by the off-diagonal 
density matrix C(x,xo,f:J), defined by replacing f/!; (x) in Eq. 
(3) by f/!;(xo), 

HC= - ~~, (4) 

can be expanded about its diagonal Xo = x to yield the fol­
lowing partial differential equation for the Slater sum 
Z(x,f:J): 

~Z"' - az' - JIZ' -.! V'Z= o. 
8m ap 2 

(5) 

Though Eq. (5) is linear in Z, it has so far only proved 
possible to solve it for specific potentials Vex), e.g., the har­
monic oscillator with V(x) = ! m(j)2x2 in closed form. Since, 
for many purposes, one must have recourse to approximate 
methods, Ref. 1 will be followed here in seeking to determine 
U(x,f:J). While in Ref. 1, and also in earlier work by Husimi,3 

U(x,f:J) was calculated by expansions either in Vor in p, but 
employing off-diagonal knowledge of C(x,xo,f:J) , current in­
terests in density functional theory prompt the investigation 
reported below of U(x,f:J) from a purely diagonal approach. 

II. DIAGONAL DIFFERENTIAL EQUATION FOR THE 
EFFECTIVE POTENTIAL 

Returning to Eq. (1), and noting that the free-particle 
Slater sum Zo(P) can be found by inserting free-particle 
waves exp(ikx) and energies frk 2/2m into Eq. (3) to yield 

Zo(P) = (m/21rifp)l/2, (6) 

one can insert Eqs. (1) and (6) into Eq. (5) to obtain the 
defining equation for U(x,f:J) itself as 

~PU"' -P au' +.! v,_,! U' 
8m ap 2 2 

=PU'(V- U) _p 2u, au 
ap 

+ 3fr p2U,u" _ ~P3U'3. (7) 
8m 8m 

This purely diagonal equation for the effective potential 
U(x,f:J) can be viewed as the diagonal counterpart of the off­
diagonal equation derived by Husimi3 from the Bloch equa­
tion (4), and solved by him via a power series expansion in 
p. 

III. APPROXIMATE SERIES SOLUTIONS OF THE 
DIAGONAL EQUATION FOR U(x,p) 

Notwithstanding the highly nonlinear character of Eq. 
( 7), let us first demonstrate, in establishing its usefulness, 
that all of Husimi's results are readily regained from it. 

Writing 

U(x,f:J) = uo(x) +pul(x) +P2U2(X) + ... , (8) 

one finds immediately from the O( 1) terms in Eq. (7) that 

u~ (x) = V'(x), (9) 

showing that the Thomas-Fermi approximation U(x,f:J) 
= V(x) is regained in this lowest-order treatment. 

Proceeding to terms of O(P), one finds similarly 

(fr/8m) V'" - ~ui = 0, (10) 

which reproduces immediately Husimi's first-order result 

ul(x) = (fr/12m) V"(x). (11) 
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Continuing to 0({]2) one has 

(1fISm)u1" - ~u~ - 2V'uI + (31fISm) V'V" (12) 

with solution, using Eq. (11) for u I> which is readily verified 
to be 

U2 = ~(lflm)2ViV(x) - (1f124m){V'(x)}2. (13) 

The next useful step is to note that the leading terms in 
uo, U I> and U2, etc., are all first order in the potential V. These 
are readily summed to all orders in P by returning to the 
diagonal equation (7) and noting that the right-hand side is 
of second and higher order in Vex). Hence denoting the 
solution to first order in Vby UI (x,/3) one needs to solve 

~PUi' - p aUI + J.. V - J.. uI = 0, (14) 
Sm ap 2 2 

after inserting appropriate physical boundary conditions. 
Taking the Fourier transform with respect to x, to yield 
VI (p,/3) , one finds for potentials V(x), which have a Fourier 
transform yep), 

1f2 -
- p{3 fll _p aUt +J.. y_J.. VI =0. (15) 

Sm ap 2 2 

Writing 

VI (p,/3) = Y(p)i (p,/3) ( 16) 

yields 

ai + [_I + Ifp2]i=_1 . (17) 
ap 2/l Sm 2/l 

Employing the integrating factor p 1/2 exp( (lfp2 ISm)p), 
one finds the explicit form ofi(p,/3) to be 

i(p,/3) =P-1/2 exp( _:;:2P) j'J ! pl/2 

X exp( If:::) dp. (1S) 

In coordinate space, the product form (16) evidently corre­
sponds to a convolution, 1 

UI(x,/3) = f: co V(X1)j(X I x,/3)dx l, (19) 

where/(xI - x,/3) can be found from Eq. (IS) as 

/(xI - x,P) = [lI2/lZo({3) ]erfc{v'2lxI - xillif} , 
(20) 

which, it is to be emphasized, has been derived by purely 
diagonal arguments. This result (19), with/given by (20), 
sums up the Husimi series inp to infinite order, to first order 
in V. 

Evidently, returning to Eq. (7), one can determine the 
"correction" U2 0fO( V2) to U1 inEq. (19). The appropriate 
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differential equation is 

If Iff aUi 1 
-PU2 -p----Uz Sm ap 2 

=PU;(V- U1) -PZU'1 aUt + 3If pzU'U" 
ap Sm 1 I' 

(21 ) 

This can, in fact, be solved, but the detail proliferates. The 
only case, so far, in which a closed solution to Eq. (7) has 
been achieved is for the harmonic oscillator example re­
ferred to above. Here it is readily verified that the form 

( 
m ) 112( Pf1m ) 112 

Z(x,/3) = 2trfi2p sinh(pf1m) 

X exp( - x 2 ~tll tanh( + Pf1m)) , (22) 

derived by Uhlenbeck and Gropper4 by directly performing 
the sum (3) using the known wave functions and energy 
levels corresponds to 

U(x,/3) = m(r}2x
2 

tanh(J.. f1mp) __ I_In ( f1mP ) 
f1mP 2 2/l sinh ( f1mP 

(23) 

and that this is an exact solution ofEq. (7) to all orders in V. 
To summarize, Eq. (7) is the main result of the present 

work: it establishes a diagonal method for generalizing the 
Thomas-Fermi approximation U(x,/3) = Vex), which is 
thereby demonstrated to be true in the limits of (a) suffi­
ciently smallp from Eqs. (S) and (9) for sufficiently slow 
spatial variations in Vex) fromEq. (7). In thelatterconnec­
tion, it is worth emphasizing that Eq. (13), with / given by 
Eq. (14), shows that in the expression for U1, the combina­
tion V (2n) (x)P n always appears, with V (n) representing the 
nth derivative of Vex). Presumably, similar scaling will be 
derivable in each order of the perturbation series and this 
may point to further progress in solving the nonlinear equa­
tion (7) for the effective potential. 
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By taking the electron densities of semi-infinite electron gases in one and in three dimensions, 
and forming the Slater sum by the Laplace transform, it is shown that the Slater sum is the 
classical partition function in d dimensions, times a function independent of dimensionality. 
The electron density is thereby calculated for general dimensionality, as is the kinetic energy 
density. As a by-product, the dimensionality dependence of Friedel oscillations emerges in 
general form. 

I. INTRODUCTION 

There is currently considerable interest in describing 
many-electron systems by their electron density p. It 
seemed, therefore, to be of interest to study the inhomogen­
eous semi-infinite electron gases as a functional of dimen­
sionality. 

To introduce the study, consider the simplest wave me­
chanical problem: electrons moving freely within a one-di­
mensional box oflength I, in the region 0 < z < I. Then with N 
electrons singly filling the lowest levels, the electron density 
is evidently 

( 2)~ . 2 mrz PI(Z) = - £.. sm --. 
I I I 

(1) 

One can calculate the sum exactly, and then pass to the semi­
infinite electron gas limit 1-- 00, N-- 00, N /I--PIO' the bulk 
electron gas number of electrons per unit length. Or one can 
replace the summation over levels by an integration, and 
writing the highest (or Fermi) energy E as k 2/2 one finds 
readily 

PI (z) = PIO[1 - [sin(2kz) ]!(2kz)] 

(2) 

where jl (x) denotes the I th-order spherical Bessel function. 
As utilized extensively by March and Murray, lone can 

construct the Slater sum, which weights the square of the 
wave functions in Eq. (1) with the Boltzmann factor 
exp( - {3En ), by using the Laplace transform relation 

Z(z,/J) ={3 L'" p(z,E)exp( -{3E)dE. (3) 

Inserting Eq. (2), and using the properties of Laplace trans­
forms set out below, one finds 

ZI(Z,{3) = (21Tf3)-112(1- exp( - 2r/{3»). (4) 

Next, let us turn to the three-dimensional case, in which 
electrons are confined to the semi-infinite space 0 <z < 00 by 
an infinite barrier in the (x, y) plane. This model was studied 
by Bardeen,2 as a description of the electron distribution at a 
planar metal surface. His result for the electron density, 
written for comparison with Eq. (2) in terms of singly filled 
levels, is 

P3(Z) =P3o(1-3jl(2kz)/2kz), P30=k 3/6r. (5) 

Brown et al.3 pointed out that, for this problem, the canoni-

cal density matrix could be derived by solving the Bloch 
equation and on the diagonal they obtained3

,4 

Z3 (z,/J) = (21T{3) - I Z I (z,/J). (6) 

In fact, by taking the Bloch equation in d dimensions, it is 
readily shown that 

Zd(Z,/J) = (21T{3)(I-d) /2Z I (Z,/J), (7) 

confirming that one can write for the d-dimensional case a 
factor related to the free-particle partition function per unit 
volume times a factor independent of dimensionality. 

Starting from the form (7), one can now invert the La­
place transform relation (3), using the following identities: 

:?-I({3 -n-1I2) = __ 17' __ _ -1/2 (k22)n-1I2 

H"'(n-!) 

and 

:?_I exp( - 2z2/{3) 
{3 (I + 312) 

One needs to find 

= (217')3/2 k 21 + 1 jl (2kz) 

2r (2kz)1 

(8) 

(9) 

Pd(Z) = [1I(21T)(d-\)/2] :?-I[II{3(d+l)/2]ZI(z"B), 

(10) 

and from Eqs. (8) and (9) the result follows readily as 

k d 

Pd(Z) =-------
2d1T(d+ 1)/2~'~"'d /2 

_(~)1I2 kdj(d-I)/2(2kz) (11) 
1T (21T)dI2 (2kz)(d- \)/2 . 

This result (11), valid for d odd, is easily shown to include 
Eqs. (2) and (5) for the special cases d = 1 and d = 3, re­
spectively. 

The case of d even can similarly be handled; one merely 
notes here the result 

:? (1I{3)e - 2r-lfJ = Ko(2kz), (12) 

which enables P2 (z), etc. to be calculated in terms of the 
appropriate Bessel functions of a purely imaginary argu­
ment. 

II. KINETIC ENERGY DENSITY IN d DIMENSIONS 

Returning to the case of d odd, one can also calculate the 
kinetic energy density. Using the Bloch equation, this is easi­
ly written for the case of classical statistics as 
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1 aZ I 

(21Tf3) (d - 1)/2 af3 

((1 - d)/2)ZI 
(21T)(d-I)/2f3 (d+ 1)12 

Utilizing the expression for azl /af3, 

aZI 1 ~ 
--= 

af3 2(21T)1/2f33/2 (21T) 1/2 

exp( - 2z2/{3) + exp( - 2z2/f3) 

X f35/2 2(21T)1/2f33/2 ' 

( 13) 

(14) 

one can calculate the degenerate kinetic energy td (z) corre­
sponding to the electron density ( 11) as the inverse Laplace 
transform of t ~C) (z)/f3. One then obtains 

t (z) _ 1 £-I[ d 
d - 2(21T)d12 f3 (d + 4)/2 

_ d exp( - 2z2/f3) 4Z2 exp( - 2z2/f3) ] 
f3(d+4)/2 + f3(d+6)/2 . 

(15) 

Again utilizing Eqs. (8) and (9), one finds, after a short 
calculation, 

d (k 2 )(d+2)/2 
td(z) = -

21TI/2(21T)d/2H'" (d + 2)/2 2 

k d + 2 

(16) 

where use has been made of the relations5 

d [ _I' ( )] -I· () - X il X = -x 11+1 X 
dx 

(17) 

and 

jl_1 (x) + jl+ 1 (x) = (21 + 1)/xjl(x). (18) 

Equation (16) represents the d-dimensional kinetic energy 
corresponding to the electron density ( 11 ). As a final step, it 
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is worth substituting in Eq. (16) forj(d- 1)/2 (2kz) from Eq. 
( 11 ), to obtain the desired result 

k 2 

td (z) = tdO + - [Pd (z) - PdO] 
2 

k d + 2 j(d+ 1)/2 (2kz) +------
2~(21T)(d-3)/2 (2kz)(d+J)/2 

(19) 

In Eq. (19), the first term on the right-hand side is the kinet­
ic energy density of the bulk electron gas. In the second term, 
Pd (z) - P(dO) is the charge displaced in the electron gas by 
the infinite barrier, Pd~ as usual being the bulk density. This 
term is evidently reflecting the kinetic energy due to adding 
S [Pd (z) - PdO ]dr electrons at the Fermi energy k 2/2. The 
final term in Eq. (19) is the physically interesting kinetic 
energy change associated with the induced inhomogeneity of 
the d-dimensional electron gas. In summary, Eqs. (11) and 
( 17) for the electron density and the corresponding kinetic 
energy are the main results of this work, both stemming di­
rectly from the form (7) of the d-dimensional Slater sum of 
the noninteracting semi-infinite electron gas. As a by-prod­
uct of Eq. (11), use of the large z asymptotic form of the 
spherical Bessel function shows immediately the dimension­
ality dependence of the long-range oscillations induced in 
the electron gas by the "perturbing" barrier. 
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The concepts of void and cluster for an arbitrary point distribution in a domain g are defined 
and characterized by some parameters such as volume, density, number of points belonging to 
them, shape, etc. After assigning a weight to each void and cluster-which is a function of its 
characteristics-the concept of distance between two point configurations Sl and Sz in g is 
introduced, both with and without the help of a lattice in the domain g. This defines a 
topology for the point distributions in g, which is different for the different characterizations 
of the voids and clusters. 

I. INTRODUCTION 

The spatial distributions of points in one, two, or a high­
er number of dimensions (spatial processes, point processes, 
spatial patterns, spatial point patterns) constitute a very in­
teresting field of research, not only in pure mathematical 
statistics but also in its innumerable applications, which 
range from biometrics to astrophysics and includes such di­
verse fields as agriculture, econometrics, ecology, traffic 
problems, and medical sciences. In fact, such point distribu­
tions may correspond, for instance, to plants of a given spe­
cies, to cars along a road, to seeds in a field, to microorgan­
isms in a living body, or to stars--or even galaxies or clusters 
of galaxies-in our Universe. An important mathematical 
aspect of spatial processes is the study of the geometrical and 
topological properties of point distributions. 

Although in biometry the study of such distributions 
has always been very popular during the last years-as can 
be seen through the large number of research articles and 
even books which have been issued, 1 in the last couple of 
months the interest about this field of research has grown 
very rapidly, due in great part to the remarkable discoveries 
of de Lapparent, Geller, and Huchra about the spatial distri­
bution of galaxies in our Universe. z These authors made an 
optical red shift survey of all 1099 galaxies brighter than 
magnitude 15.5 of a thin slice of sky and came to the conclu­
sion that galaxies are concentrated on the surfaces of contig­
uous bubble like structures with very large typical diameters 
of about 25 h - 1 Mpc. The large void in Bootes of 60 h - 1 

Mpc, discovered in 1981 by Kirshner et 01.,3 has been there­
by proved to be no peculiarity but a very common feature. 
Too often, the analysis of the point distributions of galaxies, 
with their voids and clusters, is done simply by looking at 
pictures and plates with the naked eye, a very primitive pro­
cedure which in general is not that bad. Nevertheless, the 
important discoveries we have just mentioned stress once 
more the necessity for a more profound understanding of 
spatial point distributions and, in particular, of the still un­
solved problem concerning the construction of a mathemat­
ical "measure" for quantifying how far away are two of such 
point distributions (characterized by the number and mag­
nitude of the voids and clusters, their forms and spatial dis­
tribution, etc.). 

II. DEFINITIONS OF (SPHERICAL) VOID AND CLUSTER 

The very large numbers of points one has to deal with 
makes it almost a necessity to introduce definitions which 
are suitable to be treated with a numerical algorithm. This 
has been pointed out in several previous papers on the sub­
ject4 and will be considered later in detail (Sec. VI). How­
ever, I do not think that discrete algorithms alone can solve 
these problems satisfactorily, and it is much better to play at 
a time both with discrete and with continuous concepts. 

LetSbe a set of points in a given domain g; of volume V 
in d-dimensional Euclidean space. Let N be the number of 
points in S. For any point peg; and any positive real number 
reR +, the density of points in a ball around p of radius r is 
given by 

Pp (r) = np (r)IVp (r), (2.1) 

where np (r) is the number of points of S inside the ball, and 
Vp (r) is the volume of the ball. By definition, there is a void 
aroundp of radius bigger than r if the density Pp (r) verifies 

Pp (r) <AN IV, (2.2) 

where A';;; 1 must be fixed (we may take, for instance, A = ~). 
The radius of the void around p is defined to be the value r 
such that p 

(2.3) 

In this way the density of any void will be the same. Alterna­
tively, one could define the radius of the void as the value ofr 
at which the slope of Pp (r) is maximum. 

On the other hand, there exists, by definition, a cluster 
aroundp if 

pp(r»NIAV. (2.4) 

The radius of the cluster may be defined to be the value r p 

such that 

(2.5) 

As before, one could alternatively define the radius of the 
cluster as the value of r at which the slope of - p (r) is 

• p 
maximum. 

Until now we have studied only what happens at some 
given place p. A global analysis has to distinguish between 
the different voids and clusters, so that we do not count the 
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same point of the distribution twice: as belonging to a void 
(or cluster) and to another one which intersects the first. 
Moreover, the preceding definitions are best suited for 
spherical voids or clusters only and when p is the center of 
them. These difficulties will be taken care of in the subse­
quent sections. 

III. EFFICIENT SEARCH FOR VOIDS AND CLUSTERS 

Let us now introduce a lattice .!f of lattice site a in the 
domain.@. For a given setofrkE]R+, k = 1,2, ... ,m, select the 
set S I of vertices of the lattice corresponding to the s smallest 
andtotheh highestvaluesofpPi(rk ),forallk = 1,2, ... ,m,for 
all lattice vertices p; on .!f. Improve now the set of points p; 
in S I to a set S2 coming from the s smallest and h highest 
values of pq,(rk ) for all k = 1,2, ... ,m, and for all q; of the 
form 

p; + A. LJj:/Pi (rk ) ] - 112m e, (3.1 ) 

where A. is a constant that we can adjust at will (for instance, 
A. = ~ for voids and A. = 2 for clusters), while e sweeps all 
unitary directions of the form 

(3.2) 

where e; is the unitary vector along the i axis of ]Rd. Notice 
that, in general, the points q; are not vertices of the lattice. In 
fact, the vertices of the lattice serve only as starting points in 
order to begin the search for the best centers of the voids and 
clusters. 

The procedure is then repeated until it stabilizes. In this 
way we obtain the positions of the centers of a desired num­
ber ofthe less dense voids and of the more dense clusters in 
the point distribution S. 

IV. WEIGHTS OF THE INDIVIDUAL VOIDS AND 
CLUSTERS 

The weight of a spherical void of radius r and density P 
with the center at the point p is given by the following expres­
sion: 

(4.1 ) 

where kv is a constant (independent of the void), Vp (r) the 
volume of a sphere of radius r in d dimensions, and n is the 
number of points of S inside the sphere. That this expression 
is correct can be seen through the following argument. For a 
given density p, increase of Wv in (4.1) is proportional to the 
volume of the void, while for fixed volume, increase of Wv is 
proportional to decrease of Pi' as it should be by intuition. 
Alternatively, at fixed n increase of Wv is proportional to the 
volume and also to the decrease of density, i.e., proportional 
to the volume squared. 

The weight of a spherical cluster of radius r and density 
P centered at p is given by 

We = kenp = ke [n2/Vp (r)] = keP
2Vp (r), (4.2) 

where ke is a constant independent of the cluster. Expression 
(4.2) can be understood by reasoning as follows. At fixed n, 
We is proportional to increase of P (or to decrease of vol­
ume). At fixedp, We is proportional to increase of n (or to 
increase of volume). Alternatively, with full generality, in-
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crease of We is due both to increase of n (it would also be true 
for fixedp, i.e., letting volume increase) and to increase ofp. 

V. THE SET OF ALL POINT DISTRIBUTIONS AS A 
METRIC SPACE 

Once the spherical voids and clusters have been con­
structed by the procedures described in Secs. II and III, and 
just before their individual weights (Sec. IV) are calculated, 
one has to look for superpositions of them which may result 
in nonspherical voids and clusters. The idea is very simple: to 
consider as a unique void (resp. cluster) the union of all of 
them which are connected by a chain of intersections (Fig. 
1). In this way, the numbers of voids and clusters, sand h, 
respectively, diminish and, at the same time, they are no 
more spherical but acquire a form of the type depicted in Fig. 
2. It is now immediate to modify the formulas (4.1) and 
( 4.2) accordingly: in both cases the volume Vp (r) of a d­
dimensional sphere of radius r centered at p must be substi­
tuted by the volume of the void or cluster considered. Of 
course, the density p and the number of points n will also 
correspond now to the whole, nonspherical void or cluster. 

Once all the voids and all the clusters have been con­
structed, the remaining region of the domain .@ is filled up 
with a (under ideal conditions) sensibly uniform distribu­
tion of points of S with a density almost equal to Po = N / V. 
In practice this must be checked a posteriori and if it were not 
true, the free parameters introduced in the definitions and 
construction of the voids and clusters (s, h, ... ) ought to be 
changed accordingly. For instance, if the density of the re­
maining region were smaller than Po, then the number s of 
voids should be increased. On the other hand, if the homo­
geneity of the remaining region were not very good then both 
sand h ought to be augmented. 

Let us now consider the plane (V,p) and the points 
(V;,p;) in it, where the index i goes through all the different 
voids and clusters, with one value of the index corresponding 
to the intermediate, remaining region. Introduce a regular 
lattice in this plane and denote the different cells by 
( ~, Pj ), jE/. Define now the functionf( ~,pj) which as-

• •• • 

• • • • 
• • • 

• • 
• • • • • • • 
• • • 

• • • 
• • • • • • 

• • 
• • • 

• • • • • • • • • • • • 

FIG. I. Examples for distributions of spherical voids and clusters. They can 
superpose in a variety of ways. 
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• • • • • • • 
• • • 
• • • • • 

• • • • • •• 
• • • 

• • • • • • 
• • • • • • • • • • • 
• • • • • 

• • • • • • 
• • • • • • • • • • • • 

FIG. 2. Voids and clusters constructed from the distributions of Fig. 1 in 
order to avoid overcounting. 

signs to each cell (~,pJ) the number of clusters plus the 
number of voids which belong to this cell, each of them mul­
tiplied by the corresponding weight (4.2) and (4.1), respec­
tively, i.e., 

f(~,pj) =nc(~,pj)Wc(~,pj) 

+nv(~,pj)WvOj,pj)' je/. (5.1) 

Here the intermediate region is to be counted as an addi­
tional void or cluster depending on its density p beingp'Po 
or p > Po' respectively. Notice thatf( ~,pj) is different from 
zero only in a finite number of cells (~,pj)' The following 
step is to construct with these points the minimal triangulat­
ed surface with vertices at these points. Thus, we get a con­
tinuous functionf(V,p) defined on the plane (V,p). Now, 
given another point configuration on the domain g, we de­
fine the distance between these two configurations SI and S2 
by 

d(SI,S2)2= II [fl(V,p) -f2(V,p)]ZdVdp, (5.2) 

whereiJ andh are the functions corresponding to the point 
configurations SI and S2' respectively. 

The problem we are dealing with is not so standard. No 
wonder, therefore, that definition (5.2) is not a usual mea­
sure of the configuration space. However, it is important to 
observe that d, as given by (5.2), can be easily implemented 
to yield a true distance by the usual mathematical proce­
dures. Let us be completely rigorous. 

The set which is going to tum into a metric space is 
Y = set of all finite point distributions in the domain g. 
The "distance" defined by (5.2) is actually only a semidis­
tance. In fact, it satisfies (i) d(SI,s2) = 0, (ii) 
d(S2,SI) = d(SI,S2)' and (iii) d(SI,S2) <.d(SI,S3) 
+ d(S3,s2) , for any SI,S2,S3eY. All we have to do is to 

define the coset Y = Y / -, whereSI-S2 iffd(SI>S2) = 0, 
in order to obtain a metric space Y with the distance d given 
by 

(5.3) 

In fact, this is a consistent definition for, let us consider two 
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other configurations S ; ES1 and S ~ ES2• Then, we have 

d(SI,S2)<.d(SI'S;) +d(S;,S~) +d(S~,s2)' 

But d(SI'S;) = ° and d(S2'S ~) = 0, so that d(SI,s2) 
<.d(S; ,S ~). Moreover, 

deS; ,S~ )<.d(S;,SI) + d(SI,S2) + d(S2,s ~), 

and we get d(S;,S~)<.d(SI,S2)' Therefore, d(S;,S~) 
= d(§I,S2)' Equation (5.3) defines a distance d on Y. In 

fact, d satisfies the axioms (i)-(iii) above and, moveover 
the additional one, (i') d(SI,S2) = OimpliesSI = S2' This i~ 
immediate from (5.3) and from the definition of the coset 
Y. 

Summing up, Y is a metric space endowed with the 
distance d. This constructive procedure is very well known 
to mathematicians, in fact, it is the standard way to proceed. 
This allows one to be a little loosely in the notation and speak 
of the metric space Y and of the distance d, as given by 
(5.2). The alternative definitions of distance which will fol­
low have to be compared with (5.2). Actually all of them 
ought to be submitted to the same procedure as given above 
in order that they become true distances d. 

A metric space is readily made into a topological space, 
the topology being provided by the distance, much as in the 
standard example of the metric space an. The neighbor­
hoo~s ofth.: basis .9f!his topology are open balls of the form 
Bp(S) = {S'eYld(S,S') <p}, p being any rational num­
ber peQ. Being again a little loosely with the notation we 
may say that the set Y of all finite point distributions in g is 
a topological space, the topology being given through the 
distanced in (5.2). 

This is by no means the only possibility to define a dis­
tance between two point configurations. But the definition 
which has just been given above is quite a sensible one. An 
example of a different, more simple definition is the follow­
ing. Consider the weights (4.1) and (4.2) and place them at 
the negative and positive semiaxis x, respectively (Fig. 3). 
Then discretize this axis by considering intervals of a given 
length I. For each interval of the x axis, on the y axis set the 
number of voids (resp. clusters) with a value of Wv (resp. 
We) which belongs to this interval. Now consider the seg­
ment-wise curve constructed with the resulting points (Fig. 
3 ). Let us call this curve g (x). The distance between two 
point configurations SI and S2 can then by defined by 

d(SI,S2)2= I [gl(X) -g2(X)]2dx. (5.4) 

Notice, however, that on taking the weights from the begin­
ning we have implicitly introduced in this last case an equiv­
alence relation among voids (and among clusters). In some 
cases this can actually be convenient in order to simplify the 
problem from the beginning, but in other situations a finer 
definition such as the first one will have to be adopted. 

VI. POINT DISTRIBUTIONS IN A DOMAIN WITH A 
LATTICE 

In order to treat all the preceding questions in a way 
better suited for numerical manipUlations, one can carry all 
these definitions to a lattice 2' of certain site a on the do-
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y 

-x Wv We x 

FIG. 3. Segment-wise curve g(x) constructed using a discretization of the weights corresponding to voids (negative x axis) and clusters (positive x axis). In 
the y axis the numbers of voids and clusters that fall into each interval of x are represented. 

main 5P. That is, a discretization of the methods which have 
been elaborated above has to be developed. 

One must start by counting the number of points of the 
distribution S in 5P that fall into each of the elementary cells 
of the lattice. The voids will consist of all those cells whose 
number of points does not reach a value n 1 fixed in advance, 
while the clusters are made up of cells with a number of 
points above a second number n2 also fixed in advance. Of 
course, one must have 

(6.1 ) 

where Nc = V lad is the number of cells of the lattice .!f. 
(To begin with, we consider all cells equal and obviate the 
small modifications in these definitions which had to be 
made for cells touching the border of the domain 5P.) In this 
way, extended voids and clusters made up of cells will arise, 
in general. A huge void (cluster) will consist of several con­
tiguous cells with a small (big) number of points. Figure 2 
will be almost the same, only that the curved contour will be 
substituted by a segment-wise one, with segments of longi­
tude proportional to a. Formulas (4.1) and (4.2) will re­
main unchanged: only Vp (r) will be substituted by the vol­
ume Vv or Vc of the void or cluster under consideration (a 
volume always proportional to ad, the volume of an elemen­
tary cell). 

Notice that this procedure is less time consuming than 
the former one when it is carried out in practice. However, it 
is not so sensible to detect the voids and clusters with preci­
sion. In fact, once the lattice .!f has been fixed, a given cell 
can participate at the same time of a void and of a cluster so 
that the total number of points in it may compensate (Fig. 
4), thus hiding this fact completely. Clearly, everything be­
comes better as a is made smaller (continuum limit). How­
ever, with a (discrete) point distribution this cannot be done 
indefinitely: for a small enough every cell contains at most 
one point only and for such small cells the whole procedure 
ceases to be of much use (this was the difficulty with the 
topology of discrete point distributions in the first place). 

Once the weights (4.1) and (4.2) have been adapted to 
the lattice voids and clusters, the definitions (5.2 )-( 5.4) for 
the distance between two point configurations Sl and S2 go 
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through immediately. Thus, we complete the treatment of 
the lattice case and define a topology for point configura­
tions on the domain 5P. One could think, in principle, that in 
order to proceed in accordance with the discretization of 5P , 
the plane ( V,p) ought also to be discretized, i.e., divided into 
rectangles of sides a v and a p' and the minimal triangulated 
surfaces constructed using the vertices corresponding to the 
centers of these cells. However, it must be pointed out that 
this last discretization is completely independent from the 
one of the domain 5P . 

Finally, notice that in our definition only the volume 
and the density (we may substitute one ofthese by the num­
ber of points inside) of the void or cluster have been taken 
into account in the definition of the distance d(SI,S2)' A 
more elaborate definition should also include other param­
eters such as some characterizing the shape of the void or 
cluster (for instance, a combination of the diameters along 
each of the axes, as the sum or the product of these diame­
ters). The functionf( V,p) given in (5.1) and the distance 
(5.2) have to be redefined accordingly. That is (we drop the 
subindexj for convenience) 

•••••• • • • •• •• • • • ••••• • • •••• • • • • •• • •• ~~. . . ••••• • • • ••• • • •••• • • • • • 
• •••• • • • • • • ••••• Ie· •••• 

• •••• • •••• • ••• • ••••• 
• • ••••• • • fe· • • • • • •••• 

• • 
• • • • • • • • 

• • 

FIG. 4. Some cells (here the one in the middle) ofa lattice in §J may partici­
pate both from some void and from some cluster. They may compensate and 
give a deceptive mean density approximately equal to Po = N / V. 
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P1 

P2 

P3 

FIG. 5. A huge void or cluster (the points have not been depicted) display­
ing the gradient of density: P I is the density of the most inner cell; P2 that of 
the surrounding crown of cells (here 12 ceIls);P3 is the density of the most 
exterior crown (here 24 cells). 

I( V,p,k) = ne (V ,p,k) We (V ,p,k) 

- nv (V ,p,k) Wv (V ,p,k), 

where k is the new parameter, and 

(6.2) 

d(SI,S2)2= fff [/1(V,p,k) -/z(V,p,k)]2dVdpdk, 

(6.3) 
respectively. In an analogous way, we may introduce other 
parameters, such as the gradient of density for large voids or 
clusters, as one proceeds from inside to the border (Fig. 5). 
We may define, for instance, 

h = [(P2 - PI)2 + (P3 - P2)2 + ... ] 1/2 (6.4) 

and include h besides k as a new parameter. All these param-
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eters and others one may think of improve the definition of 
the topology (6.3) and may be introduced at ease into our 
formalism in the way we have just shown. 

VII. OUTLOOK 

The procedures introduced here for the first time (to 
our knowledge) are currently being applied to the point dis­
tributions that correspond to the analysis of galaxies of de 
Lapparent et of. 2 and also to other related results. Moreover, 
simulation methods are being developed with the purpose of 
checking the reliability of the distance between point distri­
butions as defined here compared with the only one which is 
presently available, namely, the "distance" that our naked 
eye wouldgrosso modo assign to them. The investigation is in 
progress. Its partial results are pretty good and will be pub­
lished elsewhere with a detailed account of the analysis in­
volved. 
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A mechanism of smoothing due to evaporation condensation of the roughly perturbed surface 
ofa solid is formulated as a Cauchy problem in the real line RI for the equation u, = ux_Jl 
+ Ux 2, which describes the evolution ofthe profile u(x,t) ofthe surface. In the preceding 

paper [A. Kitada and H. Umehara, J. Math. Phys. 28,536 (1987)], it was demonstrated that, 
ifthe solution u(x,t) ofthe Cauchy problem is obtained in the classical sense with an 
additional restriction ueC 3(R 1 X (0, 00 »), each peak in the surface decreases in height with time 
in the strict sense. In the present paper, by modifying the proof, it is shown that the additional 
restriction to the classical solution is excessive. 

I. INTRODUCTION 

In the preceding paper, I using the maximum principle 
due to Nierenberg,2 well known in the theory of linear para­
bolic equations, we obtained the estimate (1), 

U(X2,t2 ) <U(XI,t l ), (x;.t;)eC (i = 1,2), t) <t2' (1) 

describing the strictly monotone decrease with time t, due to 
evaporation condensation, in the height of a peak in a rough­
ly perturbed surface of solid. In the estimate (1), u (x,t) is 
such a classical solution3 that ueC 3(R 1 X (0,00 ») (Ref. 4) of 
the Mullins' model (P) (Ref, 5) in the real line R 1 

, 

u, = uxx /l + Ux 2, (x,t)eRI X (0,00), 

u(x,O) = a(x), xeR\ 
(P) 

and C is a trajectory in the (x,t) plane drawn by the migra­
tion with time of a peak top in a(x); that is, the set Cis 
characterized by 

C = {(x,t); x g(t),geC1qo,tr P}, (2a) 

Ux (x,t) = 0, Uxx (x,t) <0, (x,t)ee. (2b) 

In the present paper, we show that the estimate (1) 
holds for the ordinary classical solution of the problem (P) 
without the additional restriction ueC 3(R) X (0, 00 »); that is, 
the restriction ueC 3(R I X (0,00 ») is shown to be excessive. 

II. A DEMONSTRATION OF THE STRICTLY MONOTONE 
DECREASE IN HEIGHT OF A PEAK IN THE CLASSICAL 
SOLUTION 

We will make general discussions on the following 
Cauchy problem (P*) which is a generalization of the Mul­
lins'model (P): 

u, = F(ux,uxx ), 

[FeC )(R2
), Fq(p,q) >0 (Ref. 6), F(O,O) = 0], 

(x,t)eR I X (0,00 ) , 

u(x,O) = a(x), xeRl, 

(P*) 

As is pointed out in our previous paper,7 the solution of 
(P*) must satisfy the following problem (LP): 

u, - Uxx f Fq(hux (x,t),huxx (X,t) )dh 

- Ux f Fp(hux (x,t),huxx (X,t) )dh = 0, 

(x,t)eR1x(0,00) , 

u(X,O) = a(x), xeRi, 

(LP) 

where the function F(p,q) is what is given in the problem 
(P*), In the preceding paper, 1 we showed that if the maxi­
mum principle due to Nierenberg is applicable to the prob­
lem (LP), the estimate ( 1 ) holds, and in order for the maxi­
mum principle to be applicable to (LP), it is sufficient that 
all the coefficients of the linear equation in (LP) are contin­
uous at any point of the set R I X (0,00 ), In the preceding 
paper,! we used the mean value theorem in the differential 
calculus to show the continuity of the coefficients 

.c Fq(hux (x,t),huxx (x,t»)dh 

and 

.c Fp(hux (x,t),huxx (x,t»)dh. 

In this context, the additional restriction UEC 3(R I X (0,00 ») 
was required.8 In the present paper, we replace the proce­
dure of the demonstration by the following one which does 
not require this restriction. 

Proof of the continuity of the coefficients: We will show 
the continuity of the coefficient of uxx ' 

.c Fq(hux (x,t),huxx (x,t»)dh, 

at the arbitrarily fixed point (xo,to)eR1 X (0,00), Let n be a 
bounded open convex set in the real plane R2, for example, 
an open disk, which contains two points (Po,qo) and (0,0). 
Here, Po = Ux (xo,to) and qo = Uxx (xo,to)' Since the closure 
ofn, 0, is compact and thefunctionFq (p,q) iscontinuous.!:s 
is indicated in (P*), Fq (p,q) is uniformly continuous on n. 
Therefore, for any € > 0, there exists /j> ° such that 

IFq (hp,hq) - Fq (hp',hq') I 
<€[O<h<l, (p,q)eO, (p',q')eO], 
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whenever IP - p' I < ~ and Iq - q'l <~. As both functions 
Ux (x,t) and Uxx (x,t) are continuous at the point (xo,to), for 
the above ~ > 0, there exists 11 > ° such that 

lux (x,t) - Ux (xo,to) I <~, luxx (x,t) - Uxx (xo,to) I <~, 
whenever Ix - xol < 11 and It - tol < 11. Combining the 
above two estimates, we have 

If Fq(hux (x,t),huxx (x,t»)dh 

-f Fq(hux (Xo,to),huxx (Xo,to»)dh I 

<f IFq(hux (x,t),huxx (x,t)) 

- Fq(hu" (Xo,to),hu"" (Xo,to»ldh < E, 

for any (x,t) such that Ix - xol <11 and It - tol <11. This 
means the continuity of the coefficient of Uxx at the point 
(xo,to)' As the same is true for the coefficient of u,,' all the 
coefficients of the linear equation in (LP) are continuous. 0 
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We can conclude that the estimate (1) holds for the 
classical solution without the restriction ueG 3(R 1 X (0,00 »). 
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~atrix elements with respect to a discrete "Sturmian" basis set ofthe operator rl/2grl/2, where 
g 1S the Coulomb Green's function of the "second-order" Dirac equation, are investigated. 
Closed expressions, involving Gaussian hypergeometric functions, can be obtained for the 
matrix elements. This calculation illustrates contour integration techniques capable of yielding 
closed expressions for a number of overlap integrals associated with the relativistic Kepler 
problem. 

I. INTRODUCTION 

Discrete Coulomb Sturmian basis sets have been used 
successfully for some time in nonrelativistic atomic calcula­
tions. 1 One of the first examples of a Sturmian basis set ap­
peared in a discrete expansion of the nonrelativistic Cou­
lomb Green's function in momentum space due to 
Schwinger.2 Sturmian functions in this discrete expansion 
entered as a set off our-dimensional spherical harmnics con­
nected with the O( 4) symmetry of the nonrelativistic Kepler 
problem. A coordinate space form of Schwinger's expansion 
was investigated in which the Sturmian functions arose in a 
different way as "coupling constant eigenfunctions. ,,3 Subse­
quently, it was found that the coupling constant eigenfunc­
tion concept could yield a discrete expansion also for the 
relativistic Coulomb Green's functions. The Coulomb 
Green's functions for both the "second-order" Dirac equa­
tion4 (defined below) and the conventional linear Dirac 
equationS have been studied from this point of view. 

The Sturmian basis sets seem convenient for atomic cal­
culations, since through the use of the Sturmian basis sets 
one can avoid the introduction of continuum states, and this 
without sacrificing completeness. In perturbation calcula­
tions using a Coulomb Sturmian basis set there will in gen­
eral be a need for Sturmian matrix elements of the Coulomb 
Green's function. Such matrix elements will be investigated 
here for the second-order Dirac equation, 

{TI' (1 + iO')' TI + m 2 }<I> = 0, 

TIl' == - i al' - eAI" 
(1.1 ) 

in which the wave function <I> is a 2 X 1 Pauli spinor, and 0'1"" 

is a self-dual Lorentz spin tensor, defined by the equation 

[

_0 0'3 ~ ~~2 ::] 

0'1''' == 0 0'2 - 0'1 0'3 ' 

- 0'1 - 0'2 - 0'3 0 

( 1.2) 

0' 1,2,3 being the ordinary 2 X 2 Pauli spin matrices. Equation 
( 1.1 ) has been discussed by a number of authors4,6-18 and is 
known to be equivalent to the usual linear Dirac equation. 
The second-order Dirac equation (1.1) brings out a close 
parallel between the quantum theory of a Dirac particle and 
the quantum theory of a simple scalar particle. For this rea­
son, and because of the small dimension of the matrices in-

volved, calculations in quantum electrodynamics are expect­
ed to simplify when the second-order form of the Dirac 
equation is used. These expectations have been borne out in a 
recent study of the mass operator for an electron in an exter­
nal Coulomb potential. 19 

To carry the study of the mass operator referred to 
above further and turn it into a new Lamb shift calculation, 
matrix elements with respect to a Sturmian basis set of the 
Coulomb Green's function of the second-order Dirac equa­
tion are required. Since these matrix elements will be useful, 
in general, for a variety of perturbation calculations, it was 
decided to publish the investigation of the matrix elements of 
the Green's function separately. The results presented here 
generalize known results for the nonrelativistic Coulomb 
Green's function. 20 Also, this calculation illustrates contour 
integration techniques capable of yielding closed expressions 
for a number of overlap integrals associated with the relativ­
istic Kepler problem. 

In Sec. II the relativistic Coulomb Sturmian basis sets 
are discussed and the derivation of the overlap integral 
between two different such basis sets is indicated. Although 
this material is not especially new, the derivation of the over­
lap integral is considered because some intermediate steps in 
the derivation provide a point of departure for the later work 
with the Coulomb Green's function. The Coulomb Green's 
function material is presented in Sec. III. Armed with the 
contour integration technique used for the overlap integral, 
it is shown how to obtain a closed analytic expression, in­
volving Gaussian hypergeometric functions, for the opera­
tor rl/2grl/2, whereg is the Coulomb Green's function of the 
second-order Dirac equation. The factors rl/2 supplied on 
each side of the Green's function before taking matrix ele­
ments are essential to obtain this relatively simple result. 
Because of these factors, the most difficult integrals encoun­
tered in Sec. III are of the Gaussian hypergeometric type. 

Sturmian basis sets and the Coulomb Green's function 
of the second-order Dirac equation are discussed in detail in 
the literature cited above. In the interest of brevity the reader 
is referred to this earlier work, especially Ref. 4, for back­
ground material. 

II. COULOMB STURMIAN BASIS SETS 

The reader will find a more heuristic introduction to 
Sturmian basis sets in the literature cited above. Here a pure-
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ly mathematical approach seems best. Relativistic Coulomb 
Sturmian functions will be defined as the eigenfunctions of 
the self-adjoint operator 

o = [.!...] 112 [ _ .! !... r2 !... 
2 r2 ar ar 

2_ 1-(2r +l)2] [.!...]1I2 
+ 17 4r2 2 

(2.1 ) 

acting on the space of spinor functions ct> (r ). Here 17 > ° is an 
arbitrary real constant, and r is a self-adjoint operator acting 
on only the angular and spin degrees of freedom of ct> (r) and 
having the eigenvalues r=(J+!)2_(Za)2)1/2 if 
L =J +!, and r= (J + !)2 - (Za)2)1/2 - 1 if L =J -.!' 
The corresponding eigenfunctions (ri1],n,L,J,M > form a dlS­
crete basis. These eigenfunctions are proportional to the 
spinor spherical harmonics Y LJM (r) : 

(ri17,n,L,J,M> = (rll17,n,L,J) Y LJM (r) , (2.2) 

(rll17,n,L,J) = (21])3/2 [en -1)!/(n + 2r)!]1/2 

X (217rV- (I!2)e -7J'L ~Y_+II (217r ) . 

(2.3) 

The corresponding eigenvalues of 0 are 0 I = 17 (r + n). 

The double bar notation (rll1],nL,J) is used to signify the 
radial part of the wave function of the particle. The radial 
function (rl 11],n,L,J) is without spinor structure. The angu­
lar momentum quantum numbers L, J, M are the familiar 
ones, and n runs over the range 1,2,3, ... , independently of the 
other quantum numbers. The Sturmian functions (2.2) obey 
the orthogonality and completeness relations (17,A 11],B) 

= ~AB' 1 = l:A 117,A )(1],A I. Here and subsequently when 
conv~nient the shorthand notation A, B, etc. is used to sig-
nify the whole set of quantum numbers n, L, J, M. 

In applications the Coulomb Sturmian functions (2.2) 
are needed sometimes with one, sometimes with another val­
ue of 17. Accordingly, the overlap integral19 

(170,A 1117,B) = (17,B 11170-4 ) = L'" r2 dr(17o,A Ilr) (rll1],B) 

=(_1)n-I[(n> +2r)! (n< + 2r )!] 112 (2;_;2V+l (l_;)n>-n< 

(n> -1)! (n< -I)! (2r+1)! 

x 2F I(-(n< -1),2r+l+n>,2r+2;2;-;2), (2.4) 

is sometimes encountered. In Eq. (2.4) n> =min(nA 
= nO,nB En), n> =max(nA,nB ), and ;is the parameter 

;=21]01(17 + 1]0)' (2.5) 

The contour integration technique needed in Sec. III will be 
illustrated here in a simpler context by indicating the deriva­
tion of the overlap integral (2.4). Also, the first steps in this 
derivation provide the starting point for the more involved 
calculation of Sec. III. As noted in the Introduction, the final 
result, Eq. (2.4), of this section is not new. 

Proceeding with the derivation of the overlap integral 
(2.4 ), the Laguerre polynomials under the integral sign are 
replaced using the integral representation21 

LI'(z) =- dte . I f -1% (1 + t)n+1' 
n 2rri (0+) tn+ I 

(2.6) 

The r integral then goes over into a special case of the formu­
la 

i '" d v-I -ar rev) rr e =--, 
o aV 

Re(v) >0, Re(a) >0, 

larc(a) 1 <rrI2. (2.7) 

At this point the formula 

(17o,noll17,no) 

2985 

= [2170]Y+1 [(no -l)!(2r + 1)!]1I2 
217 (no + 2r)! 

x[ (n -1)!(2r+ 1)!]1I2 
(n + 2r)! 
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1 f (1 + U)IIo+2y 

x- du ~.....:....--=---
2rri (0 + ) uno 

x- dw ------, 
1 f (1 + w)n+2 y 

2rri (0+) wn (W_Wp )2Y +2 

W = _ 17 + 170 + u2170 , (2.8) 
p 217 

is obtained. In order to obtain the formula (2.8) the conver­
gence condition 17 + 170 + 21]0 Re(u) + 21] Re(w) > 0, cor­
responding to Re(a»O in Eq. (2.7), is requried to allow 
performing the r integral first. Since 17 + 170> 0, this inequal­
ity can be arranged simply by taking the loop (0 + ) about 
the origins in the u and w planes sufficiently small. The con-
vergence condition then implies that 1] + 1]0 
+ 21]0 Re(u) > - 21] Re(w), - (1] + 1]0 + 2170 Re(u» 
<21] Re(w), or Re(wp ) <Re(w) forallwon the contour of 
integration. Iffollows that the singular point wp in the inte­
grand of the w integral in Eq. (2.8) lies outside the integr~­
tion contour, when the contours are chosen so as to permit 
performing the r integral first. 

The next step is to perform the w integral. This is facili­
tated by the fact that the sum of the exponents in the inte­
grand is equal to minus two, (n + 2r) + ( - n) 
+ ( - (2r + 2») = - 2. Such an integral is said to be of the 

Gaussian hypergeometric type. For an integral of the Gaus­
sian hypergeometric type a linear transformation 
w=(At+B)/(Ct+D) can be performed and the trans­
formed integral will have the same general structure as the 
original integral, having the same number of factors, each of 
which has the same exponent as before the transformation.22 

For example, to the factor (w - wp ) - (2y + 2) of the original 
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integral, there will correspond a factor proportional to 
(t - tp ) (2y+ 2) in the transformed integral, where tp is the 
image of wp' It is true that powers of a new factor (Ct + D) 
are introduced by the transformation, but for an integral of 
the Gaussian hypergeometric type the sum of all powers of 
(Ct + D) that are introduced by the transformation just 
cancels a corresponding contribution from the Jacobian dw/ 
dt. This "covariance" property of a Gaussian hypergeome­
tric integral under linear transformations can be used to 
eliminate a particular factor of the integrand, thereby greatly 
simplifying the integral. This is accomplished for the factor 
(w - wp) - (2y+ 2) in Eq. (2.8) by mapping the point wp 
onto the point at infinity, tp = 00. The linear transformation 
needed for this is 

w = tWp/{t + I + wp) . (2.9) 

The t plane is mapped into the w plane in such a way that the 
points 0, - 1, wp in the w plane go over into corresponding 
points in the t plane as follows: 

I w = 0 w = - 1 w = wp . 

t t=O t= -1 t= 00 

Accordingly, the w integral takes the form 

- dw ..:..-~~-------:---1 f (1 + w)" + 2y 1 
2rri (0+) w" (w - Wp)2Y+2 

(1+ )"-1 =(_1)"-1 wp 
(-wp)"+2y+12rri 

f (1 + t)"+2y 
X dt-'----'---

(0+) t" 

(1+ )"-1 (n + 2y)! 

(2.10) 

=(_1)"-1 wp 
(_Wp)"+2y+1 (n -1)1(2y+ I)!' 

(2.11) 

when transformed into the t plane. The final t integral in Eq. 
(2.11) was evaluated by use of the following integral repre­
sentation of a binomial coefficient: 

(2rri)-lidt(1+t)"+2Yt-"= (n+2y)! . 
j (n -1)!(2y+ I)! 

(2.12) 

When the final result (2.11) for the w integral is substi­
tuted into the expression (2.8) for the overlap integral and 
the factors ( - wp ) and ( 1 + wp ) are written out in terms of 
u, the overlap integral (7]o,noll7],n) goes over into the form 

= (47]07])Y+ I[ (no - I)! ]1/2 [(n + 2y)! ]112 
(no + 2y)! (n - I)! 

x- du -'----'---1 f (1 + U)"o+2y 

2rri (0 + ) uno 

X (7]0 -7] + 2U7]0)"-1 
(7]0 + 7] + 2U7]0)"+2y+ 1 

(2.13) 

Notice that the final U integral is again of the Gaussian hy­
pergeometric type. Accordingly one final linear transforma­
tion is all that is needed to evaluate the overlap integral. This 
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time the transformation is chosen to map 
up = - (7]0 + 7])/(27]0) into the point at infinity, while 
leaving U = 0 and u = - 1 invariant. The factor 
(7]0 + 7] + 2U7]0)"+2y+ 1 is thereby eliminated from the in­
tegrand. The factor (7]0 - 7] + 2U7]0) " - 1 that remains is ex­
panded by the binomial theorem, and the integral performed 
term by term using Eq. (2.12). The result is the expression 
(2.4) for the overlap integral. These final steps in the deriva­
tion need not be presented here in detail, since the results 
needed for the Green's function calculation of Sec. III are 
already in place: the representation (2.13) of the overlap 
integral forms the starting point for the Green's function 
calculation of Sec. III. 

III. STURMIAN REPRESENTATION OF THE COULOMB 
GREEN'S FUNCTION 

The discrete representation 

g=S [.!...]1I2 L 17],nUM)(7],nUM I [.!...]1I2 S-I, 
2 "LJM (y + n)7] - EZa 2 

S==cosh (0/2) + iU'rsinh (0/2) , 

O==tanh-I(Za/K), K==uoL + 1 , (3.1 ) 

of the Coulomb Green's function of the second-order Dirac 
equation has been derived earlier.4 The derivation exploits 
the Coulomb Sturmian basis set (2.2), with 
7] == (m 2 

- E 2) 1/2. The energy is for the moment assumed to 
be a real number lying in the range IE I < Eground state' This 
restriction can be lifted later by means of an analytic con­
tinuation argument. 

As indicated in the Introduction, Coulomb Sturmian 
matrix elements will be investigated not for g itself, but for 
r1/2gr1/2. Accordingly, Eq. (3.1) is rewritten as 

r1/2gr1/2== (rS)g(rS -I), 

g=_1 L 17],nUM)(7],nUMI, 
27] "LJM (y + n) - EZa/7] 

(3.2) 

and the matrix elements of rS, rS -I, and g will be sought. 
The calculation of the matrix elements of rS and rS - 1 is of a 
rather trivial nature, and is discussed in the Appendix. Here 
a closed expression for (7]0,n 2,L,J,M Igl7]o,n l,L,J,M), in 
terms of Gaussian hypergeometric functions, will be ob­
tained. Note that, due to the diagonal nature of g in the 
angular momentum quantum numbers, the matrix elements 
(7]0,n 2,L,J,M Igl7]o,n I,L,J,M) are the only nonzero ones. The 
real parameter 7]0 > 0 can be quite arbitrary. From Eq. (3.2) 
the desired matrix element can be written in terms of the 
radial parts of the Sturmian functions as 

(7]on2LJM Igl7]on IUM) 

= f _1_ (7]onPI l7]nU) (7]nLJ I l7]onIU ) , 
" = 1 27] Y + n - K 

(3.3 ) 

Next, the overlap integrals in Eq. (3.3) are represented by 
contour integrals according to Eq. (2.13), 
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= (41/01/)2y+2 [(n2 -1)!(2y + 0!]1I2 [(n l -1)!(2y + 0!]1I2_1_ i dU (1 +U)n,+2
y 
_______ _ 

21/ (n2 + 2y)! (n l + 2y)! 21ri j' u n2 (1/0 + 1/ + 2U1/0)2Y+2 

X_l_ i dw (1 + w)n, +2y 1 aD (n + 2y)! En-I 

21ri j' wn, (1/0 + 1/ + 2W1/0)2Y+ 2 n~1 (n - 1)!(2y + O! Y + n - K 

E (1/0 - 1/ + 2U1/0) (1/0 - 1/ + 2W1/0) 

(1/0 + 1/ + 2U1/0) (1/0 + 1/ + 2w1/0) 

The infinite series in Eq. (3.4) can be summed by means of the binomial expansion 

(1-z)-"= f (v-l+n)!zn, Izl<1. 
n=O (v-l)!n! 

(3.4) 

(3.5) 

In order to achieve this, the identity Soldtt n+ Y- I - K= 1I(n+Y-K) is employed to replace the denominator 11 
(n + y - K) by a power. There is an assumption n + y - K> 0 needed here to ensure convergence of the t integral. This 
convergence condition is obeyed under the restriction noted above that I E I < E ground state' When these changes are incorporat­
ed the matrix element takes the form 

= (21/)2Y+ I[ (n2 - 1)!(2y + 1 )!] 112 [(n l - 1 )!(2y + 1)!] 112 i ldt t y-K _1_ idu (1 + U!n
2 

+ 2y (1/0 + 1/ + 2u1/0) -2y-2 
(n2 + 2y)! (n l + 2y)! 0 21ri j' U 2 

x [1 _ t 1/0 - 1/ + 2u1/0 ] - 2y - 2 ~ i dw (1 + w) n, + 2y (w _ W ) - 2y - 2 , 

1/0 + 1/ + 2u1/o 2m j' wn
, p 

wp == _ 1/0 + 1/ [1 _ t [ 1/0 - 1/ + 2u1/0 ] [1/0 - 1/]] [1 _ t [ 1/0 - 1/ + 2u1/0 ]] - I . 
21/0 1/0 + 1/ + 2u1/0 1/0 + 1/ 1/0 + 1/ + 2u1/0 

(3.6) 

The w integral encountered in Eq. (3.6) is of the Gaussian hypergeometric type, and is in fact identical to the integral (2.11) 
already evaluated, aside from the different meaning ofwp . Using Eq. (2.11), and writing out all terms involving wp in terms of 
u, gives 

(1/
o
n

2
LJM Igl1/onILJM ) = ( _ 1)n, - I (41/1/0)2

Y
+ 2[ (n2 - I)! ] 112 [ (n l + 2Y )!] 112 i\ dt t y- K_l_ i du (1 + u)n2 + 2y 

21/ (n2 + 2y)! (n l - I)! 0 21ri j' un2 

X [(1/0 + 1/ + 2u1/0) (1/0 -1/) - (1/0 -1/ + 2u1/0) (1/0 + 1/)t ]n,-I 

[(1/0 + 1/ + 2u1/0) (1/0 + 1/) - (1/0 -1/ + 2u1/0) (1/0 -1/)t ]n, +2y+ \ 
(3.7) 

The U integral in Eq. (3.7) is again of the hypergeometric type. The evaluation of the U integral begins with the linear 
transformation 

SUp 1 1 - t(1 _ ;)2 
U= , U == - , 

s + 1 + up p ; 1 + t( I + ;) 
;=~ 

- 1/0 + 1/ ' 

which has the effect of eliminating the factor 

[(1/0 + 1/ + 2u1/0)( 1/0 + 1/) - (1/0 - 1/ + 2u1/0)( 1/0 - 1/)t ] - (n, + 2y+ I) 

from the integrand, while preserving the general structure 

u-n2(1 + u)n2+2y . 

The result of the linear transformation to the complex s plane is 

(1/onPM Igl1/onlLJM ) 

= ~2Y+ 3(2 _ ;)2Y+ 1(1 _ ;)n2 - n, [ (n2 - 1)! ] \12 [(n l + 2Y)!] 112 i l 
dtt y-K (1 - t)n2 - n, 

21/0 (n2 + 2y)! (n l - 1)! 0 (1 - t(1 _ ;)2)n2 + n, + 2y 

(3.8) 

X~ ids 1 + s)n
2
+2

y 
[(1 _ ;)2(1 _ t)2 + ts;2(2 _ ;)2]n, -I. (3.9) 

2m j' sn2 

The result of the s integration is a hypergeometric function that breaks off to form a polynomial of order min (n2n I): 
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t ;2(2 _ ;)2 
(1_t)2 (1_;)2 . 

(3.10) 

It is now an easy step to complete the calculation and obtain a closed expression for the matrix element. The hypergeometric 
polynomial 2F I ( - (n 2 - 1), - (n I - 1) ,2y + 2;A) is expanded in a series, and the integral over t is performed term by term, 
with the result 

(1JofI2LJM \ g\1Jon ILJM ) 

= ~2r+ 3(2 _ ;)2r+ 1(1 _ ;)n, - I + n, - I [(n2 + 2Y)!] 112 [(n l + 2Y)!] 112 
21Jo (2y + 1)! (n2 - I)! (n l - I)! xnr- I (-(n2-1»)p(-(n l -l»)p [;2(2_;)2/(l_;)2)P r(y+p+l-K)(n l +n2-2-2p)! 

p=o (2y+2)p p! r(y+n l +n2-p-K) 

X zPl(n l + n2 + 2y,y + P + 1 - K,y + n l + n2 - P - K; (1 _ ;)2) . (3.11) 

The result (3.11) has been confirmed by an independent calculation in which the matrix elements are derived from the 
coordinate space representation of the Coulomb Green's function,23 and using integral representations from the theory of 
special functions. 24 
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APPENDIX: MATRIX ELEMENTS OF THE FACTORS rS 
ANDrS- 1 

and 

Matrix elements of the operators 

rS = r cosh(O /2) + riu'rsinh(O /2) 

rS -I = r cosh(O /2) - riu'rsinh(O /2) , 

OEtanh-I(Za/K), K = u-L + 1, 

(AI) 

(A2) 

will be considered briefly. The fact that 0 is diagonal in the 
angular momentum quantum numbers L, J, M makes the 
calculation relatively easy: (1Jo,n2,L,J,M \r\1Jo,nl,L,J,M) is 
the key matrix element needed for the cosh (0/2) terms of rS 
and rS -I. The result 

(1JofI2LJM \ 21Jor\ 1Jon ILJM) 

= 2(y + n2 )l5n,n, 

- (n2(n2 + 1 + 2y»)1/2I5 n, + I,n, 

- (n 2 - 1 )(n2 + 2y) )1/215n, _ I,n, (A3) 

for this matrix element incorporates the identities25 

xL~(x) = (p + 1 +2n)L~(x) - (n +p)L~_dx) 

- (n + 1)L~+ I (x) (A4) 
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i'" dxx"'e-x L"'(x)L'" (x) = (n +p)! 15 . (AS) 
n m 1 n,m 

o n. 
Similar results can be obtained for the terms of rS and 

rS -linvolvingsinh(O /2). This time the operator is diagonal 
in J and M, but not in L. The identity u'rYLJM(r) 

= YL'JM (1-), where L + L' = 2J, provides selection rules 
according to which the key nonzero matrix elements needed 
are now of the type 

(1Jo,n2,J - !,JM \ 21Jor\ 1Jo,n I,J + !,JM), 

or 

(1Jo,n 2,J + !,JM \ 21Jor\1Jo,n l,J - !,JM). 

The equation 

(1Jo,n2,L2 = J - ~,JM \21JoT\1Jo,n l,L I = J + ~,JM) 
= I5n"n, [(n l + 2YI)(n l + 2YI - 1) r/2 

- 2l5n"n, + I [n l (n l + 2YI)] 1/2 

+ I5n"n, +2 [nl(n l + 1)]1/2 

and the analogous equation for 

(1Jo,n2,J + !,JM \21JoT\1Jo,n l,J - !,JM) 

can be obtained using the identity27 

(A6) 

L~r_-II(x) =L~r_+/(x) -2L~r_+/(x) +L~r_+31(X), 

(A7) 

and Eq. (AS), 
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Using dimensional regularization, the lowest-order electron self-energy function in an arbitrary 
covariant gauge is derived. For off-mass-shell electrons, the usual expression for the finite 
portion ~ I of the self-energy as the number of space-time dimensions n approaches 4 is 
recovered. In the case of on-mass-shell electrons, the condition (p - m)~ 1-+0 asp-+m, which 
is necessary to make the usual separation of the renormalization constant unambiguous, 
requires that n approach 4 from above, i.e., n -+4 +. This necessary condition on ~ I is not 
satisfied by the off-mass-shell expression in the limit p2 .... m2 due to a branch point in the self­
energy operator. 

I. INTRODUCTION written ass 

(3) 

The separation of renormalization constants from finite 
quantities in renormalizable field theories is a time-honored 
process which is facilitated by the use of regularization tech­
niques. I

-
3 In quantum electrodynamics, the necessity for a 

regularization scheme to respect gauge invariance was em­
phasized by Gupta. 2 Consistency with gauge invariance to­
gether with ease of implementation makes the dimensional 
regularization technique3 a particularly attractive alterna­
tive to regulator schemes involving covariant cutoffs. While 
applying dimensional regularization for certain radiative 
corrections to positronium energy levels and decays,4 we en­
countered a question, which may be of general interest, 
about how the renormalization constant associated with the 
electron self-energy ~ (p) is separated from the finite part. 

Employing Feynman parametrization and performing the 
integrals on k, we find 

Recall that regardless of the method one may use for 
regularization, it is convenient to express the regularized 
~(p) as 

~(p) =A + (p-m)B+ (p_m)2~/(p), (1) 

whereA and B are independent of the electron four-momen­
tump, and 

(2) 

in order to have a unique decomposition in Eq. (1). 
Evaluation of A is straightforward, whereas for Band 

~ I' some care must be exercised.5 We should mention that 
the ~ I' which is usually found in literature,6 does not satisfy 
the condition given in Eq. (2). 

In this paper we calculate the ~ (p) in an arbitrary co­
variant gauge using dimensional regularization and express 
it in the form of Eq. (1). Assuming that the electron is off­
mass-shell, we recover the usual expression for ~ I as the 
number of dimensions n .... 4. For an on-mass-shell electron, 
our general expression for ~ I satisfies Eq. (2) if we assume 
that the dimension of space-time is larger than 4 (n .... 4 + ) . 

Throughout our paper, we use the notation and conven­
tions of Bjorken and Drel1.7 We also use the natural units 
f!=c= 1. 

II. ELECTRON SELF-ENERGY 

Using dimensional regularization, the lowest-order 
electron self-energy in an arbitrary covariant gauge can be 

~(p) = (a/41T)r( - a)II(p) 

- (ad41T)m- 2r(1- a)I2(p) , (4) 

where 

with 

p= (_p2+m2)/m2 _ i"l ("1>0), 

a = n/2 - 2 (a#0,1,2, ... ) , 

(5) 

(6) 

and we disregarded any overall multiplicative constant of 
the form C' . The coefficients gp and hp are 

go(p) = - (2+E+2a+Ea)p+ (4+2E+2a+Ea)m, 

gl(p) = (2 - 2E + 2a)p - (2E + Ea)m, (7) 

g2(P) = (3E + Ea)p, 

and 

ho(p) = p2p + p2m, 

hI (p) = - 2p2p - p2m , 

h2(p) = p2p. 

(8) 

The integrals in I) and 12 can be performed and ex­
pressed in terms of hypergeometric functions (Ref. 9, Eq. 
3.1941), 
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2 pa 
I I (p) = L gp(p) P 1 

13=0 a+ + 

XF( -a,a+p+ l;a+P+2;P~ 1), 

2 a-I (9) 
12(P) = L hp(p)-'-P_-

13=0 a+p+2 

XF( -a+ l,a+p+2;a+P+3;P~ 1), 

with a=l= - 2, - 3, ... , and we have used the notation 

F=2F I' 
By using the analytic continuation of hypergeometric 

functions for the region Ip I < 1, and expanding them in terms 
of a (see the Appendix), we obtain 

2 

I I (p) = L gp(p)Ap(p) , 
13=0 

2 

12(p) = L hp (p)Ap(p) , 
13=0 

where, for 0 < lal <! and !PI < 1, 

Ao(p) = 1 - 2a + (p2a - 1 )[p/20 -p)] 

X { - 1 + [2 + InO - p) ]a} + 0(a2) , 

A()_1 2p-l (2a 1) p2 
IP -"2+20_p)a+ p - 40-p)2 

X{1 + [-2-lnO-p)]a}+0(a2), 

A ( ) = ~ + - 13p2 + IIp - 4 a 
2P 3 180-p)2 

3 
+ (p2a _ 1) P 

60-p)3 

X{ -1 + [1: +lno - p )] aJ +0(a2) , 

and 

A()- 1 +(2a 1) p 
op -1-p P - 20-p)2 

X[! -1-lnO- p )]+o(a), 

A () 1 - 3p (2a 1 ) p2 
I P = 20-p)2 + p - 2(1_p)3 

x[ -! +~ +In(1-p)]+o(a), 

A ( ) = I1p2 - 7 P + 2 + ( 2a _ 1) p3 
2P 6(1_p)3 P 20-p)4 

x[! --!J--InO-p)]+o(a). 

( 10) 

01 ) 

(2) 

By inserting these expansions into Eq. (4) and rearrang­
ing terms, we find 

am a 
~(p) = -r( - a)(3 - 4a) + -r( - a)(j - m) 

4~ ~ 
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where 

i(p) = 4:[<J-m)e':2 +2-2E)- (E
1
+_l:

j
] 

XrO-a) +~(p2a -1) P 
~ 20-p) 

X { - (2 + E)m + [ (1 + E)(2 - P )j 
1-p 

-(4+E)m][ -! +1+lno - p )]} 

xr(1- a). (4) 

The term 1/a reflects the infrared divergence, while the fac­
tor <J - m) in the second term of Eq. (13) comes from 
(j - m) dependence of gp (p), and its coefficient gives the 
ultraviolet divergence. 

We write Eq. (13) in the following compact form: 

~(p) =A + (j-m)B+ (j-m)2~f(p), OS) 

where 

A = (am/~)r( - a) (3 - 4a) , 

is the (gauge independent) self-mass, 

a 
B=-r( -a)( -1-E+4a) 

4~ 

(16) 

a 2-E + ~ rO-a)-a-' (7) 

is related to the wave function renormalization constant, and 
we have used the following definition: 

i(p) = (j - m)2~f(p) . (18) 

Using the identities 

<J - m) = [ - (j + m)/m2p](j - m)2, 

1 = [(2j - mp + 2m)/m3p2] (j - m)2, 

and Eqs. (4) and (8), we find 

a {I + E ~f(P) =-rO-a) --+ (2+E)C 
~m 1-p 

+(E_2+3p )D_ j + m [E-2 
mp a 

+ 4+(E-3)p +(4+2E)C 
1-p 

(19) 

+(2E-4+ (4-2E)P+ 0 +E)p2)D]) , 

(20) 
where 

C= (p2a -l)/20-p), (21) 

D = [(p2a - 1 )/20 - p)2][ 1/a - 1 -100 - p)]. (22) 

Henceforth, we restrict the values of a to 0 < a <! [this is a 
necessary condition in order to satisfy Eq. (2), see Eq. 
(25)] . 
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The expression for ~ f (p) can be simplified (in terms of 
a) if we write it in two separate forms, one for p = 0, and the 
other for 0 < Ip I < 1. In the following we use the notation 

~ f(P) Ip~ m =~j, 

~ f(P) Ih'm =~1· 
For p = 0 (I = m), we have limp2a __ 0, and find 

p_O 

a 
~o/ = _[ ( _ 3 + ~E)/a + (1 + E) 

41Tm 

(23) 

(24) 

_p2a-I(2E - 4)/a + 8)]r(1- a) . (25) 

For 0 < Ip I < 1 (/:f. m), we use the expansion 
p2Q = 1 + 2a In p, and find 

~off() a {I + E 3p + E - 2 1 
'f P =41Tm I-p+ (1_p)2 np 

_ 1 + m [ (E - 3)p + 4 
mp I-p 

(1+E)p2+ (4-2E)P+ (2E-4) 1 
+ (1_p)2 np 

E- 2)} +-a- r(1-a). (26) 

Notice that limp_ m (I - m)~'}"(p) --0 (this is not true for 
~fff). This relation assures that our decomposition of ~ (p) 
in Eq. (15) is unique. It also guarantees that after mass re­
normalization, the electron propagator (near-mass-shell) 
will be modified, due to the self-energy correction, by a mul­
tiplicative factor. We can extend the domain of ~fff by ana­
lytic continuation. It will have the same form for Ip I ;;.1. 

If we are not interested in a single expression for ~ f (p) 

for whole region Ipi < 1, we can find ~'}" by keeping only 
those terms in expansions of hypergeometric functions [see 
Eq. (A3)] which are up to the second order inp. For ~fff, it 
is much easier to use the original Eq. (9), which can be 
expanded in terms of p in region Re (p) > 1, and by analytic 
continuation it can be shown that it has the same form for all 
p (except atp = 0). 

III. SUMMARY AND CONCLUSIONS 

Our main objective for representing ~ f (p) by a single 
expression is to show, in a clear way, that the inequality 
limp_ m ~fff(p) -1+ ~'}" is due to the use of the expansion 
p2a = 1 + 2a Inp in finding ~r, which is justified only for 
p:f.O. 

For one-loop corrections, the difference between ~'}" 
and limp_ m ~fff does not present a problem sincep is a non­
vanishing constant in these cases. However, when dealing 
with multiloop corrections, some thought must be given to 
the values of the integration variable encountered in expres­
sions containing ~ f' In such circumstances, it is entirely 
possible that the surface p = 0 could make a significant con­
tribution which is sensitive to the difference between ~'}" 
and limp_ m ~fff. If this is the case, then one should employ 
Eq. (20) for ~ f(P), which is correct for all values of p. 
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APPENDIX: REDUCTION OF I,(p) AND '2(P) 

The analytic continuation of F(a,b;b + l;(p - 1 )/p) to 
the region Ip I < 1 can be found by the relation 10 

F(a,b;b + 1; P ~ 1) 

b a 
= -b 'P F(a,l;a - b + 1;p) 

-a 

+ reb + l)r(a - b) (_p_)b, 
r(a) I-p 

(AI) 

with condition I arg ( 1/ p) I < 1T, which can be satisfied [even 
for real values of four-momentum p, since p = ( _ p2 
+ m2 )/m2 

- il1, 11 > 0]. 
In this Appendix we work out F ( - a + l,a + 2; 

a + 3;(p - 1)/p); the other F's can be found in a similar 
way. 

From Eq. (AI) we obtain 

F ( 1 - a,a + 2;a + 3; P ~ 1 ) 

(a+2)pl-a F(I_al'_2a' ) 
20+1 ,,;p 

+ rea + 3)r( - 1 - 20) (_p_)a+2. (A2) 
r(1-a) I-p 

Using the formula 

F(a,l;c;p) = _r_(c_) i: _r_(a_+_m_) pm, 
r(a) m~O r(c+m) 

we find 

F( - a + 1,1; - 2a;p) 

=1+_1_r(-2a+l) 
-2a r(-a+l) 

~ r(-a+l+m) m 
X~ p. 
m~l r(-2a+m) 

Ipi < 1, 

(A3) 

(A4) 

Notice that in the closed region of an annular ring which 
is bounded by two concentric circles centered at origin of the 
a plane, with radii El and 1 - E2 (El and E2 are positive but 
much smaller than 1), r( - 20 + 1) /r( - a + 1) and 
r( - a + 1 + m)/r( - 2a + m) are analytic functions of 
a, and the series in Eq. (A4) is uniformly convergent 
(Ipl < 1) and consequently its sum is an analytic function of 
a. ThereforeF( - a + 1,1; - 2a;p) itself is an analyticfunc­
tion of a and we can expand it about a = 0, 
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F( - a + 1,1; - 2a;p) 

= 1 +_1_{ i mpm+a i ~[r( -20+ 1) 
- 20 m= I m= I aa r( - a + 1) 

X r (-a+l+m)] pm+ 0 (a2)} 
r(-2a+m) a=O 

2-3p + P In(1-p) 
2(1-p)2 2(1-p)2 

-p 1 
+ 2(1-p)2 a + O(a). (A5) 

In derivation ofEq. (A5) we have used the following formu­
las (Ref. 9. Eqs. S.36 and 1.513 6): 

r'(m + 1) _ r'(1) = i ~, m = 1,2,3, ... , 
r(m+l) r(1) k=lk 

(A6) 

oo(m I} -1 L L - m=--ln(1-p), 
m=lk=lk 1-p 

(A7) 

(AS) 

with their derivatives with respect top (after multiplying by 
appropriate powers of p ). 

For the second term of F( - a + l,a + 2;a + 3; 
(p - 1)/p) in Eq. (A2), we obtain 

rea + 3)re - 20 _1)(_p_)a+2 
re-a+1) 1-p 

1 r(a+3)re-2o+1) 
(-20-1)( -20) r( -a+ 1) 

a+2 
X P 2[I-aln(1-p)+O(a2)] 

(1-p) 

= p ----In(1-p) +O(a), a+2 [1 1 ] 
(1-p)2 a 2 

(A9) 
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where we have used the expansion 

(1-p)-a = I-a In(1-p) + O(a2), IPI < 1. 
(AW) 

Therefore, combining (A2), (A5), and (A9), we find, for 
Ipi < 1, 

F( - a + l,a + 2;a + 3l ~ 1) 

pa + 2 [1 1 ] p2 - a = - - - - In (1 - p) + ---'----::-
(1_p)2 a 2 (1_p)2 

x[ -~-~+~+ln(1-p)] +O(a). 
a 2 p 
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Chiral symmetry breakdown. III. Delbourgo's gauge technique 
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The quark p.ropagator in massless quantum chromodynamics (QeD) is analyzed using the 
gauge techmque. In both the Feynman and Landau gauges with a Pauli-Villars cutoff a 
chirally symmetric solution is found, while a nonsymmetric solution appears at a criti~al 
coupling Ac > O. As the cutoff is removed, Ac tends to 0 but the nonsymmetric solution 
vanishes in the continuum limit, so that chiral symmetry is then restored. 

I. INTRODUCTION 

Spontaneous dynamical breakdown of chiral symmetry 
represents an interesting and potentially important means 
through which particles become massive at a certain critical 
coupling strength because of interactions with the quantum 
field. I In QeD, this phenomenon provides a mechanism for 
quarks to acquire constituent masses in a formally massless 
theory through nonperturbative effects. The occurrence of 
dynamical symmetry breaking is investigated by analysis of 
Dyson-Schwinger equations for the fermion propagator. 
Such analyses are hampered by a degree of arbitrariness, in 
that the effect of unavoidable truncation of Dyson­
Schwinger equations is difficult to assess. 

Some time ago Maskawa and Nakajima showed that, in 
the context of quantum electrodynamics (QED), when the 
fermion-fermion-photon vertex function and the photon 
propagator are replaced by their free values, the solutions of 
the Dyson-Schwinger equation exhibit spontaneous chiral 
symmetry breaking.2 In a recent paper we demonstrated that 
this spontaneous symmetry breaking occurs when one intro­
duces both an infrared and an ultraviolet cutoff.3 In a more 
detailed analysis of the problem, this truncation procedure 
was found to be unacceptably gauge dependent. We showed 
that chiral symmetry was indeed broken in the theory with 
cutoffs present, but that the symmetry was restored in the 
continuum limit in certain gauges.4 It was found that chiral 
symmetry breaking was very sensitive to the infrared and 
ultra violet behavior of the gauge-dependent free photon pro­
pagator. Furthermore, we showed that this sensitivity to 
choice of gauge remained even when the truncation proce­
dure was modified to maintain consistency with the "trans­
versality" constraint coming from gauge invariance in the 
ultraviolet.5 It is our conclusion that the free vertex approxi­
mation cannot provide a reliable indication as to the occur­
rence of spontaneous chiral symmetry breaking, and that 
other truncation schemes should be explored. 

Truncation of Dyson-Schwinger equations is certainly 
an ad hoc procedure based primarily upon expediency, but 
one must make use of physically motivated conditions or 
requirements whenever possible. Several authors have cho­
sen the quark-quark-gluon vertex in QeD to decrease as 1/ 
log q2 at large q2, in correspondence with the ultraviolet be­
havior imposed by asymptotic freedom.6-8 We have shown 

in Ref. 4 that chiral symmetry remains unbroken in certain 
gauges in the continuum limit in this case as well, because of 
formal divergence of the loop integral in the Dyson­
Schwinger equation. We conclude that this truncation 
scheme has essentially the same difficulties as the free vertex 
approximation, and thus that one must look further to ob­
tain a resolution of the ambiguity associated with gauge­
dependent results. 

The free vertex truncation, as well as its renormaliza­
tion-group-improved counterpart discussed in Ref. 4, is not 
consistent with the Slavnov-Taylor identity, and therefore 
stands in direct conflict with the requirements of gauge in­
variance. The gauge dependence of the results on chiral sym­
metry breaking is a manifestation of the gauge dependence of 
the truncation scheme. By contrast, in the truncation 
scheme proposed some time ago by Salam and Delbourgo,9 

and studied by a number of people, 10.11 one maintains consis­
tency with the Slavnov-Taylor identity for the vertex func­
tion, and thus the effects of gauge dependence should be 
reduced. 

Here we will study chiral symmetry breaking in the Sa­
lam-Delbourgo scheme, which is based upon spectral An­
siitze for the propagator and vertex functions. We replace the 
gluon propagator by a free massive one, and discuss both 
Feynmann and Landau gauges in the Dyson-Schwinger 
equation in Sec. II. The formal divergence of the loop inte­
gral is removed by introducing a Pauli-Villars cutoff; and 
the Dyson-Schwinger equation reduces to a homogeneous 
linear equation for the spectral density function, which has 
nontrivial solutions. 

We find that when the cutoff is present, only a chirally 
symmetric solution occurs below a critical coupling Ac > 0, 
whereas above Ac nonsymmetric solutions are also present. 
In the continuum limit as the cutoff is removed, Ac goes 
formally to o. However, in both gauges only the chirally 
symmetric solution survives. Therefore in the Salam-Del­
bourgo formalism chiral symmetry is restored in the contin­
uum limit. 

II. SALAM-DELBOURGO ANSA TZ 

The Dyson-Schwinger equation for the quark propaga­
tor SF (p) can be written 

a) Permanent address: Physics Department. Illinois Institute of Techno1o- is F (p) - ~(p)S F (p) = 1, 
(2.1 ) 

gy. Chicago, Illinois 60616. where the self-energy is given by 
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~(p) = it- 4 f d 4k r!'S 'p.(p - k)r v (p - k,p)D ;r(k), 
(211") 

(2.2) 

where r v is the gluon-quark vertex function and D'p. the 
gluon propagator. Here g is proportional to the SU (3) cou­
pling constant. 

The Lehmann representation for the quark propagator 
can be written 

S'(p)-fOO dw' p(w') (2.3) 
F - _ 00 p - w' + i€€(w') , 

where €(w') = sgn(w'), andp is an unknown spectral func­
tion. If p (w) is even in w, S'p. (p) has the form p times a 
function of p2, and so chiral symmetry is then unbroken. The 
Salam-Delbourgo Ansatz assumes that 

S'p.(p - k)rv(p - k,p)S'p.(p) 

foo d ' (') 1 1 (24) = wp w '" 1£ ' rv -",--, , . 
-00 I'-I{.-W I'-w 

where the i€€(w') is to be understood in both denominators. 
It is easy to see that (2.4) is consistent with the Slavnov­
Taylor identity for r v' 

With this Ansatz, the Dyson-Schwinger equation (2.1) 

can be rewritten in the form 

f
OO dw' p(w') [p - ~(p - w') ]_1_, = 1, (2.5) 
-00 p-w 

where 

~("'w') =~fd4kr 1 r D'!'V(k). 
1" (211")4 v p -It _ w' v F 

(2.6) 

In this paper, we propose to consider the Feynman and the 
Landau gauges. Moreover, we shall remove the divergence 
of the loop integral (2.6) by introducing a Pauli-Villars cut­
off. We write 

D jV(k) = D!,V(k,m) - D!,V(k,A) , (2.7) 

where the cutoff A is much greater than m, the gluon mass, 
and where, in the Feynman gauge, 

DPV (k,m) = _gI'v l(k 2 - m2 + i€), (2.8a) 

and in the Landau gauge, 

[ 
k!'kV ] 1 

DPv (k,m) = - gl'v + 2 • 2 2 .' 
k +l€ k - m +l€ 

(2.8b) 

The corresponding expressions for ~ can be calculated: 

~(p,w') =.1 foo dw !l(w,w',m) - !l(w,w',A) . 
-00 p-w 

!l(w,w',m) 

= [E(w)lw3 ]O( Iwl - Iw'l - m) 

X [w2 - 4ww' + W,2 - m2] 

(2.9) 

X{[w2 - (w' + m)2] [w2 - (w' _ m)2]}1/2 
(2.lOa) 

in the Feynman gauge, and 
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!l(w,w',m) 

= H€(w)lw3 ]O( Iwl - Iw'l- m)[ (w - W,)2 - m2] 

X{[w2 - (w' + m)2] [w2 - (w' _ m)2]}1/2 
(2.lOb) 

in the Landau gauge. The expression (2.9) for ~(p) involves 
a convergent integral in both gauges, because of the Pauli­
Villars cutoff. 

In each gauge we substitute (2.9) into (2.5) and partial­
ly fractionate, obtaining 

1 = foo dw' p(W')-p_, - A. foo dw' p(w') 
-00 p-w -00 

xfoo dw" !l(w",w',m) - !l(w",w',A) 
- 00 w" - w' 

X [_1 ___ 1_] 
p-w" p-w" 

(2.11 ) 

The imaginary part of this equation is 

t/J(w)p(w) = A. f: 00 dw' p(w') 

!l(w,w',m) - !l(w,w',A) 
X " w-w 

(2.12) 

where 

t/J(w) = w + A.foo dw' !l(w',w,m), - !l(w',w,A) . 
-00 w-w 

(2.13 ) 

The function t/J(w) may be calculated in closed form for ei­
ther gauge. Equation (2.12) will be analyzed, in these 
gauges, in the next section. 

III. ANALYSIS OF THE EQUATION 

Equation (2.12) can be written 

t/J(w)p(w) 

=A.O(lwl-m) dw'p(w') w,w,~ f
,w, - m !l(' ) 

-Iwl+m w- w 

- A.O( Iwl - A) dw' p(w') w,w , , f'W' - A !l(' A) 

-lwl+A w- w 
(3.1 ) 

The 0 functions are already implied by those in (2.10), they 
are included explicitly above to emphasize that the right­
hand side of (3.1) vanishes when Iwl < m. 

First note that the denominator w - w' never vanishes, 
and that the kernel in continuous. The function t/J (w) is also 
bounded and continuous, and we may write 

t/J(w)lw = 1 - A. [t/I(w,m) - t/I(w,A)], (3.2) 

where 

1M d' 
t/I(w,m) = 2 % p(w,2,w2,m2) 

Iwl+m w 

with 

X{[W,2 - (w + m)2] [W,2 - (w _ m)2]}1/2 

(3.3 ) 

p(w,2,w2,m2) = 3 + (2w2 + m2 )/(w,2 - w2 ) (3.4a) 
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in the Feynman gauge, and 

p(w'2,w2,m2) = ~(1 + m2/(w,2 _ w2») (3.4b) 

in the Landau gauge. It is possible to express "'( w,m) in 
terms of elementary functions in both gauges. We have intro­
duced a cutoff parameter M in the integral (3.3), which 
must be taken to infinity in (3.2). The integral in (3.3) di­
verges logarithmically as M - 00, but the function t/J (w) in 
(3.2) is well defined in this limit. In particular, 

t/J(w)lw-l - bA 10g(Alm) (3.5) 

as w-O, where b = 6 in Feynman gauge and b = 3 in Lan­
dau gauge. In both gauges, t/J(w)lw is monotonically in­
creasing for w > 0 and 

t/J(w)lw-l (3.6) 

asw-±oo. 
The odd function t/J(w) is zero at w = O. In addition, 

under the condition 

(3.7) 

it has a pair of zeros at w = ± wo' where Wo is positive by 
convention. The function t/J(w) has no positive zero for 
A <Ac • Note that the critical couplingAc (A) goes to 0 as the 
Pauli-Villars cutoff parameter tends to infinity. 

Let us consider Eq. (3.1). We know that any solution 
pew) vanishes for Iwl <m. Furthermore, for m<lwl <2m, 
the values of w' in the integrals on the right-hand side of 
(3.l) satisfy Iw'l <m, for whichp(w') is O. Consequently, 
pew) actually vanishes for Iwl < 2m. In fact, one may iterate 
this procedure to show that pew) vanishes for all w. The 
conclusion is unavoidable if one requires the spectral density 
pew) to be a bounded continuous function. However, it is 
also possible for pew) to have delta distributions at those 
values ofw for which t/J(w) is 0; t/J(w)p(w) and the integrals 
in (3.1) would then be ordinary functions. 12 Therefore, loca­
tion of the zeros of pew) is a crucial ingredient in solving 
(3.1 ). 

Let us set the mass scale by taking m = 1, and define the 
function 

(3.8) 

For coupling strength A = Ao(wo,A) with cutoff A, the func­
tion t/J ( ± wo) is 0, provided that ..10 is greater than the criti­
cal couplingAc (A); cf. Eq. (3.2). We find that Ao(wo,A) is 
monotonically decreasing in Wo for fixed A. The function 
Ao(wo,A) is plotted against Wo in Figs. 1 (a) (Feynman 
gauge) and 1 (b) (Landau gauge). Note that Wo goes to 0 as 
A approaches the critical coupling Ac (A) from above. 

In Figs. 2(a) (Feynman gauge) and 2(b) (Landau 
gauge), Wo is plotted against the cutoff parameter A for var­
ious choices of coupling strength A.o. There is an approxi­
mate linear relation between A and wo' which can be under­
stood by examining the integral ( 3.3) in the parameter 
regime M2>A2> w~ >m2 = 1, to obtain 

",(wo,l) - ",(wo,A) =6 log(A1wo) + 2 

in Feynman gauge, and 

",(wo,l) - ",(wo,A) =3 log (A1wo) - i 
in Landau gauge. Correspondingly, we get 
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(3.9a) 

(3.9b) 

I~o' 

w5,----.-----y------y-----. 

FIG. I. Ao vs Wo for various values of the cutoff A: (a) Feynman gauge. (b) 
Landau gauge. 

[
1 9-2b] A=woexp -+---, 

bA 12 
(3.10) 

where b is 6 in Feynman gauge and 3 in Landau gauge, as in 
Eq. (3.5) above. These relations are valid to within a few 
percent for both gauges. Note, in particular, that for fixed A, 
Wo tends to infinity with A. 

Let us look for solutions of Eq. (3.1) of the form 

Atkinson. Hulsebos. and Johnson 2996 



                                                                                                                                    

100~---.-----.------r---_--1 
TO' 

10 4 .-----.-----...,,---,---r-,-.,,--,--J 
(b) 

10°f----,----,------.----.., 

10' 

FIG. 2. Wo versus cutoff parameter A for various values of coupling 
strength: (a) Feynman gauge, (b) Landau gauge. 

p(w) =Ao(w-wo) +Bo(w+wo) +O'(w), (3.11) 

for constants A and B chosen arbitrarily, with the function 
O'(w) to be determined. We obtain 

t,b(w)O'(w) = AO( Iwl - m - wo) [A !l(w,wo,m) 
W-Wo 

+ B !l(w, - wo,m) ] 

w+wo 

f
,w, - m 

+AO(lwl- m) dw' 
-Iwl+m 

XO'(w') !l(w,w',m) - em-A]. 
w-w' 

(3.12) 

The terms involving A andBvanish when Iwl <m + wo, and 
so 0'( w) = 0 for I wi < m + wo, by the argument given before. 
Hence we may replace O(lwl- m) in Eq. (3.12) by 
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O(lwl- m - wo)' Indeed, it may be sharpened to 
O(lwl- 2m - wo),since Iw'l can exceed m + woonlywhen 
Iwl > 2m + woo Now O'(w) may be evaluated in successive 
steps of width m; for m + Wo < I w I < 2m + wo, it is given by 
just the first line of Eq. (3.12), for 2m + wolwl < 3m + Wo 
the integral contributes, but it involves only the domain 
m + Wo< Iw'l <2m + wo' for which O'(w') is already 
known, and so on. In short, Eq. (3.12) is not a true equation 
for 0'( w); it is rather a progressive algorithm for evaluating 
0'( w) to arbitrarily large w values, and the existence of a 
solution, parametrized by A and B, is assured. 

The solution implies the following Lehmann represen­
tation for the quark propagator: 

S' ( ) = (A +B)J + (A -B)wo 
F P 2 2 

P -wo 

+ JOO dw' O( Iw'l - m - ~o)O'(w') 
00- J-w 

(3.13) 

There is a pole in the quark propagator at p2 = w~, but chiral 
symmetry actually remains unbroken when A = B. To verify 
the latter point, note that t,b(w) is odd, the inhomogeneous 
term in (3.12) is an odd function of w when A = B, and the 
solution 0'( w) comes out as an even function of w. Thus the 
quark propagator (3.13) is proportional to J and chiral sym­
metry is preserved. The choice A =lB leads to a propagator 
that breaks chiral symmetry. 

In the continuum limit (A- 00), the pole in the quark 
propagator at p2 = w~ disappears to infinity. However, the 
parameters A and B can also be taken to depend upon A. In 
the continuum limit, the spectral density 0' vanishes, and the 
renormalized quark propagator is of the form 

S~(p) = aJ + b. (3.14) 

The subtraction constants a and b, while not determined in 
the Salam-Delbourgo formalism, must be set to 0 on phys­
ical grounds. Consequently, only the trivial solution 
S ~ (p) = 0 survives in the continuum limit. 

Finally, we turn to the zero of t,b(w) at w = O. There is 
another solution of (3.1) of the form 

p(w) = O(w) + O'(w), (3.15) 

where O'(w) satisfies Eq. (3.12) with replacements Wo = 0 
and A + B = 1. The inhomogeneous term in (3.12) is pro­
portional to 

AO(lwl-m)E(w)(l-m2Iw2
)2 (3.16) 

in both gauges, and the solution 0'( w) is an even function of 
w. Consequently, the quark propagator becomes 

S ~(p) =.L + 2J (00 dw' O'(w') . (3.17) 
p2 Jm p2_W'2 

The quark propagator has a pole at p2 = 0, and chiral sym­
metry remains unbroken at finite A, as well as in the contin­
uum limit. 

In summary, we have found two classes of solutions: in 
one class there may be a breaking of chiral symmetry with a 
cutoifpresent, but such solutions trivialize in the continuum 
limit; whereas the other class corresponds to unbroken 
chiral symmetry. Chiral symmetry thus remains unbroken 
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in the continuum limit in the Salam-Delbourgo formalism. 
These conclusions, which are established here in both Feyn­
man and Landau gauges, are shown in Ref. 13 to apply also 
in the "Landau-like" gauge proposed by Maskawa and Na­
kajima in Ref. 2 and treated by us in Ref. 4. 
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It is shown that streamfunctions g(k), k = 1,2, can be defined to describe the two ionic states of 
a weakly dissociated electrolyte in the presence of a uniform applied electric field~ These states 
comprise the dissociated state and the associated state and the g(k) are shown to be governed 
by a second-order partial differential equation. By consideration of characteristic numbers 
describing the two ionic states this equation is solved using similarity solutions. The association 
rate constant and relative increase in the dissociation constant due to the applied electric field 
are shown to have simple expressions in terms oftheg(k). It is suggested that the 
streamfunctions are more natural functions with which to describe the mathematical 
properties of a weak electrolyte than the corresponding distribution functions. Some important 
mathematical properties of the streamfunctions are discussed. 

I. INTRODUCTION 

Existing mathematical theories of the association and 
dissociation of a weak electrolyte in the presence of a uni­
form applied electric field X (Refs. 1 and 2), i.e., ofthe so­
called Wien effect, are in terms of the distribution functions 
f'k)(r,B), k = 1,2, describing oppositely charged pairs of 
ions (i, j pairs), where r is the distance of separation of the 
ions in a pair and B is the angle between rand X. The super­
scripts refer to the two ionic states that exist in weak electro­
lytes. These are the state of complete dissociation denoted by 
superscript 1 and the associated state denoted by superscript 
2. In these theories solutions for thef'k) are sought from 

div f(k)V(k) = 0 (1.1) 

that are the equations of continuity in the steady state of 
ionic flux, where V(k) is the mean relative velocity of an i ion 
relative to thej ion of an i,j pair. 

In Sec. II we discuss how the above-mentioned theories 
do not take full advantage ofEq. (1.1) by showing how these 
equations permit the introduction of the concept of stream­
functions g(k) (r,B) to describe the two ionic states of the 
weak electrolyte. Simple expressions for the association rate 
constant A and the relative increase in the dissociation con­
stantK(X)IK(O) are deduced in terms oftheg(k). We derive 
the partial differential equation governing these streamfunc­
tions in Sec. III and in Sec. IV we deduce possible character­
istic numbers for the two ionic states of the weak electrolyte. 
These numbers are employed in Sec. V in solving by similar­
ity solutions the governing partial differential equation for 
theg(k). Finally both A andK(X)IK(O) are evaluated. 

The originality of this work lies in the concept oftheg(k) 
to describe the mathematical properties of a weak electro­
lyte, in the introduction of their governing partial differen­
tial equation, and in the solutions of this equation employing 
numbers characteristic of the weak electrolyte. 

II. STREAMFUNCTIONS AND STREAMLINES 

The law of mass action gives the equation for the time 
rate of change of associated ions in a weak electrolyte as 

(2.1 ) 

where vij is the concentration of associated ions and nil nj 
are the concentrations of dissociated ions. For a weak elec­
trolyte nilnj «vij' which implies, that although nil nj are 
functions of the applied field intensity X, vij is independent of 
X. 

In the steady state dVijldt = 0 and the equation of con­
tinuity of ionic flux leads to Eq. (1.1).3 The mean relative 
velocity of an i ion relative to aj ion is given by 

V(k) = -grad~-(1/f(k»)gradf(k), k=1,2, (2.2) 

where 

~ = - 1/r - 2Ercos B (2.3) 

is the total electric potential of an i,j pair, E = 2/3q, 

where W il Wj are the mobility coefficients of the i, j ions, 
e j , ej their charges, k is Boltzmann's constant, Tis absolute 
temperature, and D is the dielectric constant of the medium. 
To be specific we take ej > 0 and ej < 0 so that.B > 0 and we 
take the origin at the position of the j ion of an i,j pair. In Eq. 
(2.3) the coordinate r and potential ~ have been nondimen­
sionalized by division by the characteristic length 2q and by 
the characteristic potential kT, respectively. The i,j ions are 
assumed to be point ions and we further assume that the 
screening effects of the ionic atmospheres can be neglected in 
the region of interest which is the innermost region of the 
field of the ions. This is a valid assumption if nj and nj are 
sufficiently small to ensure that K- I ,>q, where 

K- 1 = {DkT 141T(n.e2 + n.e2 )}1/2 
, I J J • (2.4) 

Here K-
1 is the Debye-Hiickel radius of the ionic atmo­

spheres and q is the Bjerrum association distance. 
Since the flow pattern of ions in a weak electrolyte is 

clearly axisymmetric about the direction of X we suppose 
that there are functionsg(k), k = 1,2, such that 
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ag(k) 
r sin fJ/(k)Vr(k) = -­

- afJ ' 

aa(k) 
r sin fJ j<k)V~k) = _0_ • 

ar 
(2.5) 

Evidently Eq. (1.1) is satisfied by this set and we call the 
g(k)(r,fJ) the stream/unctions. Similarly to the well-known 
definition of a streamfunction from fluid mechanics, g(k) has 
the following definition as a physical quantity: join a point Q, 
not coincident with the origin 0, situated on the axis of sym­
metry Z 'OZ to a point P whose cordiantes are r,fJ by a curve 
that lies in the plane of P and the axis. (See Fig. 1). In the 
steady state, the value of 21Tg(k) (r,fJ) at Pis defined to be the 
average flux measured relative to 0 per unit time of i ions 
flowing across the surface of revolution generated by rotat­
ing the curve QP about Z 'oz. The positive direction of the 
flux is away from the axis. 

The functions g<k) are clearly independent ofthe choice 
of the axial curve connecting Q to P and hence are functions 
of positions only. Furthermore, there is no average flux of i 
ions across the axis of symmetry and therefore the g(k) are 
independent of the position of Q on Z 'oz. When P coincides 
with Q the average flux of i ions relative to 0 will vanish and 
therefore 

g(Q) = 0. (2.6) 

We will choose Q to be on the ray fJ = 1T, r> ° and since there 
is no average flux ofi ions across this ray, the g(k) are con­
stant along fJ = 1T and therefore from Eq. (2.6), 

g(k) (r,1T) =0, O<r< 00. (2.7) 

The streamfunctions lead naturally to the concept of 
streamlines for dissociated ions and associated ions: a 
streamline is a line in an axial plane that at any instant is 
everywhere parallel to the average relative velocity vector 
V(k). The average flux of i ions across a streamline therefore 
vanishes and so along a streamlineg(k) (r,fJ) can at most be a 
function of time. For a steady state this function of time must 
be a constant and the equation of a streamline reduces to 

g(k)(r,fJ) = const, k = 1,2. (2.8) 

In the steady state the average flow field is the same for all 
time and a streamline defined by Eq. (2.8) therefore coin­
cides with the average trajectory of an i ion relative to aj ion 
at O. The surface of revolution generated by a streamline 
rotated about the axis of symmetry is called a streamsurface. 
On a streamsurface, g(k) = const. It is readily shown from 
Eq. (2.5) that 

v(k)'gradg(k) = 0, k = 1,2, (2.9) 

which confirms that the flow field lies on the streamsurface. 

P 

I e IS 
z'-~L-------e----'---~--- Z 

Q 

FIG. 1. Streamfunctions in a weak electrolyte. 
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The associaton rate constant and relative increase in the 
dissociation constant due to the applied electric field have 
very simple interpretations in terms of the streamfunctions. 
From Eq. (2.1), 

(2.10) 

where S is any closed surface completely surrounding the j 
ion at the origin. But the distribution function describing 
dissociated ions is the constant distribution l jll)(r,fJ) 
= ni (X)nj (X) so on normalizing with respect to the char­

acteristic distribution n i (X)nj (X), /(l)(r,fJ) = 1 and Eq. 
(2.10) gives 

A = -1 v(J)·dS. (2.11) 

The association constant is independent of the choice of S. 3,4 

If we therefore choose for S a closed surface of revolution 
generated by any axial curve joining any point Q not coinci­
dent with 0 on the ray fJ = 1T and any point P( r,O) with r> ° 
on the ray fJ = 0, it follows immediately from the definition 
ofg(l) that 

A = - 21Tg(J)(r,0). (2.12) 

Again from Eq. (2.1) on normalizing /(2) (r,fJ) by divid­
ing by the constant distribution function n i (O)nj (0), 

K(X) = J... r jl2)V(2)'dS (2.13) 
K(O) A Js ' 

where S is any closed surface surounding the origin. From 
Eq. (1.1) it follows that K (X) I K (0) is independent of the 
choice of S. We choose for S the closed surface of revolution 
chosen above for the association process. It follows from the 
definition of streamfunction that 

K(X)IK(O) = (21TIA)g(2)(r,0). (2.14 ) 

The simplicity of both Eqs. (2.12) and (2.14) lends 
strength to the view that the natural functions to describe the 
mathematical properties of the Wien effect on weak electro­
lytes are the streamfunctions g(k) rather than the distribu­
tion functions. 

III. THE GOVERNING PARTIAL DIFFERENTIAL 
EQUATIONS 

We next derive the partial differential equation govem­
ingg(k)(r,fJ) k = 1,2. From Eqs. (2.2), (2.3), and (2.5) 

alj(k) a (k) 
r sin fJ -- - _'K_ + sin fJ( 1 - 2Er cos fJ)/(k) = 0, 

ar afJ 
(3.1 ) 

alj(k) a (k) 
sinfJ-- +_'K_ + 2Ersin2 fJj<k) =0. (3.2) 

afJ ar 

On eliminating/(k) from these equations we obtain 
a 2g(k) a 2g (k) ag(k) 

r-- +-- + (1-2ErcosfJ)--
ar afJ 2 ar 

a (k) 

+ (2Er sin fJ - cot fJ) _'K_ = 0, k = 1,2. 
afJ 

The boundary conditions for dissociated ions are 

jlo(r,fJ) = 1, 
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g(l)(r,1T) = 0, (3.S) 

from Eq. (2.7) and for associated ions 

lim e Ilr [(2l(r,B) = 1, (3.6) 
r~O 

lim [(2l(r,B) = 0, (3.7) 
r~oo 

g<2l(r,1T) = 0, (3.8) 

from Eq. (2.7). Equation (3.6) is a manifestation of the 
Maxwell-Boltzmann equilibrium distribution at the dis­
tance of closest approach of an i,jpair and Eq. (3.7) repre­
sents the requirement that an i, j pair must be separated to 
infinity for complete dissociation. 

IV. CHARACTERISTIC NUMBERS FOR WEAK 
ELECTROLYTES 

The total electrical potential of an i,j pair is the sum of 
the Coulomb potential and the potential due to the applied 
electric field and is given by Eq. (2.3) that has the reference 
direction, Bo, for potential, Bo = 1T12. For given values of € 

and B, <I> will attain a maximum value at r = r max' say, which 
is given by r max = (2€ cos B) -1/2. The length r max is finite 
O<B < 1T12 but is complex for 1T12 < B<1T and would there­
fore not lead to a satisfactory characteristic length for the 
weak electrolyte. 

This difficulty may be overcome by introducing an ef­
fective potential <I> e given by 

<l>e(r,B) = -l!r-Er(cosB + 1), (4.1) 

which has the same value as <I> at B = 0 and has a maximum 
value for given values of E and B at r = r max' where 

rmax ~(E(COS B + 1»)-1/2. (4.2) 

The reference direction for <1>. is <l>e = 1T, which, unlike the 
reference direction for <1>, has the virtue that it corresponds 
to a streamline for both associated and dissociated ions. 
With this definition r max is finite for O<B < 1T having the min­
imum value of (2€) -1/2 at B = 0 and increases monotonical­
ly as B increases from O. Thus Eq. (4.2) may lead to a suit­
able radial characteristic length 2qr max for the weak 
electrolyte. Accordingly we next transform the r coordinate 

r~rlrmax = r(€}') 1/2, (4.3) 

wherey~ 1 + cos B. 
For associated ions we shall find that the function to 

work with is notg(2)(r,B) but is that obtained from this func­
tion by removing the factor exp [ €}' (y - 2) ]. We therefore 
define G(r,y) such that 

G(r,y) ~g(2l(r,B)exp[ - €r(y - 2)]. (4.4) 

If we similarly define 

F(r,y) ~[(2)(r,B)exp[ - €r(y - 2)], (4.S) 

then from Eq. (2.2) 

V(2) = - grad <l>e - (lIF)gradF, (4.6) 

which shows that F(r,y) is the distribution function asso­
ciated with the potential <I> e' Furthermore, from the first of 
Eqs. (2.S), 
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~e aF -E 1 aG 
F- +- =-G---. 

ar ar r r ay 
(4.7) 

Ifwe make the assumption that F is an equilibrium distribu­
tion Fa: exp( - <l>e)' and Eq. (4.7) gives aG lay = - G I 
(yl€) 1/2 when r = rmax' This implies that a suitable charac­
teristic number for the y coordinate may be 

Ych = (yl€) 1/2 (4.8) 

and thus for dissociating ions we obtain a coordinate com­
panion to r as 

ji~yIYCh=(Ey)I/2. (4.9) 

V. SOLUTIONS FOR THE STREAMFUNCTIONS 

On setting g(k) (r,B) = h (k)(r,y), Eq. (3.3) becomes 

a 2h (k) a 2h (k) ah (k) 
,z --+ y(2 - y) --+ (1 - 2E,z(y - 1))--

a,z ay2 ar 
ah (k) 

- 2€ry(2 - y) --= 0, k = 1,2. (S.1) 
ay 

A. Dissociated ions 

The boundary conditions (3.4) and (3.S) become 

[(I)(r,B) = 1, (S.2) 

h (1)(r,O) = O. (S.3) 

We shall solve Eq. (S.l) forh (l)(r,y) using the similarity 
transformation indicated by Eq. (4.3). By writing 

h (I)(r,y) = H(t)(r,y), (S.4) 

Eq. (5.1) gives 

r(2 + 3y) a2H(1) 

4y or 
+ (- r(2 - y) + (€}')1/2(l _ r») aH(l) 

4y (Tr 
a 2H(l) a 2H(l) 

+r(2-y) --+y(2-y)--
(Tray ayZ 

aH(l) 
2(€y)IIZ,(2 y) -- = O. (S.5) 

ay 

This equation is similar to the example discussed by Han­
sen5

: if we set 

H(l)(r,y) = F(r) (2 - y), (5.6) 

Eq. (5.5) gives 

r(2 + 3y) F" + (- r(2 + 3y) + (€y)1/2(1- r) \,;0' 
4y 4y r 
+ 2(Ey)I/Z,F= 0, (S.7) 

which possesses only one solution, F(r) = 1 - r, analytic at 
the irregular singular point r = O. Thus H(I)(r,y) 
= (1 - r) (2 - y) is a solution of Eq. (5.5) and the re-

quired solution of this equation is therefore 

H(\)(r,y) = BI (l - r)(2 - y) + B2, (S.8) 

where BI and B2 are constants. The corresponding solution 
ofEq. (5.1) is 

h(l)(r,y) =BI(1-€,zy)(2-y) +B2. (S.9) 
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The boundary condition (5.3) requires that B2 = - 2B1, 

and from Eq. (3.1) or (3.2) and Eq. (5.2) we find that 
Bl = 1 and so 

h(J)(r,y) = (1-Ery)(2-y) -2 (5.10) 

and 

glJ)(r,O) = - (1 + cos 0)(1 + Er(1 - cos 0») (5.11) 

is the streamfunction describing dissociated ions. 
Next consider the way in which association depends on 

the angle of association. From the definition, 21Tg(J)(r,0) is 
the averge fiux of i ions in a direction away from the axis of 
symmetry across the surface of revolution generated by any 
axial curve joining the reference point Q on the ray 0 = 1T to 
the point P(r,O). This fiux depends on r and 0 since the 
surface is not closed. Let us constrain P to vary only along a 
streamline that intersects the origin. Then since g(J) is con­
stant along a streamlineg(J)(r,O) = g(J)(O,a), where a is the 
angle which the streamline makes with X at r = 0, O<a<;1T. 
If we define A (a) to be the average association fiux across 
the surface of revolution generated by any axial curve joining 
Q to any point P on the streamline making angle a with X at 
r= 0, then 

A(a) = - 21Tg(2)(0,a) = 21T(1 + cos a) (5.12) 

from Eqs. (2.12) and (5.11). HereA(a) increases mono­
tonically as a decreases from 1T to 0, which is consistent with 
the existence of a sink singularity at r = 0. We note that 
A (a) is independent of E, which is a generalization of Lange­
vin's theorem4 that states that the association constant A is 
independent of E. From Eqs. (2.12) and (5.11), or Eq. 
(5.12), 

A =A(O) = 41T. (5.13) 

B. Associated ions 

WehavetosolveEq. (5.1) withk = 2subjecttobound­
ary conditions (3.6), (3.7), and Eq. (3.8) becomes 

h (2)(r,0) = 0. 

We first observe that if we define p (r,y) by 

h (2)(r,y) = p(r,y)exp[Er(y - 1)], 

Eq. (5.1) is rendered in separable form, 

r a 2p + ap _ crp 
ar ar 

a2p = -y(2-y) ay2 -E(y-1)p, 

which on settingp(r,y) =R(r)Y(y) gives 

d 2R dR 
r dr +dr- (cr+A)R =0, 

d 2 

y(2 - y) ---{- + (E(y - 1) + A)Y = 0, 
dy 

where A is the separation constant. Thus 

d
2
R +..!.. dR _ cR = 0 as r_ 00, 

dr r dr 
from which 
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(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18 ) 

(5.19) 

where CI and C2 are constants. But limr _ oo rj<2)(r,0) 
= exp[Er(cos 0 - 1)] (Ref. 6) and so from Eq. (3.2) C I 

must be 0 giving 

h(2)(r,y)-exp[Er(y-2)] as r-oo. (5.20) 

Since this function depends explicitly on E when we trans­
form to the coordinates r,y defined by Eqs. (4.3) and (4.9), 
we define H (2) (r,y) by 

h (2) (r,y) ~H(2)(r,y)exp[Er(y - 2)], (5.21) 

whence Eq. (5.1) gives 

r a 2H(2) _ (2- + 2r) aH(2) + ~ a 2H(2) 
y2 ar 2y2 y Or Y Oroy 

1 aH(2) 1 a 2H(2) - ___ + ____ _ 2H(2) 

2y oy 2 oy2 

+E -"fl-- + y+- --
-I{ 3 _ a 2H(2) (_ r) aH(2) 

4 ar 4 Or 
_ ry a 2H(2) 

2 Oroy 
Y aH(2) y2 a 2H(2) -2 (2)}_ +--- ---- +yH -0. 
40y 4oy2 

( 5.22) 

Ifwe further assume that H (2) (r,y) is not an explicit function 
of E then we must have 

r a 2H(2) _ (2- + 2r)aH(2) + ~ a 2H(2) 
2y2 ar 2y2 y Or Y Oroy 

1 aH(2) 1 a 2H(2) (2) 
---- +--- -2H =0 

2y oy 2 oy2 
(5.23) 

(5.24) 

First consider Eq. (5.23), which is a parabolic equation 
whose characteristic directions are given by 

r (dY\2 _ 2r dY + 1 = 0 (5.25) 
y2 7rJ y Or ' 

and which has the solutiony = const r. We therefore define 
the canonical coordinates 

s(r,y) =yrr, 11 = 11 (r,y) , (5.26) 

and q(S,l1) = H (2)(r,y) and Eq. (5.24) becomes 

(~ (al1 )2 + ~ al1 al1 +..!.. (al1 )2) ~ 
2y2 Or Y Or oy 2 oy a112 

+ 2 ~ + (~ a 211 _ [2- + 2r] al1 as 2y2 ar 2y2 y Or 

+ ~ a
2

11 _..!.. al1 _..!.. a211)~ _ 2q = o. 
y Oroy 2y oy 2 oy2 al1 

(5.27) 

For a parabolic equation the choice of 11 (r,y) is arbitrary. If 
we take 11 = y, Eq. (5.27) reduces to 

a
2
q _..!.. aq +4~-4q=0, (5.28) 

oy2 Y i!j as 
and on setting q(s,y) = Z(s) Y(Y) in this equation we ob­
tain 
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d 2y 1 dY 
-----rY=O 
dY2 y dY 

(5.29) 

and 

dZ 
4-+ (r-4)Z=0, ds (5.30) 

where r is the separation constant. 
Equation (5.29) is solved by setting Y(y) = YW(.Y) and 

it then becomes 

y2 d
2
W +y dW _ (1 +rY2)W=0, (5.31) 

dY2 dY 
which has the solution 

W(.Y) =constIII(rI/2y) +const2KI(rI/2y), (5.32) 

where II' KI are, respectively, the modified Bessel function 
of the first kind and modified Bessel function of the second 
kind both of order 1. Equation (5.30) has the solution 

Z(s) = const exp[ (1 - r/4 )s], (5.33) 

and thus the solution of Eq. (5.23) is 

H(2)Cr,y) = yexp[ (1 - r/4)yrr](DIII (rI/2y) 

(5.34) 

where DI and D2 are constants. However yII(rI/2y) 
=O(y2) asy .... OandyKI (yI/2y ) =O(r- 1/2 ) asy .... Osoin 
order to satisfy the boundary condition (5.14) we must have 
D2 = Oso that 

H(2)Cf,y) =Dlyexp[(1-r/4)yrr]II(rI/2y). (5.35) 

Furthermore this solution satisfies Eq. (5.24) if and only if 
r = 4. Thus the required solution to Eq. (5.22) is 

H(2)(?,y) = DI yII (2y), (5.36) 

or in terms of the r,() coordinates the required solution to Eq. 
(3.3) is 

g(2)(r,() = D I(2€)1/2 cos«() /2)II«8€) 1/2 cos«() /2») 

X exp[€r(cos () - 1)]. (5.37) 

The final problem in determining g(2) (r,() is to evaluate 
D I • We have, from Eqs. (3.1), (3.2), and (5.37) using the 
identity7 xl; (x) = -II(x) +xlo(x), 

a/(2) + (~ _ 2€ cos () ) 1(2) 
ar r 

= _DI(2€)1/2{ (2;~1/2 Io(8€)1/2cOS ~) 

+;cos ~ II(8€)1/
2

cOS ~)} 
Xexp[€r(cos () - 1)], 

alj(2) 
--+ 2€r sin () 1(2) a() 

= D 21/2C/2 sin!!...I (8€)1/2 cos!!...) 
I 2 I 2 

X exp[€r(cos()-l)]. 

(5.38) 

(5.39) 

d/(2) = {( - ~ + 2€ cos () )r(2) 

_ D (1£) 1/2[ (2€) 1/2 I ( 8€) 1/2 cos!!...) 
I. 2r 0 2 

+; cos ~ II( (8€)1/2 cos ~)] 

X exp [ €r( cos () - 1)] } dr 

+ { - 2€rsin ()j<2) +D121/2c/2sin ~ 

XI{(8€)1/2cOS ~)exp[€r(coS()-1)]}d(). 
(5.40) 

This equation is shown to be integrable in the Appendix. We 
integrate using the method of Natani.8 First we treat the 
variable r as a constant and solve the resulting differential 
equation. Taking r as a constant, Eq. (5.40) becomes 
d'f(2) 
-- + 2€r sin () 1(2) 
d() 

=D121/2c/2sin ~ I{(8€)1/2coS ~) 

Xexp[€r(cos () - 1)], 

which implies that 

1(2)(r,() = exp[2€r cos () ] {DI2 112C 12 f sin ~ 

XI{(8€) 112 cos ~) 

(5.41) 

Xexp[ -€r(cos() + 1)]d() +D3 (r)}, 
(5.42) 

where D 3 (r) is a function of r only. 
The right-hand side ofEq. (5.42) may be integrated by 

the substitution 

U=(8€)1/2COS«()/2) (5.43) 

and the identity 

d 
du (un+lln+du») = un+lIn (u) (5.44) 

for modified Bessel functions In of the first kind of order n. 
We find that 

- (2€) 1/2 f sin ~ II( (8€) 1/2 cos ~) 
Xexp[ -€r(cos() + l)]d() 

= e-
ru2

/
4
(Io(U) + ~ II(u) + (~rI2(U) 

+ ... + (~rln (U») + Rn (u), (5.45) 

(5.46) 

Next consider the Pfaffian differential equation arising from The remainder can be evaluated as follows. Using the expan-
this pair of equations. This is sion 

3003 J. Math. Phys., Vol. 28, No. 12, December 1987 D. K. Mcilroy and D. P. Mason 3003 



                                                                                                                                    

co 1 (u)n + 2s 
I (u)= L -
n s=O sl(n +s)l 2 

(5.47) 

and making the change of variable v = ru2/4 we have 

Rn = f 1 Jvn+se-vdV. 
s=O sl(n +s)lr' 

But by successive integration by parts 

Jvn+se-VdV= 

and so 
co I n+s II' 

R = _e- v L - L -
n s = 0 sIr' p = 0 pI 

and 

Ii R ~ 1 1/, m n = - £.. -= -e . 
n-co s=O sIr' 

Thus 

- (2E) 1/2 J sin ~ 11( SE) 1/2 cos ~) 
Xexp[ - Er(cos () + 1) ]d(} 

(5.4S) 

(5.49) 

(5.50) 

(5.51) 

[ ( () 1)] ~ (r(SE)1/2 COS «(}/2»)P 
= exp - Er cos + £.. 

p=o 2 

Xlp(SE)1/2COS ~)_e1l', 

and Eq. (5.42) therefore gives 

j<2)(r,(}) 

= -DIEexp[Er(cos(}-I)] 

X f (r(SE)1/2COS «(}/2»)P 

p=O 2 

(5.52) 

Xlp( (SE)1/2 cos ~) + DIE exp[ ! + 2Er cos () ] 

+ D3 (r)exp(2Er cos (}). (5.53 ) 

We next set () = 11" in Eq. (5.40), which becomes 

d/(2) + (J.- + 2E)j<2) = _ DIE exp( _ 2Er) , (5.54) 
dr y2 y2 

and which has the solution 

1(2)(r,11") = - DIE exp( - 2Er) + D4 exp( 1/r - 2Er) , 
(5.55) 

where D4 is constant because () has been given the definite 
value of () = 11". Comparing Eq. (5.53) with () = 11" and Eq. 
(5.55) gives 

D3 (r) = (D4 - EDI)e1l, 

and so 

1(2)(r,(}) = - DIE exp[Er(cos () - 1)] 

(5.56) 

X f (r(SE)1/2 cos «() 12»)Plp(SE) 1/2 cos~) 
p=o 2 2 

+D4 exP(++2ErCOS(}) (5.57) 

and the boundary condition at r = 0 [Eq. (3.6)] therefore 
givesD4 = 1. 
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To determine DI we have first the identity8 

exp[.!....(s + J.-)] = f snln (x). 
2 s n=-co 

(5.5S) 

Taking x = (SE) 1/2 COS«(} 12), s = r(SE)1/2 cos«(} 12)/2, 
Eq. (5.5S) gives 

1: (r(SE) 1/2 cos ( () 12) )nln ( SE) 1/2COS~) 
n=O 2 2 

= - I (SE)1/2COS-co ( 2 )n ( ()) 
n~1 r(SE)1/2cos«() 12) n 2 

+ exp [ + + Er(cos () + 1) ] (5.59) 

and using this with D4 = 1 Eq. (5.57) becomes 

1(2)(r,(}) =DIEexp[Er(cos(}-1)] 

co ( 2 )n 
X n~1 r(SE)1/2 cos «() 12) 

Xln(SE)1/2COS ~) 

+ (1 - EDI)exp( + + 2Er cos ()) (5.60) 

and the boundary condition (3.7) therefore requires that 
DI = 1/E and so from Eqs. (5.37) and (5.57), 

and 

j<2)(r,(}) = -exp[Er(cos(}-I)] 

X f (r(SE)1/2 cos«() 12»)P 
p=O 2 

Xlp(SE)1/2COS ~) 

+ exp( + + 2Er cos () ) 

g(2)(r,(}) = (! )112 cos ~ II( (SE)1/2 cos ~) 

xexp[Er(cos(}-I)]. 

(5.61 ) 

(5.62) 

The equivalence of Eq. (5.61) and Onsager's expression I 

j<2)(r,(}) =+exP[++Er(COS(}-I)] 

X 11 Io(SE) 1/2 cos ~)e-sl'ds (5.63 ) 

may be easily demonstrated. Furthermore from Eqs. (2.14) 
and (5.13), Eq. (5.62) gives 

K(X) =J.- (2)(rO) = Id(SE)1/2] 
K(O) 2 g, (2E) 1/2 ' 

(5.64) 

which is Onsager's well-known result. 
We further observe that since S = YI r = 1/r, the trans­

formation r = r( Ey) 1/2 is unnecessary in the above analysis. 
The only necessary transformation is y = (Ey)1I2, which 
suggests that the characteristic length for associated ions is 
the transverse length 2QYchrmax = 2qIE. 

Finally, the following important deduction may be 
made from Eq. (5.62). Let us define 4rrK«(}o;E) as the aver-
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age flux of i ions away from the axis across the surface of 
revolution generated by any axial curve joining the reference 
point Q on the ray 0 = 11" to any point P on the streamline 
that makes an angle 00 with X at r = O. Suppose that P is 
constrained to vary only along this streamline. Since gl2) is 
constant along a streamline g(2)(P) = gl2)(0,Oo) and there­
fore 

K(Oo;E) = !g(2)(0,Oo) 

= cos (0012)/1 [(8E) 1/2 cos( (012) ]I(2E) 112. 
(5.65 ) 

The function K(Oo;E) increases monotonically from 0 to 
K(X)IK(O) as 00 decreases from 11" to 0, which is consistent 
with the existence of a source (for associated ions) at the 
origin; K(Oo;E) is the contribution to K(X)IK(O) made by 
those trajectories emanating from the origin at angles from 
o = 11" to 0 = 00 , The fractional contribution v of this range 
of "initial angles" compared to K(X)IK(O) is from Eqs. 
(5.64) and (5.65) given by 

v = cos (0012)/1 [( 8E) 1/2 cos (0012) ]III [(8E) 1/2]. 
(5.66) 

Of special interest is the value of v, where 00 = 11"12. In this 
case v = 49.75% when E = 0.01 and v = 6% when E = 10. 
This shows that when the applied field intensity is very small 
the contribution to dissociation by the forward directions 
(00 < 11"12) is approximately equal to the contribution made 
by the reverse angles (00 ) 11"12) but that when the applied 
field intensity is large, the contribution to dissociation made 
by the forward directions is much greater than the contribu­
tion made by the reverse directions. 

APPENDIX: INTEGRABILITY OF THE PFAFFIAN 
DIFFERENTIAL EQUATION 

We have from Eqs. (5.38) and (5.39), 
Blf(2) Blf(2) 

dj<2) = Tr (/(2),r,0)dr + BO (j<2),r,0)dO 

= P( 1(2),r,0)dr + Q( 1(2),r,0)dO, (AI) 

say, where 
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P( 1(2),r,0) = ( - 1!~ + 2E COS 0)/(2) 

- DI (2E) 1/2 exp[Er(cos 0 - 1)] 

X{[ (2E)1/2/2~]/o«8E)1/2 cos (012») 

+ (Elr)cos(012)/1(8E) 1/2 cos (012»)} 
(A2) 

and 

Q( j<2),r,0) = - 2Er sin 0/(2) 

+ DI21/2Cl2 exp[Er(cos 0 - 1)] 

Xsin(O 12)/1(8E) 1/2 cos(O 12»). (A3) 

If we write Eq. (Al) as 

P(j<2),r,0)dr + Q(j<2),r,0)dO - d/(2) = 0 (A4) 

and define 

Y~[P,Q-l], (A5) 

then Eq. (A4) is integrable if and only if 

Y-curl Y = 0, (A6) 

(Ref. 8), i.e., if and only if 

_ P BQ Q BP BP _ BQ _ 0 (A7) 
B/(2) + B/(2) + BO Br - . 

Direct substitution ofthe derivatives of P and Q in Eq. (A 7) 
confirms Eq. (A6). 0 
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