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Using methods analogous to those introduced by Gel’fand ez al. [ Representations of the
Rotation and Lorentz Groups and Their Applications (Pergamon, New York, 1963)] for the
Lorentz group the matrix elements for the representations of the Lie algebra of the Euclidean
group in three dimensions E(3) are explicitly derived. These results are then used to construct
invariant equations with respect to this group and to show, in particular, that the
nonrelativistic analog to the Dirac equation is not unique.

I. INTRODUCTION

The Euclidean group in three dimensions E(3) plays in
classical mechanics the same role that the Lorentz group
plays in relativistic mechanics.'-> Moreover, from a math-
ematical point of view, the Lie algebras of these two groups
contain six generators J;, K;, 1 =1,2,3, whose commuta-
tion relations (CR) for the Lorentz algebra are

[Vid;] = €geics (1.1)
oK, ] = ek 12)
[K",.K'j] —_ —Giijk. (1.3)

The CR of the Lie algebra of E(3) differ from those above
only in the third set [Eq. (1.3)], which is replaced by

[K..K,] =0. (1.4)

[For more details regarding the generators of E(3) and the
notations used for the rest of this paper see the Appendix.]

In view of these similarities it is surprising to find that
the representations of these algebras and their respective in-
variant equations were treated rather differently in the liter-
ature.

Thus while complete and explicit expressions for the
matrix elements of the irreducible representations of the
Lorentz algebra and its invariant equations exist in the liter-
ature® the same is not true for E(3). As for this latter algebra
the “general form” of the matrix elements for the finite (in-
decomposable) irreducible representations were given
(somewhat) indirectly in Ref. 5. What has been left open,
however, was the computation of the interlocking constants
between the various irreducible representations of O(3) that
appear in the decomposition of an E(3) representation
(especially when can these interlocking constants be non-
zero). These constants can be computed by ad hoc methods
(as suggested in Ref. 5) only in some very simple cases.

In view of these circumstances it is our first objective in
this paper (Sec. IT) to derive explicitly, the expressions for
the matrix elements for some of the irreducible representa-
tions of E(3) (both finite and infinite dimensional) by meth-
ods that are completely analogous to those used by Gel’fand
et al. for the Lorentz group.*

In Sec. III we present a systematic approach to the con-
struction of first-order invariant equations with respect to
E(3) subject to the constraint that each component of the
wave function satisfies the Galilean energy momentum rela-
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tion 2mE = m? + p* (Refs. 6-8). As a result we show that
the nonrelativistic analog to the Dirac equation is not unique
and that there is no nonrelativistic analog to the Majorana
equation.’

Il. REPRESENTATIONS OF E(3)

To construct the representations of E(3) we first ob-
serve that Gel’fand er al.* already found the most general
solution of the CR(1.1), (1.2). Adopting the notations used
by Gel’fand et al. we can write this solution as follows:

H3§;:m=m§;:ms (2.1)
H+§;:m=a£ﬂ+l§;:m+l’ (2.2)
H £l =8 0m 1, (2.3)
F3§ ;:m = z {Crﬂd(l,m)é“lf— 1,m _A ‘IHJ

7-’

XME [y — CTL AU+ LmET 1]

2.4)

F+§;:m = Z {Czwgn(l,m)ff_ Im+1

r’

—ArgZ(l»m)§{m+l

+CT & UmE T imar} s (2.5)
F &im= z { —Crg i, —m)é7_ tm—1

7J

—4 T’Jg2(1s - m)§Zm—l

—Ci 8 (b —m)ET im 1} (2.6)

where
a, =[U+m)(I-m+ 1]
dim) = [lz—mz]l/z,
gUm)y=[(-m)(I—m—-1)]"7,
g&Um)=[(—m)(I+m+ 1)1
gm)=[(U+m+1)(+m+2)]"~

It is therefore clear that the only step one must take in order
to construct the representations of E(3), rather than O(3,1)
is to subject this general solution to the constraints given by
Eqgs. (1.4) rather than those of Eqs. (1.3). To carry this
program out we begin by constructing two special types of
representations that are important from a physical point of
view. There are the following.
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(1) Representations of E(3) whose decomposition with
respect to O(3) contains each irreducible representation of
O(3) at most once.

(2) Representations of E(3) in whose decomposition
with respect to O(3) only one irreducible representation of
this group appears (several times).

Case 1: Since each representation of O(3) appears only
once in the decomposition we can drop the degeneracy index
7.

Furthermore, we observe that if the representation is
irreducible and /,, /, are, respectively, the lowest and highest
I’s that appear in the decomposition then each I, + n,
n=1.2,..,l, — I, must also appear in the decomposition. In
fact, if some representation /, + n is missing then we can
infer [since the generators of the algebra, according to
(2.1)-(2.5), can connect states of [, + n — 1 only with those
of Iob+n and (l[,+n—2)] that the representations
lose..slo + n — 1 form an invariant subspace in contradiction
to the assumption that the representation is irreducible.

Thus an irreducible representation of E(3) that belongs
to this class is a “ladder representation” which is either finite
or infinite (presently we show that the ladder must be infi-
nite).

To construct these irreducible representations we apply
any of the constraints [F,, F,]=[F,, F_1=[F_,
F;] =0to Egs. (2.4)-(2.6) under the present assumptions
and obtain the following equations:

[4,(0+1)—4,_,(U-1]C, =0, (2.7)
[4,,,U+2)—4,1]C,, =0, (2.8)
(21 —1]C2—[21+3]C},, —A2=0. (2.9)

To solve these equations we first observe [using Egs.(2.4)-
(2.6) ] that for an irreducible representation C; , , = 0, only
if I = 1, (if such a finite /, exists) and similarly C, = O only if
! = I,. Hence for other /’s that appear in the decomposition
of the representation with respect to O(3),both C,,C, , | are
nonzero and we infer from Eqs. (2.7) and (2.8) that

Ay =4, (U-1)/{U+1),
which leads to
A, =4, [LL(L+1D/10+1D], (2.10)

where 4, isan arbitrary constant. Furthermore, to complete
the analogy with the Lorentz group we rewrite (2.10) in the
form

A, =il,lL/I(I+1). (2.11)
To evaluate the C,’s we now multiply Eq. (2.9) by (2/ + 1)
and sum the resulting equations for / = /,...,J. This yields,
after some algebra,

Ci=L?*[(I*-13)/(41> — DHI?]. (2.12)

We infer from this relation that contrary to the Lorentz
group a ladder representation of E(3) must be an infinite-
dimensional representation. In fact (2.12) implies that ei-
ther C;, = O for all / (the representation is then reducible) or
C,#0foralll, + n,n = 1,2,... . We thus proved the follow-
ing.

Proposition 1: All irreducible ladder representations of
E(3) are of infinite dimension (except the trivial one-dimen-
sional representation). The matrix elements of these repre-
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sentations are given by Eqgs. (2.1)-(2.6), where 4,, C, are
determined by Eqgs. (2.11), (2.12), respectively.

It appears to us that the explicit computation of these
matrix elements is new.

Case 2: When the decomposition of the representation
under consideration with respect to O(3) contains only one
irreducible representation / of this group with multiplicity »,
then obviously the matrix elements of J; are given by the
Kronecker product

J, =IxJ, (), (2.13)

where J, (/) are the matrix elements of the irreducible repre-
sentation / of O(3) and 7 is the unit matrix of dimension #.
The matrix elements of the other generators of the algebra
are given by the following proposition.

Proposition 2: Under the present assumption the matrix
elements of K; are given by

K, =N xJ; (), (2.14)

where N is an n X n matrix so that N 2 = 0. Moreover, if N
admits an invariant (proper) subspace then the representa-
tion is reducible otherwise the representation is indecompos-
able.'°
Proof: It is easy to show that if J;, K, are given by Eqgs.
(2.13) and (2.14) then all the CR of the algebra are satisfied.
In fact,

[ViK;] =N X[L(DJ;(D] =N Xepd () = €,K,
and
[K,,K]] =N2><€iijk == O.

To show that this is the only possible solution of the CR
under present assumptions it is enough to observe that the
matrix elements of K; are [using (2.4)]
(K)o =A7"mMS,, ., (2.15)
i.e., K3 =N XJ3(I).
An appropriate form of the matrix N which is important
in the construction of E(3) invariant equations is given by

0
a, 0
: , (2.16)

Bn—l 0

where a, 8, + " + a,_15.,_1 =0 and € is an arbitrary
parameter.

We now proceed to discuss the irreducible representa-
tions of E(3) in the general case, i.e., when the decomposi-
tion of the representation with respect to O(3) contains the
representations ly/, + 1...,/;, each with multiplicity »,. (Ob-
viously such a representation is irreducible only if all the
representations /, + n, n =0,...,I; — [, appear at least once
in the decomposition.) To construct the matrix elements of
F_, F_, and F; in this case we rewrite Egs. (2.4)—(2.6) in
block matrix form:
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N1, XH3(lp), Niio+1 XD (L), 0,
B Ny XDWy), Ny 1 XHsUpg+1), Ny 2XDWUp+1), 0 , 2.17)

0, N10+2,10+1XD(10+1)a N10+2,10+2 XH3(10+2)9 0--

where the N, , are matrices of dimension #, Xn; and

(DD ],y =8, NI+ 12 —m. (2.18)

Similar expressions can be writtenfor F, , F_. The CR (1.4)
now reduce to constraints on the matrices ¥, y in the form

NIO,IO =Nl‘,,1(,+11\710+1,1o =N10,10N1,,,1°+1 = =0,
(2.19)

which is, in general, a redundant system of equation for the
matrix elements of these matrices.

A particularly interesting case is obtained when the
multiplicity of each / in the representation is the same, i.e.,
n,=n, i=0,.,/; — I, In this “degenerate” case all the
equations of (2.19) can be satisfied if we choose

NI,I =Nl.l:tl =M,
where M2 =0.

Il. INVARIANT EQUATIONS

The study of E(3) invariant equations was initiated by
Levi-Leblond® who constructed by ad hoc methods a non-
relativistic analog of the Dirac equation and studied its prop-
erties. In this section, however, we study the construction of
such equations from a covariant point of view’ and especially
consider the uniqueness of the nonrelativistic analog of the
Dirac equation.

Definition 1: Let an operator realization of p; be given
(see the Appendix). We say that the equation

(L:pt+m)y =0, yeR” (3.1)

is invariant with respect to E(3) if L, p* is a scalar of the
E(3) algebra, viz.,

[L.p*J,.]=0. (3.2)

We observe that this definition is equivalent to the one intro-
duced in Ref. 4 from a group theoretical point of view for the
Lorentz group.

At this point on objection might be raised to the effect
that m appears in (3.1) twice, once as a scalar and once as an
operator (albeit as a scalar multiplication operator). The
answer to this is that this dichotomy is inherent to the defini-
tion of mass in nonrelativistic mechanics. In fact m appears
as a scalar of the (pure) Galileo group and then is added to
the group as an operator through a central extension.® In any
event since m is constant both as a scalar and as an operator
the equations under consideration describe entities with con-
stant mass. Furthermore, by imposing proper constraints on
L* one can insure (see Proposition 3) that each component
of 1 satisfies the Galilean energy-momentum relation. Thus
it is appropriate to refer to equations of the form (3.1) as
nonrelativistic invariant wave equations.

Corollary 7: Equation (3.1) is invariant with respect to
E(3) if and only if
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r .
[L/I’Jpv] = l[glyLll _givLy] .

Proof: From (3.2) we infer
0= [Llplr‘,pv] =L,{ [pﬂ.)‘lyv] + [L/{’J/I,V]PA
= IL;L [gzlypv _gllvpp] + [L}.J/lv ]pA

= i[gv/.Lp - gMLv ]p,{ + [Lll 7J,uv ]pl’
from which Eq. (3.3) follows.

Furthermore, to insure the physical meaning of such an
invariant equation we require that each component of 3
satisfies the Galilean energy-momentum relation

E =m+p*/2m,

which leads to the following result.

Proposition 3: Each component of ¢ satisfies Eq. (3.4) if

{,.L,}=L,L +L,L,=2g,lI (3.5)

Proof: This result is obvious if we multiply (3.1) by
(L#p, — m) and require that (3.4) is satisfied. Observe,
however, that since g, is not diagonal Eq. (3.5) implies

L:=0, {L,L}=2L (3.6)

We now turn our attention to finite-dimensional equa-
tions which describe nonrelativistic particles with definite
spin, viz., equations based on finite-dimensional indecom-
posable representations of the form given by Eqs. (2.13),
(2.14), and (2.16).

To begin with we infer from (3.3) that

[[Ls, H 1, H_1=2L,. 3.7)

Hence using the results in Ref. 4 regarding O(3) invariant
equations we obtain

(3.3)

(3.4)

L,=1i-D XJ,(]) (3.8)
and consequently
L,=iDxJ,(I), L,=i-DXxJ,(I). (3.9)

Furthermore, if we write L,, L in block form then the CR’s

[Lodi]1=[Ls]i]=0 (3.10)
imply, using Schur’s lemma, that
L,=A,XI, Ls=AsXI, (3.11)

where D, A,, A5 are n X n matrices. From Eq. (3.5) it then
follows that

{ApAsy =1, A= —1I, D*xJ*()=1XxI,
(3.12)
A} ={A.D}={A,D}=0.

Thus to complete the construction of the invariant equations
under consideration we must solve for D, A,, A5 using the
remaining CR. However, from

[Ly J34] =0, [Ls,J54l = —ilL,, (3.13)
(L3 J34]l = —iL,, (3.14)
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[[Ls, F.],F_ 1= —2L, (3.15)
it follows that

AN — N, =0, (3.16)

AsN — NAs =D, (3.17)

(ND —DN)XJ3 (1) = 4, (3.18)
and

NAN x{H, (), H_(D}=2,X1I (3.19)

(The remaining CR lead to the same constraints on A, A5,
D)

Proposition 4: Invariant equations of the form (3.1)
based on the indecomposable representations (2.13) and
(2.14) can be constructed only for / = 4.

Proof: From Eqgs. (3.18) and (3.19) it follows that to
construct E(3) invariant equations we must have

{H, (h,H_(D}=al, apeR,

and
J3 =8I (3.20)
However, this can be satisified only for / = §, where
{H.BLH-_[31}=1 Ji=4 (3.21)

We conclude from this proposition that invariant equations
describing particles with spin #} must be based on “mixed”
indecomposable representations (/ #const) and will con-
tain, therefore, some extraneous components that must be
eliminated by some subsidiary conditions (this is similar to
the situation in relativistic mechanics).

Corollary: For 1 =1,

NAN=24, [ND]=44, D*=A4l (3.22)

This is a direct consequence of (3.12), (3.18), (3.19),
(3.21).

The nonrelativistic analog to the Dirac equation derived
in Refs. 1 and 6 is based on a representation of E(3) in the
form (2.13)-(2.15) with dim N = 2. These equations are®

(6 P)y+Ep=0,  (323)

where @, y are two component functions and o are Pauli
matrices. We observe however that in these equations @, y
satisfy the energy-momentum relation in the form E = P2/
2m rather than Eq. (3.4). Hence E should be replaced by
E — m to conform to our notation. Using this observation
we can rewrite Eq. (3.23) in matrix form as

(o-P)p + 2my =0,

[axare+[[® O|xz]e

+'"[—01 g]XI”; =0

On the other hand, if we use Egs. (3.12), (3.16)—-(3.19), and
(3.22) to determine a solution for D, A,, A5 based on the
same representation of E(3), we find

00 a 2 2 0
/14—[1 0]’ is_[c —a]’ D—[y -2

(3.25)

(3.24)

subject to the constraints

@+2=—1 2a+y=0. (3.26)
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In matrix form the corresponding equations can be written
as

I(iD X%)p‘+ [A,xI1E

+ [(4s +I)><I]ﬁ'1}[§] =0, (3.27)

and it is easily verified that (3.27) is not equivalent to
(3.24).

Furthermore, one can find solutions to Eqs. (3.12) and
(3.16)—(3.19) based on higher-dimensional representations
of E(3) as illustrated by the following proposition.

Proposition 5: Let N be a 4 X 4 matrix in the form (2.16)

with e=a,=a;=08,= —B;=2, then the matrices
Ay=Nand
0 1 0 0
A= -1 0 0 o0 ,
a 1 0 -1
-1 a 1 0 (3.28)
1 0O 0 O
D=2 0 -1 0 0 ,
0 -2 1 0

2422 0 0 -1

where a is an arbitrary parameter, are solutions of equations
(3.12) and (3.16)-(3.19).

Thus we showed the existence of a new nonrelativistic
analog to the Dirac equation and demonstrated that the
number of components in such an equation is indeterminate
from a purely nonrelativistic point of view.

We now turn to an attempt to construct a nonrelativistic
analog to the Majorana equation based on the self-coupling
of a ladder representation /,, /, + 1,... (case 1 of Sec. IT).

To begin with we introduce an orthogonal basis &;,, on
the representation space and set

L4§I,m = z DI,m;I’,m'gl 'm'*

However, since [ L,, J,,, ] = 0and the representation is irre-
ducible it follows from Schur’s lemma that

(3.29)

(3.30)

To calculate the other matrices L,, we observe that it is suffi-
cient to find L. Setting

DI,m-,I’,m’ = P‘su' 5mm’ .

L§im = z Clamt',m &1 m (3.31)
we infer from [Ls,H,] = O that

Clomt'm = Ci1"mOmm' (3.32)
Furthermore, from [Ls,H , ] = 0 we deduce that

1€ m+1 — 1€ m =0, (3.33)

Ay Crirm -1 — o Crpm = 0. (3.34)
By simple algebraic manipulations it then follows that

Clmt'ym = €18 O - (3.35)

To compute the ¢,’s and p we now invoke the relation (3.15).
By applying this relation to &,,, we obtain after a long alge-
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bra that p =0 and ¢, = c = const, viz., L, =0, Ls=cl.
Using the CR

[Lsdi] = —iL, (3.36)

this implies that L, = 0. We conclude then that the relativis-
tic Majorana equation has no nonrelativistic analog.

APPENDIX: COMMUTATION RELATIONS FOR E(3)

In this appendix we describe the relationship between
the different notations for the generators of the Lie algebra of
the Galilean group G and its E(3) subgroup. We also give an
explicit differential realization for the commutation rela-
tions (CR) of the extended (physical) Galilean group.6

1. Real basis!®

The Lie algebra of the (pure) Galilean group has ten
generators which we denote by J,, K, P,,i =1, 2, 3, and E.
The J;’s are the generators of the Lie algebras of O(3) the
K.’s are the boost generators, and P,, E are the generators
for the translations in space and time, respectively [E(3) is
generated by J,, k;, i =1, 2, 3].

The nonzero CR of G are

Vidj] = €ude>  [1iK;] = €Ky,
[Vi-F;] = €uPrs [KE] =P

The CR for the extended (‘“‘physical”) Lie algebras of G
(which is obtained by a central extension) are the same as in
(A1) except that

(AD)

[K:P;]=0
is replaced by
[Ki,F;] = mdy. (A2)

Thus the extended group has an additional generator m.
However, m is a scalar of the algebra as it commutes with all
other generators of G.

2. Complex basis
If we consider G over the complex numbers and define
J,=il, K =IiK, iP, E=IiE,

j = 1,2,3,
then the CR of G (extended) take the form

[‘7,,.71] =i€ljk‘7k’ [j,,kj] =i6ykkk’ (A4)

[J.P,] =iexP,, [K.E]=iP, [K.P]=imb

. (A3)
m=im,

ije

3. Covariant notation7-11
By introducing the nonsingular “metric”
-1 0

gaﬂ = 0 ! ’ (AS)
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where I is the unit matrix in three dimensions and
J,=¢€,d., Ju=K,
i ~‘Ik k i - _ (A6)
pi=P, p,=m, ps=E—im,
we can write the CR of the extended G in covariant notation
[J;tv"’pa] = i[gva;zo - gyp"vo’ + gyava - gva'J/.tp ] »
(A7)

[p/u'Jpo] =i[g#pp0 _g;wpp] (A8)
(note that g,, = 0). We observe that the metric tensor g,

can be used only to raise and lower indices of vectors over
E(3) (Ref. 11), e.g., if p,. = [p,p,oPs5,71,E — 2] then

Pa = ( _pls —P2, '—p39E,ﬁl)- (A9)

Furthermore, p,p® = /* is the Galilean energy-momen-
tum-mass relation.

A differential realization of the generators (A6) and
their CR is given by

J @ a J.
J,.j=t[x,-5;—x,~éx—j , J,~4=l[t:9x—i+mx.~]’
p.=—ii =im —i[a m] o
; ax, DT BTl T

4. A basis of raising and lowering operators

Since E(3) and the Lorentz group O(3,1) have the
same number of generators (and six of the nine CR are the
same) it is convenient to introduce a basis of E(3) similar to
the one used by Gel’fand e al.* to construct the representa-
tions and invariant equations of O(3,1). Thus in Gel’fand’s
notation

Alz =Jl’ A13 =J2’ A23 =J1’ B,- =Ki9 i=123.
(A11)
Hence )
H,=l+il,, H.=J,—iJy, Hy=Jy
F, =K, +iK, F_=K, —iK, F,=K,. (Al2)
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Weight-2 zeros of 3/ coefficients and the Pell equation

J. D. Louck and P. R. Stein

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 16 June 1987; accepted for publication 30 July 1987)

All weight-2 zeros of the Wigner 3 coefficients may be obtained from the quadratic
Diophantine equation known as Pell’s equation. These zeros may then be classified by the
orbits of a discrete, infinite-order subgroup of the Lorentz group SO(1,1). This is carried out
by transforming the “polynomial part” of a weight-2 3; coefficient to Pellian form and
obtaining the fundamental zeros numerically. The relation of this polynomial to a family of
binary quadratic forms is also given, together with a discussion of the invariance group.

I. INTRODUCTION AND RESUME

A number of papers’~'? have appeared recently on the
subject of (nontrivial) zeros of the angular momentum coef-
ficients known as 3j and 6/ symbols. All such zeros are in-
teger solutions of known polynomial expressions,'*!? that is,
of Diophantine equations. The approach to the *“zeros prob-
lem” via the study of Diophantine equations,*>’~>!"!2 using
number theoretic methods, is to be distinguished from the
mathematical structure that Racah'* used to “explain” the
first known such zero, which was a Lie algebra—subalgebra
relation. Racah’s method was extended by Judd,'® and more
recently has been studied systematically (though not ex-
haustively) by Vanden Berghe ef al.'® Other important ap-
proaches have been either purely computational,>!”!® or
through the use of physical models,'*'*!° or simply sugges-
tive of an underlying structure, not fully implemented.'**

The Diophantine approach shows that the number of
zeros of the angular momentum coefficients is (denumera-
bly) infinite, but does not suggest physical applications. Al-
though several consequences of the existence of these zeros
are known, '>'>1920 there is at present no systematic study of
the subject. The mathematical relationship—if one exists—
between solutions of Diophantine equations and Lie alge-
bra—subalgebra structures has not been established.

The zeros of the 3j and 6/ coefficients may all be classi-
fied by their weight, which is defined to be the smallest in-
teger in the associated Regge?! and Bargmann? arrays, re-
spectively. The weight may assume values 1,2,... and is
related to the total degree of the polynomial (in several vari-
ables) whose zeros are sought. The simplest case is weight 1.
All weight-1 zeros of both the 3j and 6 coefficients have been
given explicitly.>>’-!° Certain general classes of zeros of
weight-2 6f coefficients have also been found,'? but this prob-
lem is not completely solved. The success in finding these
special zeros may be attributed to the fact that they can be
related to the solutions of classic (well-known) Diophantine
equations. It appears likely that other Diophantine equa-
tions will need to be studied in classifying zeros of higher
weight.!!

In this paper, we classify all zeros of weight-2 3j coeffi-
cients in terms of the classic Diophantine equation known as
the (generalized) Pell equation. We use a technique devel-
oped earlier'? for weight-2 zeros of ¢ coefficients, as de-
scribed in Secs. II-V. [It is also of interest to study the poly-
nomial in question from a more general viewpoint. This is
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done in Sec. VI, where it is shown that either the Lorentz
group SO(1,1) or the rotation group SO(2) is an underlying
symmetry of this polynomial. ]

Before giving a more detailed description of the prob-
lem, we define some notations used throughout. The real line
is denoted by R, the plane by R?, etc. The set of all integers is
denoted by Z, the subset of natural numbers (including
zero) by N, and the subset of positive and negative integers
byZ, and Z _, respectively. The obvious extensions Z2, N2,...
are also used. For typographical convenience, we employ
one nonstandard notation. We  denote the
(n+ 1) X (n + 1) matrix transformation 4 of a column
vector X = col(x;,X,,....X,;1), to a column vector
x' = col(x{,x3,...,Xx5,1), where 4 has the (n 4 1)st row
(0,0,...,0,1) by

(X7]5000X) ) = A*(XygeeesX, ). (1.1)

The general polynomial, the set of whose zeros contains
all nontrivial zeros of the 3j coefficients, has been given ear-
lier."? It was also pointed out that the weight-2 zeros origi-
nate from a family of Pell equations. Since the background of
this method has been presented in detail in Ref. 12, we pro-
ceed immediately to the description of the polynomial whose
zeros are the weight-2 zeros of the 3j coefficients. It is con-
venient to use the variables (u,,u,,x,,x,) given by the follow-
ing Regge array:

2 X, X,4u, —2
u1+u2“‘2 x2 xl—u2+2 . (1.2)
Xy +X;—u; uy U,

The domain D* of the variables (u,,u,,x,,x,) is, by de-
finition, the set of all points (u,,u,,x,,x,)€N* such that the
remaining four entries in the Regge array also belong to N.
The polynomial of interest associated with the Regge array
(1.2) is given by

Qu, (X152} =20y (1) — 1) (xy — 0y + 1) (x; —uy + 2)

—duu,(x, —u, + 2)x,

+ 2u,(u, — )xy(x, — 1). (1.3)
The zeros of the Diophantine equation
Qu,,u2 (x1,%,) =0 (1.4a)
with
(11U %1%, )ED?, (1.4b)
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give all nontrivial zeros for which 2 occurs in the Regge
array—a zero of a weight-2 3 coefficient, or, briefly, a
weight-2 zero. If any of the entries in the Regge array (1.2)
are equal to 1, the polynomial (1.3) reduces to that for spe-
cial weight-1 zeros. Since all weight-1 zeros have already
been determined, we will generally restrict the determina-
tion of the zeros of Q,, ., (x,X,) to those that satisfy not only

(1151,% 1, %) ENY, (1.5a)l
2 Xy X,4u, —2
U +u,—2 xl x2—-—u1+2 =( (uy +u;)/2
o . (4, + u, — 4)/2
X, +Xx,—u; u U,

_(_ 1)x1+u.+uz__

4
(X, —uy+3), _,(x,+ 1), _,

but also

U 22, w22, xpu, x,22. (1.5b)

For completeness, we write down the complete expres-
sion for the 3; coefficient corresponding to the Regge array
(1.2) in the form containing the polynomial (1.3) as a fac-

tor:

(x1 + xz)/2

(xy 4+ x5+ u;, —u,) )
(—x1+x2)/2

(x,—x,—uy—u, +4)/2

2(uy + u, — 2)! ]"2

u,lu,!

(X, +x; —uy + l)u.+uz+1

where #,>2and u,>2and (x), =x(x+ 1) (x+a—1)
for aeN with (x), = 1. The 3j symbol in this result is related
to the standard angular momentum notation by

(1'1 J2 j3)
m, m, m3'

We regard u, and u, as parameters, and (x,,X,) as vari-
ables in the expression (1.3); that is, we select values u, and
u, in the domain ( 1.5) and determine the values of (x,,x,) in
this domain that are zeros of @, . (x,,x,). Observe that each
Q...., is an inhomogeneous quadratic polynomial in (x,x,).
This viewpoint corresponds to interpreting a 3j coefficient in
terms of a Wigner operator specified by the parameters
(u,,u,) acting in a separable Hilbert space with a standard
orthonormal basis given by

{li(x1+x2))%( —x1+x2)>|x1,x2€N}- (1.7)

This operator structure of the 3/ coefficients has been devel-
oped in detail in Ref. 13. We will not pursue it here except to
note that the zeros (x,,x,) of Q, . (x;x,) correspond to
vectors in the null space of the Wigner operator specified by
(u4,1,). These null space vectors are distinct from those be-
longing to the characteristic null space (see Ref. 13). As will
be shown in the sequel, for each pair (u,,u,) (i.e., a specified
Wigner operator), there is a denumerably infinite set of ze-
108 (X,,%,)€N? of the quadratic polynomial Q, , (hence an
infinite set of vectors in the null space of the corresponding
Wigner operator). This corresponds to the Ayperbolic struc-
tureof Q, . for each pair of parameters (u,,4,), as shown in
Sec. II.

The “hyperbolic” classification (to be demonstrated) of
3j coefficients using the solutions of the Diophantine equa-
tion (1.4a) for each pair (u,,u,)€N? is not the only one. It
must also be possible to classify these zeros by dividing them
into finite sets according to the value of the “magic square”
parameter of a Regge array. This parameter is the common
sum of the entries in the separate rows and columns. It is
given by x; + x, -+ u, for the array (1.2). This suggests a
change of coordinates.
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] Qu,,u2 (x1’x2)’ (1.6)
Consider the transformation of coordinates
(84 1,83,% 1% )= (V130200 1,05) (1.8)

=Uu,, =X,—U + 2’
B2 v V2 1 2 (1.92)
L=Uu tu—2, V=X, +X,— U,
with the inverse

Xp= =P+t X= —y,+0,+2, (1.9b)

U=y, U=0v—y +2

In the new coordinates, the Regge array (1.2) becomes

2 y—pntv yi—rt+v,
vy Uy—y,+2 Vs (1.10a)
Uy b4 vy =y +2 '
which has magic square parameter
v+ vy + 2. (1.10b)

The domain D* of the variables (v,,v,,p,,0,) is defined
with the same phrases (mutatis mutandis) used in defining
the domains D* of (u,,u,,%,,X,), namely, it is the set of all
(v1,02501,¥,)EN? with the additional property that the re-
maining four entries in the Regge array (1.10a) also belong
to N. The polynomial (1.3) is expressed in terms of the new
variables by

Qo (X1:X2) = P, (¥1,02)
=2, — Dy, — 1)
— 4, (0, =y + 2)y:(v, — ¥, + 2)
+2v, =+ (0, =y, +2)
Xy —y2+ D (v, =y, +2). (1.11)

The coefficients of y;y3,yiy,, and yy3 in P, , (1,0,)
vanish identically in (v,,0,). Thus P, , (»,,y,) is an inhomo-
geneous quadratic polynomial in (y,,»,). This polynomial
can have only the finite number of zeros that correspond to
zeros of the 3j coefficient
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(—yi+v,+v,+2)/2

((Ux +2)/2
D=2 —v+0v,42)/2

(v, —2)/2

The reason is that for (v,,v,)€N?, we have (vl,vz,yl,yz)eﬁ4 if
an only if (y,,5,)eN? and

0<y1<v; +2, 0<p,<v, + 2. (1.13)

Indeed, as we show in Sec. I1, the number of zeros (y,,p,)eN?
of the Diophantine equation

P, , w)=0 (1.14)

for given (v,,v,)€N? is finite in consequence of its elliptical
structure.

The set of all 3/ coefficients is mapped into itself, up to
phase, under the group of transformations of the angular
momentum quantum numbers (j,,m,, j,,Mm,, j3,/m3) corre-
sponding to permutations of rows, permutations of columns,
and transposition of the Regge array. This is a 72-element
group which is isomorphic to the direct product group
S5 X85 X S,, where S, denotes the symmetric group on n
symbols. Thus each zero of the Diophantine equation (1.4)
gives rise to 72 zeros (or less, if the Regge array is symmetric
or has some equal columns or rows) corresponding to the
permutations and the transposition mentioned above.

We have aiready used the Regge symmetry to write the
entry 2 in the upper left-hand corner of the arrays (1.2) and
(1.10a). The 2 remains in this position under an eight ele-
ment group of transformations K of the variables
(u,,u,,x,,X,) generated by the interchange of columns 2 and
3, of rows 2 and 3, and by transposition (isomorphic to
S, %X.5,XS,). The transformation group is given explicitly
by

K = {Irtrttrrerer,(rt)? = (1r)*}. (1.15a)

The matrices r and ¢, which correspond to column 2—column
3 interchange and transposition, are defined by the matrices
0 1 0 0 0 \

1 0 0 0 0
r=]1 0 01 =21,
0 -1 1 0 2 )
0 0 0 0 1
(1.15b)
0 —1 1 0 2 \
0 1 00 0
t=11 1 0O 0 -2
0 0 0 1 0 )
0 0 0 0 1
The transformations of (u,,u,,x,,x,) are then
(1,10, % )= (] 13,1 ,X5 )
= ke(uy,upX,x,), kek. (1.15¢)

The Regge symmetries of the 3/ coefficients imply that
the polynomial Q, . (x,,x,) is invariant under the group X
that is,

Q"i"‘i (Xi ’xé ) = Qu,,u2 (xl’xz)’

for each transformation (1.15¢). We do not take the symme-
try (1.16) into account in the classification of zeros of

(1.16)
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1 +32)72
(=i +2,—0,)/2

), (1.12)

i
Q.. ., (x1,x,) given in Sec. V; that is, we have not attempted

to partition these zeros into the equivalence classes resulting
from the definition (u],uj,x],x5) ~ (uy,Upx,,X,), if Eq.
(1.16) is satisfied. Thus, with each zero of Egs. (1.4), we
associate a set of 72 zeros, obtained from the given one by the
Regge group. Some of these sets will be identical because of
(1.16); some elements in a given set may also be equal if the
Regge array is symmetric or has equal columns or rows.

Results similar to the above also apply to the polynomial
P, ., (y1,,). [We will not deal directly with this expression,
but let us note that its zeros can be obtained from those of
Q.,.u, (x1,X,) by use of the transformation (1.9).]

Il. TRANSFORMATION TO DIAGONAL FORM

In studying the properties of the polynomials
Qo (X1,X;) and P, , (y,,y,) defined by Eqgs. (1.3) and
(1.11), respectively, we can regard (uu,x;,x,) and
(v1,05,01,,) as arbitrary points in R*. We do this in much of
this section, except when we want to relate the results to
zeros of 3j coefficients.

The inhomogeneous polynomial (1.3) is written in stan-
dard matrix form as

X1
Qu,,u2 (x1,Xx,) = (x, x, 1)4 Xy 2.1
1
where A4 is the real 3 X 3 symmetric matrix
A= (a;), (2.2a)
with
ay=2u(u,— 1), a,= —2uu,,
ar,, =2u,(uy— 1), a; 3= —u(u;,—1)QRu, — 3),
22 2 2 13 1 1 2 (2,2b)

(123 = 2u1u2(u2 —_ 2) _ u2(u2 —_ 1),
33 =2u,(u; — 1) (u, — 1)(u, —2).
The polynomial (2.1), that is, the matrix A4, is brought to

diagonal form using the upper triangular transformation
(see Ref. 12 for the details):

a,, 4, Gas;

A, =10 a, ax) (2.3a)
0 0 1
where
a,, a a,, a
P =det[ u ‘2], a =det[ 1 ‘3]. 2.3b
= a,; a; = a;; dy; ( )
Defining new variables (£,,5,) by
&1 Xy
E1=A0x,} (2.4a)
1 1
we obtain
(det A)Q, ., (x1X5) =pit +E5 +pips (2.4b)

where

Py =ay, ps=detd, detA, =p, p,.

(2.4¢c)

Dy = Uy,
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[Note that (2.4b) is a true *“quadratic form” with the vari-
able £; = 1.] Explicit evaluation of the p; and a5, using the
coefficients (2.2), gives

pi=2u(u,— 1), p,= —4uu,(u,+u,—1),

Ps= 5(“1 - 1)(“2 - 1)(“1 + uz)Pz’

Ay = 4(u; — 1)p,.

Let us digress to consider the application of this diagon-
alization procedure to the problem of 3; coefficients; in this
case all the entries in the matrix A, are integral. According-
ly, the map (x,x,)—(£.,£,) given by Eq. (2.4a) is, for
(x,,%,)€N?, from N? to Z°. The converse of this result is,
however, not true in general, since the inverse transforma-
tion is

2.5)

X, = (&, — az)/py (2.6a)

xy = (& — ayX; —ap)/py (2.6b)
Nonetheless, if solutions of

Qu,,u2 (x4%,) =0 (2.7a)

exist in the domain (1.5), they must correspond to solutions
(€,,€,)€Z? of the Diophantine equation

PET+E3 +pps=0. (2.7b)
This equation can be simplified further because the coeffi-
cient a,, contains p, as a factor. Hence we can write

§2/pr =%+ (u; — 1), (2.8a)
so that &,/p, is always half-integral for x,€N and u,eN. Con-
sequently, it is necessary that £, have the form

&= —2uu,(uy+u, — 1)y, yez,

in order that x,€eN.

Let us return to the general diagonalization (2.4b) for
which the only restriction isdet A, #0, that s, p, #0, p, 0.
Under the further change of variable

(2.8b)

§1=x, xeR, (2.92)
&= —2uu(uy +u, — 1)y, yeR, (2.9b)
(2.4b) reduces to
2uy (1, — 1)Q, 4, (%1,X5)
=x? —uuy(u, + u, — 1)y?
+ 1y (g — 1)y — 1)ty + 1,). (2.10)

The relation between the variables (x,,x,) and (x,p) is

X+ uuy 1
Xy = — 1 — (u, — 3), 2.11a
1 2u,(u1—-1)+2(2 ) ( )
X =4y —u,+1). (2.11b)

Relation (2.10) is valid for all points (u,,u,,x,,x;)eR?, ex-
cepting the points that have u, = Qor u, = 1, with the trans-
formation between coordinates given by Egs. (2.11).

The problem of finding all nontrivial weight-2 zeros of 3/
coeflicients has now been reduced to the following: For each
pair (u,,u,)eN? with u,>2 and u,>2, find all solutions
(x,y)€Z? of the Pell equation

X% — u (g + uy — 1)y°

= - Ul(ul e l)z(uz— 1)(u‘ + u2) (2-12)
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such that the coordinates (x,,x,) given by Egs. (2.11) satis-
fy (x,,%,)€N? and x, >u,, x,»>2. The corresponding weight-2
3j coefficients that are zero are then given by Eq. (1.6).

That such zeros exist is shown by the example
uy=u,=2,x=38,y=11, x, =20, x, = 5, which corre-
sponds to

2 3 3
(0 . ‘E)=0'

As will be shown in the next section, this zero is one of a
denumerably infinite family corresponding to certain points
(x,y)€N? on the hyperbola

x -1 = —8. (2.14)

We refer to the classification of the weight-2 zeros of 3/
coefficients using the Pell equation (2.12) as the hyperbolic
classification. This method is developed in some detail in Sec.
III.

The diagonalization procedure described by Eqs. (2.3)-
(2.5) also applies to the polynomial

(2.13)

p 4
P, ., 0w2) =y, DB ()h), (2.15)
1
where B is the real 3 X3 symmetric matrix
B=(b;), (2.162)
with

by =20, + 1)(v,+2),

by =2 + 1) (v, +2),

b13 = - (92 + 1)(92 +2) (2v1 + 3),

b23 = - (Ul + 1)(U1 + 2)(2U2 + 3),

by =2(v, + D) (v, + 2) (v, + ) {0+ 2).
The final result, which is analogous to Egs. (2.10) and
(2.11), s
2(v; + D + 2)P, , 12)

=X+ (0, + D@+ D@, +v,+3)Y?

— (0 +2) (1 + D (0, +2)* (0, + v, + 2),
(2.17)

where the transformation between the coordinates (y,,y,)
and (X,Y) is

y _X—-w+ D+ 1Y
LT 20,4 D+ 2)
J’z=i(Y+ v, + 2). (2.18b)

Relation (2.17) is valid for all points (v,,0,,9,,,)€R?, ex-
cepting the points having v, = — 2 or vy, = — 1, with the
transformation between coordinates given by Eqgs. (2.18).

The problem of finding all nontrivial weight-2 zeros of 3/
coefficients has now been reduced to the following: For each
pair (v,,0,)eN?, with v,>2 and v,>2, find all solutions
(X,Y)€Z? that belong to the ellipse

X2+ (0, + D+ D (v, +v,+3)Y?

=W+ W+ D +22 (W +v,+2)  (2.19)
such that the coordinates (y,,y,) given by Eqgs. (2.18) satisfy
(y172)eN? and 2<y,<v;, 2<y,<v,. The corresponding

by =2(v;+ 1} (v, + 1),

(2.16b)

+%WA4L(M%)
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weight-2 3j coefficients that are zero are then given by Eq.
(1.12).

That such zeros exist is shown by the example v, = 2,
v, =23, X = 1080, Y =15, y, =2, y, = 20, which corre-
sponds to the zero given by Eq. (2.13) [see Eqgs. (1.9a) and
(1.12)]. This zero comes from the ellipse

X?4+2016Y% = 1620 000. 2.20)

We refer to the classification of the weight-2 zeros of 3/
coefficients using integral points on the ellipse (2.19) as the
elliptical classification. All weight-2 zeros of 3 coefficients
can be classified by either the hyperbolic or the elliptic
scheme, or both.

1ll. GENERAL PROCEDURE FOR SOLVING PELL’S
EQUATION

Our procedure for solving Pell’s equation,
x> —Dy*=N, 3.1

where D is a positive integer and N integral but not necessar-
ily positive, has been described in detail in Ref. 12. All proofs
of the results stated below are given there. For the reader’s
convenience, we summarize briefly this method of orbits.

We order all points (x,y)€R? by the rule (x,y) < (x',y')
ifx <x"and (x,) < {x,)') if y <y’. The point (x,y) is called
positive if x>0 and y>0. We also use the following nota-
tions.

(1) (#q,00) denotes the least positive solution of

w—Dv=1 (3.2)
(such a solution always exists; see, for example, LeVeque®).

(ii) (xp.p,) denotes the least positive solution of the Pell
equation (3.1) for given D and N, whenever solutions of this
equation exist.

With the solution (44,0,) of Eq. (3.2) we associate the
matrix g, of unit determinant given by

u, voD
o= ( v, Uy ) '
The basic result for solutions of the general Pell equation
(3.1) is the following: For each neZ and each solution (x,y)
of (3.1), the point (x‘,y'") defined by

xtm x
( y‘")) B gﬁ( y)
is a solution of (3.1).
Relation (3.4) is the principal result needed for classify-

ing all solutions of Pell’s equation (3.1) by means of the
orbits of the group G, defined by

G, = { g2 |nez}). (3.5)

Each geG, maps a point (x,y)eR? of the hyperbola
x? — Dy* = N to a new point

(3.3)

(3.4)

&
(xy)—(x'y') =g(xy) (3.6a)

of the hyperbola. The action of g on the point (x,y) is given
by matrix multiplication

(3)=<)-

2816
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In particular, (x,y)eZ? implies (x',)’)€Z?, and conversely.
The orbit of the point (x,y)eZ’ is the set of points G,(x,y)
defined by

Go(xy) = { g(x.)|geGo}. (3.7)
A set of fundamental solutions with respect to G, of Pell’s
equation (3.1) is given by

D ={(xp)|x* — Dy* = N; (x,p)eN’;

1<y<upxy + voyo — 1} (3.8a)
Here (u,,0,) and (x,,p,) denote the least positive solutions
of Egs. (3.2) and (3.1), respectively. The set D depends, of
course, on D and N in Eq. (3.1), that is, we really have

D =D(D,N). (3.8b)
The set of all integer solutions of the Pell equation (3.1)

belonging to the positive branch of the hyperbola (x> 0, if
N>0;y>0,if N<0) is given by the sets

gD, (3.9)

Here multiplication of D from the left by gi; means that each
element of D is multiplied by g§. Alternatively, the set of all
integer solutions {3.9) of Pell’s equation belonging to the
positive branch may be classified by orbits under the action
of the group G,

n=0,+1,42,..

Gy(xy) ={gi(x|n=0,+1,+2.1} (3.10a)
where
{(x,9)eD. (3.10b)

One obtains, of course, all integer solutions of Eq. (3.1)
from those given by the sets (3.9) [or (3.10)] by adjoining
those with reversed sign of the x coordinate if N> 0 and of
the y coordinate if N < 0.

The number of orbits, that is, the number |D| of ele-
ments in the set D, is not known in general. Bounds on this
number have been given by Stolt.?* For the special Pell equa-
tion of interest here, we determine the number of orbits nu-
merically, as described in the next section.

IV. PROPERTIES OF THE PELL EQUATION FOR
WEIGHT-2 ZEROS OF 3/ COEFFICIENTS

The Pell equation of interest here for determining all
weight-2 zeros of 3j coefficients is given by Eq. (2.12). Be-
cause both D and N are polynomials in the variables
(u,,u,)€N?, this Pell equation has many nice properties that
allow us to give a reasonably comprehensive treatment. In
terms of the notation (3.1) for the general Pell equation, Eq.
(2.12) is

x*—Dy*=N, (4.12)
where the integers D and N are given by

D=wuu,(u, +u,—1), (4.1b)

N= —u(u; — D¥uy — 1) (u; + 1), (4.1¢)
where

(Upu)eN?, w32, u,>2. (4.1d)

Throughout this section, D and N denote the polynomials
(4.1b) and (4.1c), respectively, subject to conditions (4.1d)
unless otherwise specified.
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One of the special properties of Eq. (4.1a) is that it pos-
sesses two parametric solutions. Namely, for all

(t1,u,%,y)ER?, (4.2)
the following values of x and y solve Eq. (4.1a):

x=u(u;,— 1), y=u,—1; (4.3a)

x=u(u;+2u,~ 1), y=u;+1. (4.3b)

For all (u,,u,)€eN? with #,>2 and u,>2, one can prove by
elementary methods that these two solutions are the only
parametric solutions of Eq. (4.1a). In fact, each parametric
solution must havey = u, + a, a€Z, since thisis the only way
that the term — u} u, on the right-hand side can be canceled
identically by a term from the left-hand side. The values
a = + 1 are then determined by substituting y = #, + @ in
Eq. (4.1a).

Numerical calculations show that the parametric solu-
tion (4.3a) is sometimes, but not always, the smallest posi-
tive solution (x,,p,) of the equation. More generally, it can
be shown that

(e, — D (u, — 1)/u, <YPo<U; — 1,
but we cannot give the exact result for (x,y,).
Let us summarize, for the special Pell equation (4.1),
the method of solution given in Sec. I1I [see Egs. (3.8)]. The
fundamental solutions are

D(u,,u,) = D(D,N), (4.5)

where D and N are defined by Egs. (4.1b) and (4.1c). As
noted earlier, (u,,0,) and (x,,y,) are the least positive solu-
tions, respectively, of #> — Dv? = 1 and x> — Dy* = N. The
set D(u,,u,) contains at least two points, namely, the two
parametric solutions (4.3). For a specific (,,u,), the set of
all integral solutions of Eq. (4.1a) belonging to the positive
branch of the hyperbola is given by

g&D(u,u,), n=0,+1,4+2,....

(4.4)

(4.6)

The orbit G,(x,y) of the fundamental solution (x,p)
eD(u,,u,) is

Go(x,y) = { g (x,p)|neZ}. (4.7)

An integral solution of the Pell equation does not, in
general, correspond to a zero of the 3/ coefficient. This is
because the map (x,y)—(x,,x,) given by Egs. (2.11) is not
from integers into integers. For that property to hold, it is
necessary (but not sufficient) that u,(u; —1) divide
X + u,u, y; that is,

k=(x+uu,y)/u(u,— 1)z
When this condition is fulfilled,
(xp)—>(x1,%5) is

x,=(k+u,—3)/2, (4.9a)

x,=p—u +1)/2 (4.9b)
From the above results we conclude the following: For each
(u,,u5)eN with u,>2, u,>2, the necessary and sufficient
conditions that a solution (x,y) of the Pell equation corre-
spond to a weight-2 zero of a 3j coefficient are

D) x4+ uu,y=0[modu,(u;, —1)1;

(ii) (u,,u,) and (k,p) satisfy k>u, + 3 with £ and u, of

(4.8)
the map (2.11)
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opposite parity, and y>u, + 3 with y and u, of op-
posite parity.

We formulate two theorems that are basic for obtaining
the zeros of the 3/ coefficients from the zeros of the Pell
equation. First, we define the subset A(u,,u,) of the set
D(uy,u,) of fundamental solutions of the Pell equation by

A(u,u,) = {(x,y)eD(u,,u,)|condition (i) holds}.
(4.10)

Theorem 4.1: A necessary and sufficient condition that a
solution (x',y’) of the Pell equation be divisible by
u,(u, — 1) is that (x',y")eG,(x,y), where (x,y)€A (u,,u,).

Proof: Let (x,y) and (x',y") be any two integer solutions
of the Pell equation that are related by (x',y') = g,(x,p),
where g, is the generator (3.3) of G,. We prove the theorem
by showing that, if x + u,u, y is divisible by u, (%, — 1),
then sois x" + u,u, y', and conversely. Define k and k' [see
(4.8)] by

k= (x~4+uu,y)/u(u, — 1), (4.11a)
k' =(x"+ uuy p")/u(u; — 1). (4.11b)

The transformation (x,p)—(x",y') =go(x,y) then gives
(ky)—(k'y') = ho(k,p); that is,

(5)-+()

where A is the matrix of unit determinant defined by

a _(u0+u,uzv0 — uy(uy — l)vo)
07 \uy (1, — o, Ug— uuv,
Clearly, k and y integral imply £’ and )’ integral, and
conversely, since 4, ' is obtained from A, by replacing
vo by — v, |
The significance of Theorem 4.1 is in showing that for
obtaining solutions of the Pell equation (4.1a) that map
back to integer solutions (x,x,) of Q, ,. (x,X;) =0itis
sufficient to consider those fundamental solutions in the set
A(u,u,). We must still select from the orbit G,(x,p),
(x,y)€A(u,u,), those points having parity such that
(x,,x,) defined by Eqgs. (4.9) are integral. This selection is
also reduced to the set A(u,,u,) by the next result.
Theorem 4.2: Each point in the orbit G,(x.y),
(x,y)€A (u,u,) has the same parity as the point (x,y).
Proof: 1t is sufficient to show that the maps (x,y)
—(x'y) =go(x,p) and (xy)—(x",y") =g5 '(x,p) con-
serve the parity of (x,p) for any integer solution of the Pell
equation. We do this by considering all cases. To this end we
write (a,b) = (e,0) if the integer pair (a,b) has a even and b
odd, etc. Then for (#,,u,) = (0,0) we have that Disodd, Nis
even, and (x,y) = (e,e) or (o,0), while (uy,v,) = (0,e) or
(e,0). For (u,,u,) # (0,0), we have that D is even, N is even,
and (x,) = (e,e) or (e,0), while (u,,0,) = (0,e) or (0,0).
Considering all eight cases in turn, we verify parity conserva-
tion for the map (x,y)—(x',y') = go(x,p). This result also
appliesto (x,y)—>(x",p") = g5 '(x,p), sincegy !is obtained
from g, by the map vy— — v,, Which conserves parity. B
It remains to explain briefly our numerical method for
solving the general Pell equation (3.1), where D is a positive,
nonsquare integer. We do not treat the elliptical case here,
although, in fact, it is much simpler than the hyperbolic case.

(4.12a)

(4.12b)
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If Dis a perfect square, there are, as in the elliptical case, only
a finite number of solutions for given &, and these are easily
dealt with.

Let us choose D and N randomly (in some appropriate
fashion) from a very large integer lattice of (D,N) points.
Then the Pell equation has, with high probability, no solu-
tions at all. LeVeque®® gives bounds on x and y [depending
on (u,,0,), D, and N] such that if the equation has solutions
it must have at least one satisfying these bounds. In our case,
Eq. (4.1a), there are parametric solutions, so this problem
does not arise.

If we take the least positive solution (x,,y,) and operate
onitasinEq. (3.4) (withn = 1) we get the value (x§",y§?),
the second point on the first orbit. We then solve for all
(' ') < (x§V,pEP) thus generating the set D of (3.8a), and
hence all fundamental solutions of our special Pell equation.
The procedure is to transpose the equation to x*> = Dy* + N
and to let y vary from y, to y$"’. For each y, we test the right-
hand side of this expression for “squareness”; whenever it is
a square, we have a solution. We used various Cray comput-
ing machines and worked in double precision. Since Crays
have not been designed with such number theoretic prob-
lems in mind, it was necessary to do some preprocessing in
order to speed up the calculations. Briefly, this consisted in
examining a fixed number of trailing bits in Dy* + N to
eliminate those values which could not possibly be squares.
This is quite fast compared to determining whether the
expression in question is a square.

There was one further problem of a technical nature.
The process described above requires knowledge of the ma-
trix g, [Eq. (3.3)], hence of (u,,0,), the least positive solu-
tion of Eq. (3.2). A look at Kortum and McNiel®® shows
that these integers can be very large indeed; manipulating
them would require multiprecision arithmetic, where
“multi” means greater than “double.” The very large solu-
tion appearing in the set D would probably be of no interest
in the physics of the present problem; consequently, we

made no effort to calculate all orbits in these cases.
Finally, the code was modified to exclude solutions not

satisfying the divisibility conditions of Eq. (4.8); parity vio-
lations were dealt with by eye.

V. THE WEIGHT-2 ZEROS OF 3/ COEFFICIENTS

We have tabulated in Table I the elements (x,y) in the
set D(u,,u,) for 2<u,<6, 2<u,<6, together with the integer
k defined by Eq. (4.8), and the solution (#4v,) of
u?> — Dv* = 1. These integers are presented as (x,p)(k)
when k exists, and as (x,y) otherwise. Recall that A(u,u,)
is the subset of all fundamental solutions of the Pell equation
(4.1a) such that (x,y)eD(u,,u,) and x + u,u, y is divisible
by u,(u, — 1), this quotient defining the integer k. Thus the
coordinates (k,y) and the elements of the matrix A, in Eqgs.
(4.12) are completely determined for each point
(xy)€A(u,,u,).

We shall now show how to obtain all weight-2 zeros of
the 3/ coefficients from the fundamental solutions
(x.y)€A(u,,u,), Egs. (4.12), and Eqgs. (4.9). We must take
into account the transformations (4.8) and (4.9), as well as
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the parity requirements and conditions k>u, + 3 and
y>u, + 3 given just below Egs. (4.9).
Let L denote the linear transformation

k
( )=L(x), (5.1a)
y y
I (l/ul(u1 — 1) wu/u(u, — 1)) . (5.1b)
0 1
The group H, defined by
Hy=LG,L ~'={h}|neZ} (5.2)

is isomorphic to G,. The matrix h, [see Eq. (4.12b)] is com-
pletely determined by (u,,0,) and (u,,u,).

Next, we define the set B(u,,u,) to be the image of
A(u,,u,) under the transformation L,

L

A(uy,uy)—B(u,u,). (5.3)

Thus the elements of B(u,,u,) are the pairs of integers
(k.y)eN? obtained by applying the transformation L to each
element (x,p)eA (u,,u,).

We can now prove the following result.

Theorem 5.1: For each heH,, the transformation

(k’}’)'_’h(k’y), (k’y)EB(upuz)

conserves parity; that is, the integer pair (k',y') = h(k,p)
has the same parity as (k,p).

Proof: It is sufficient to prove that the transformation
(ny,n,»—hy(ny,n,) conserves the parity of (n,,n,), where
(n.,n,) is any pair of integers. This is done by considering all
cases for (u,,u,), (#y,0,), and (n,,n,). We find that the diag-
onal elements of the matrix 4, [see Eq. (4.12b)] are always
odd and the off-diagonal ones even. This implies that
(n{,n3) = hy(ny,n,) and (n,,n,) have the same parity. W

The significance of Theorem 5.1 for weight-2 zeros of 3j
coeflicients is that we can restrict our considerations to those
elements (k,y)eB(u,,u,) that satisfy the required parity
properties. This motivates us to define the subset S(u,u,) of
B(u,,u,) by

S(u,,u,) = {(ky)eB(u,,u,)|u, + k odd; u, +y odd}.
(54)

Not all points (k,y) in the set S(u,,u4,) are mapped by
the transformation (4.9) to coordinates (x,,x,) that give
weight-2 zeros of a 3j coefficient. This is because the “thresh-
old conditions” k>u, + 3, y>u, + 3 must still be satisfied.
This situation suggests defining the pair of integers
(k *,y*)eN? to be the least pair in the sets

. 0 ZS(ul,uz);h 0 ls(uliuZ)’S(ulﬁuZL

hoS(uy,uy),h 23S (Us,us),. 0 (5.5a)
such that
k*>u,+3, y*>u,+3. (5.5b)

[Note that 4, is defined in (4.12b).] We find, in fact, that
(k*y*)eh s 'S(uuy), S(upuy), or hS(uyu,).  (5.6)

This result may be proved by using the parametric solution
(4.3a). This parametric point gives
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TABLE 1. Fundamental solutions of Pell’s equation.

(uy,u;) (uptp) (x,y) (k) and (x,y)

(2,2) (two orbits) (71,2) (2,15(3) (10,3)(11)

(2,3) (two orbits) (5,1) (2,1)(4) (14,3)(16)

(2,4) (three orbits) (19,3) (2,1)(5) (18,3)(21) (82,13)(93)

(2,5) (four orbits) (31,4) (2,1)(6) (22,3)(26) (38,5)(44) (178,23)(204)

(2,6) (six orbits) (55,6) (2,1)(7) (16,2)(20) (26,3)(31) (82,9)(95) (128,14)(148)
(394,43) (455)

(3,2) (two orbits) (5,1) (6,2)(3) (18,4)(7)

(3,3) (six orbits) (161,24) (6,2)(4) (24,4)(10) (66,10)(26) (174,26)(68) (456,68)(178)
(1194,178) (466)

(3,4) (four orbits) (17,2) (6,2)(5) (30,4)(13) (66,8)(27) (186,22)(75)

(3,5) (six orbits) (41,4) (6,2)(6) (36,4)(16) (69,7)(29) (111,11)(46) (204,20)(84)
(594,58) (244)

(3,6) (square) (1,0 (6,2)(7) (42,4)(19)

(4,2) (four orbits) (19,3) (12,3)(3) (28,5) (68,11)(13) (132,21)(25)

(4,3) (four orbits) (17,2) (12,3)(4) (36,5)(8) (108,13)(22) (228,27)(46)

(4,4) (eight orbits) (127,12) (12,3)(5) (44,5) (68,7)(15) (156,15)(33) (348,33)(73) (772,73)
(1132,107)(237) (2508,237)(525)

(4,5) (ten orbits) (721,57) (12,3)(6) (52,5) (108,9)(24) (212,17)(46) (492,39)(106)
(948,75)(204) (2188,173) (4212,333)(906) (8108,641)(1744)
(18708,1479) (4024)

(4,6) (nine orbits) (485,33) (12,3)(7) (60,5)(15) (156,11)(35) (276,19)(61) (660,45)(145)
(1572,107)(345) (2748,187)(603) (6540,445)(1435)
(15564,1059) (3415)

(5,2) (four orbits) (31,4) (20,4)(3) (40,6)(5) (200,26)(23) (340,44)(39)

(5,3) (seven orbits) (41,4) (20,4)(4) (50,6)(7) (85,9)(11) (160,16)(20) (295,29) (470,46)(58)
(860,84)(106)

(5,4) (eight orbits) (721,57) (20,4)(5) (60,6)(9) (300,24)(39) (580,46)(75) (1340,106)(173)
(2580,204)(333) (11460,906)(1479) (22060,1744)(2847)

(5,5) (square) (1,0) (20,4)(6) (70,6)(11) (155,11)

(5,6) (12 orbits) (1351,78) (20,4)(7) (80,6)(13) (160,10)(23) (340,20)(47) (620,36)(85)
(1280,74)(175) (2320,134)(317) (4780,276)(653)
(8660,500) (1183) (17840,1030)(2437) (32320,1866)(4415)
(66580,3844) (9095)

(6,2) (nine orbits) (55,6) (12,4)(2) (30,5)(3) (54,7) (114,13)(9) (180,20)(14) (282,31)
(558,61) (43) (870,95)(67) (1356,148)

(6,3) (square) (1,0) (30,5)(4) (66,7) (222,19)

(6,4) (12 orbits) (485,33) (30,5)(5) (78,7) (114,9)(11) (210,15)(19) (510,35)(45) (894,61)
(1218,83)(107) (2130,145)(187) (5070,345)(445) (8862,603)
(12066,821) (1059) (21090,1435)(1851)

(6,5) (12 orbits) (1351,78) (30,5)(6) (90,7)(10) (210,13)(20) (390,23)(36) (810,47)(74)
(1470,85) (134) (3030,175)(276) (5490,317)(500)
(11310,653)(1030) (20490,1183)(1866) (42210,2437)(3844)
(76470,4415) (6964)

(6,6) (eight orbits) (199,10) (30,5)(7) (102,7) (366,19)(35) (690,35)(65) (1290,65)(121)
(2406,121) (7422,373)(695) (13830,695)(1295)

(ky) = (uy + Lu, — 1)eS(u,,u,). (5.7) in terms of Pell’s equation. We state this result as a theorem,

showing that the set S(u,,u,) is never empty; on the other
hand, the point (5.7) does not satisfy the threshold condi-
tion (5.5b). It is, however, true that

ho Yuy+ Lu, — 1) <hg(uy + Lu, — 1), (5.8a)

ho(u, + Luy — 1) > (u, + 3,4, + 3) (5.8b)
for u,>2, u,>2, which proves (5.6). Relation (5.8a) is tri-
vial to prove; (5.8b) may be proved directly from the defini-
tion (4.12b) of Ay, using the property vo>1, ug>u, + 1 of
the least positive solution of u*> — Dv?> =1 for u,>2, u,>2
and D nonsquare.

The orbit H,,(k,p) of the point (k,y)€S(u,,u,) under the
action of the group H, is, by definition, the set of points

Hy(ky) = {h§(kyp)|neZ}. (5.9)

The results above furnish the complete answer to the
problem of obtaining all weight-2 zeros of the 3j coefficient
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using the notations above.
Theorem 5.2: For each pair (u,u,)eN? with u,>2,
u;>2, we have

2 X, X4u; —2
Uy +u,—2 x; x—u,+2|=0, (5.10)
X1+ X, —uy, U u;

where the integer pair (x,,x,)eN? with x, >u,, x,>2 is any of
the pairs given by

x,=(k"+u,—3)/2, (5.11a)

X, = —u;+1)/2, (5.11b)
for each (k',p') such that

(k'y')eH,(ky), (5.12a)

(k' Y')>(k*y*), (5.12b)
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in which the point (k,p) itself runs over all elements in the
set S(u,u,).

Remark: the Regge symmetries and Theorem 5.2 give
all nontrivial weight-2 zeros of the 3j coefficients in terms of
positive solutions of the Pell equation. Because of parity,
modular, and threshold restrictions, not all solutions of the
Pell equation map back to weight-2 zeros. In the final result,
given by Theorem 5.2, the zeros (5.10) are classified accord-
ing to the orbits H,(k,y), where (k,p) is a point in S(u,u,),
there being an orbit for each such point. By construction,
each point (x',y’) in the orbit H,(k,y) has parity such that
the pair (x,,x,) is integral, but not necessarily positive nor

Regge array greater than 2. The condition (k',y') > (k *3*)
assures this property for the corresponding points (x,x,).

It is useful to illustrate the results given here and in Sec.
IV by an example from Table I. Consider (u#,,u,) = (6,2),
which has D = 84 and N = — 1200. The least positive solu-
tion (ugv,) of u? — 841> =1 is (ugw,) = (55,6), which
gives

(55 504)
8o = .

6 55 (5.13)

The set D(6,2) of fundamental solutions of x> — 84y®

greater than the threshold required to make all entriesinthe = — 1200is
J
(12,4), (30,5, (54,7, (114,13), (180,20)]
D(6,2) = . .
®2) {(282,31), (558,61), (87095), (1356,148) (5.142)

The set of all solutions belonging to the positive branch y > 0
is
{giD(6,2)|In =0, + 1,..}, (5.14b)
or, equivalently, it consists of the set of nine orbits
{G,(x.9)|(x,)eD(6,2) }. (5.14¢c)

The subset A(6,2) C D(6,2) of fundamental solutions
whose points satisfy x 4+ 12y = 0 mod 30 is

A(6,2)

B [ (12,4),
— 1(558,61),

(30,5),

(114,13), (180,20)}
(870,95)

(5.15)
with the corresponding set B(6,2) of values (k,y) given by
B(6,2)

(3,5),
(67,95)

[ (2,4),

(9,13), (14,20)]
(43,61), '

(5.16)

Finally, the subset $(6,2) of points in B(6,2) having the
proper parity is

8(6,2) = {(3,5), (9,13), (43,61), (67,95)}.  (5.17)
The group H,, is given by

Hy={h3n=0,+1,+2..}, (5.18a)
where

we (i 28
The orbits of the group H,, on the set S(6,2) are

H,(3,5), Hy(9,13), H,(43,61), H,(67,95). (5.19)

We see that there are four disjoint denumerably infinite
families of weight-2 zeros of the 3j coefficients correspond-
ing to (u,,u,) = (6,2). These zeros are given by the Regge
array

2 (k' =172 (V' +3)/2
6 O —-5)72 (k'=1)2|=0,
(k' +y —10)/2 6 2
(5.20)

where (k',p') is a positive point in any of the four orbits
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i

(5.19) satisfying (k ',y") > (5,9) = (k *,y*). Thisincludes, in
fact, all points in the orbits (5.19) with the exception of the
four points:

(1,5) =k '(67,95)eH,(67,95),
(1,7) = h g '(43,61)eH,(43,61),
(3,31) = h 4 '(9,13)eH,(9,13),
(3,5) = h3(3,5)eH,(3,5).

The result for weight-2 zeros of the 3j coefficients as
given by Theorem 5.2 is, we believe, a comprehensive and
elegant statement of the origin of these zeros in terms of a
classical Diophantine equation, the Pell equation.

VI. RELATION TO BINARY QUADRATIC FORMS

We have chosen to solve the Pell equation (3.1) in deter-
mining the weight-2 zeros of the 3j coefficients. This proce-
dure required rejecting from the set of fundamental solutions
those that failed to satisfy the divisibility condition (4.8).
This step can be avoided by using a different formulation of
the problem. This alternative, but closely related, method is
of interest because it relates the properties of the weight-2 3j
coefficients directly to those of binary quadratic forms,
which is a well-studied subject in number theory.?28

A (real) binary quadratic form g, , . is a homogeneous
polynomial in (x,y)€R? with coefficients (a,b,c)€R>,

9o, (X,,V) = ax2 + bxy + Cyz. (6_1)
The discriminantd of g, is
d=b?—4ac. (6.2)

The form is said to be definite if d < 0; indefinite if d > 0.

To transform Q, , (x,x,) [see Eq. (1.3)] to binary
quadratic form, we eliminate only the linear terms. Thus
carrying out the transformation

(U5 155) = Us(14,u5,%,)), (6.3a)
1 0 0 0 0
0 1 00 0

v=l o 1 1 0 —31, (6.3b)
-3 00 4
0 0 0 O 1
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we obtain the new polynomial F,
FlupuzXopy) = Q0 (X1%3) = Gop . (X)) — m. (64)
The coefficients a,b,c are the following functions of u,,u,:
a=uu;—1)/2, c=u(u,—1)/2,

m= — (ul - 1)(“2 — 1)(“1 + uz)/z.
(6.5)
The quadratic polynomial P, , (»,,,) may be similarly
transformed:

b= —uu,

(V1sV205082) = Vo (0,00X,0), (6.6a)
1 0 0 O
01 0 0 ¢

V=14 0 } 0 11, (6.6b)
0 3 0 4 1
0O 0 0 0 1

G(vyxy) =P, , (0102) =Gopc (%) —m,  (6.7)

with coefficients
a=(v,+ 1)(v, +2)/2,
b= (v + D+ 1),
me= (v, + 2) (v, + 2) (v, + v, + 2)/2.
The discriminants of these two forms g, , . with coefficients
(6.5) and (6.8), respectively, are
dy(uuy) = uyuy(uy +uy, — 1), (6.9a)
dy(uy,) = — (0 + (v, + 1) vy + v, + 3). (6.9b)

Consequently, for u,>1, u,>2 and v,>0, v,>0, the corre-
sponding forms g, ,, . are indefinite and definite, respectively.

In studying the relations between the families of qua-
dratic polynomials described above, we take the various pa-
rameters and coordinates to be defined individually on the
real line; an n-tuple composed of these is taken to lie in R
for example,

c= (v, + 1){v; +2)/2,
(6.8)

(uy,ux,p)ER?. (6.10)
With this extension, the relation
G(—u,— |, —u,— 1, —x,y) = Flu,,u,x,y) 6.11)

is valid for the full domain (6.10). Consequently, there is
only one family of binary quadratic forms occurring here;
namely, the form (6.4) with coefficients given by Egs. (6.5).
The discriminants then also agree, d,( —u, — 1, —u; — 1)
=d, (u,u,).

Relation (1.11) can also be expressed in terms of the
variables (6.10). In terms of the transformation W defined
by (V,001:02) = We{u,iu,x,,x,) [see Egs. (1.9)], U de-
fined by Egs. (6.3), and V by Eqgs. (6.6), the relation
between G and F'is

G (T (uy,uz,%,9)) = F(u,uyx,y), (6.12a)
where
1 1 0 0 -2
-4 -1 4 4 -1
T=V"'"WU=} 1 -1 0 0 0
i} -1+ 4 -1 0
0 0 0 O 1
(6.12b)
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Combining relations (6.11) and (6.12) we obtain the fol-
lowing theorem.

Theorem 6.1: The function F is invariant under the
transformation S defined by

4 by -1~
-1 -1 0 0 1
S=} —-1 1 0 0 o]; (6.13a)
e T Bt B
0 0 0 0 1
that is,
F(u,uyx,p) = F(S*(u,ux.9)). (6.13b)

This symmetry of F is in addition to the eight Regge array
symmetries of the group X' defined by Eq. (1.15). The latter
symmetry is expressed by F(u,,u,,x,p) = F (m-(u,u,,x,p)),
each meM = U ~'KU. In particular, the interchange sym-
metry u,«>,, x<>p of F is the transformation U ~'rU.

The group M ' generated by the group M and the trans-
formation S is a finite group of symmetries of the function F.
This group will be described in detail in another paper deal-
ing with the general symmetry group of the “polynomial
part” of a 3j coefficient.

The group M ' is the same for all (u,,u,,x,y)eR?; that is,
the group elements do not depend on the point in R*. The
function F has, in addition, a continuous group of symmetries
at each point (u,,u,)eR?. The nature of this group depends
on the point (u,,u,). Since this group structure belongs toan
arbitrary binary quadratic form ¢, (x,y) defined by Eq.
(6.1), we give its general formulation.

We define the graph A, of the function u?> — dv* = 1 by

Ay ={(up)|ui® —dv* =1}, (6.14)

whered is the discriminant of g, ,, .. To each point (u,v)€A,,
we let correspond the 2 X 2 unimodular matrix

u—bv —2cv
h(u,v):( 2av u+bv)’

where a,b,c are the coefficients in ¢, ,, ., which we regard as
specified. Then the set H defined by

H = {h(u,p)|(u,v)eA,} (6.16)

is a group under matrix multiplication, which may also be
expressed as A(w,0)h(4' V') = h(uu' + vw'd,wv’ + vu'); the
identity is £(1,0), and A(u,v) ~! = A(u, — v). [Here the co-
efficients have been suppressed in writing H and A{u,v).]

The principal result for the group H, which may be
proved by direct substitution, is the following.

Theorem 6.2: The group H is an invariance group of the
binary quadratic form g, , ; that is,

qa,b,c (x,’y,) = qa,b,c (x’y)’
for

(",) =h ( "), each heH.
y y

It is not difficult to prove that H is isomorphic to the
Lorentz group SO(1,1) for d>0, to the rotation group
SO(2) for d <0, and to a group A(2) of 2X2 triangular
matrices ford = 0.

The invariance group H is important for the study of the
Diophantine equation

(6.15)

(6.17a)

(6.17b)
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Qape(X:y) = m, (6.18)
where now (a,b,c,x,y)€Z’ and meZ is in the range of g,
The group H is significant because of its integer subgroups:
integer points (u,v)eA, correspond to elements h(u,v)eH
with integer entries, and such elements of H map integer
solutions of (6.18) to integer solutions. Not all integer ele-
ments of H, however, lead to distinct solutions. This is be-
cause all integer solutions of u? — dv” = 1 belong to a single
orbit of the group {G,, — G,}, where G, is defined by Eq.
(3.5) with D = d = b? — 4ac. The implication of this result
is that only the subgroup H, = {h § |n€Z} C H, where

(uo — by, ~ 2cv00)
hO = ’
2av, vy + by
is relevant in the classification of the set of solutions of Eq.
(6.18) by the orbits of {H,, — H,}.

Let (x,y)€Z” be a solution of Eq. (6.18), if such exists.
We can define a fundamental solution with respect to H, to
be the least positive solution in the orbit + H,(x,p). (Any
set of orbit representatives could serve as a set of fundamen-
tal solutions. ) In this way, the problem of finding all integer
solutions of Eq. (6.18) is reduced to that of finding the fun-
damental ones, which are always finite in number (including
zero). For d> 0 and nonsquare (hyperbolic case), the ma-
trix h, generates an infinite-order discrete group
H,CS0(1,1), and the infinitely many solutions of Eq.
(6.18) are classified by a finite number of orbits + Hy(x,y),
one for each fundamental solution (x,y). For d>0 and
square (hyperbolic case) or for d <0 (elliptical case), we
have (ug,v,) = (1,0) so that A, = H, = I, the identity ma-
trix. The invariance groups {7, —I}CSO(1,1) and
{I, - I}CSO(2) now yield only the points (x,y) and
( — x, — p) in the same orbit.

In the application of the preceding results on binary
quadratic forms to the special forms with coefficients (6.5)
and (6.8), an extra richness of structure appears. This is
brought out nicely by considering the surface F in R* defined
by

F = {(uy,u0,%,y)ER®| F(u,uzx,p) = 0}. (6.20)

The set of lattice points L of this surface is the set of points of
F with integer coordinates,

L = {(u g,y )L | F(1,,u,,%,p) = O}. (6.21)

In particular, the set L contains all points that correspond to
weight-2 zeros of the 3/ coefficients, both in the hyperbolic
and elliptical classifications (see Egs. (6.3), (6.4), (6.6),
(6.7), and (6.11) }. Unlike the general case (6.18), the set L.
is never empty, since it always contains the points

(U gty + Luy — 1), all (u,,u,)eZ?,

(6.19)

and
(U taglts + 1 +(Auy/ (uy — D)uy + 1), all (u,,u,)e2?
such that u, — 1 divides 4u,.

Each (u,,u,) plane in F has a symmetry group that is
either isomorphic to SO(1,1) (d>0), 10 SO(2) (d<0), or
to A(2) (d = 0). If we restrict the surface F to its subset of
lattice points L, the relevant group for the {u,,u,) plane,
with (u,,u,)€Z? is restricted to the discrete subgroup
{H,, — H,}, so that all points in L can be classified by orbits
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relative to this subgroup. (This is, to be sure, a rather trivial
classification in some cases.)

In addition to the group structure of pointsin a (u,,u,)
plane described above, there is also the symmetry of the sur-
face F corresponding to the transformations belonging to the
finite group M’ (see Theorem 6.1 ef seq.) These transforma-
tions map points from one (u,,4,) plane to another. The
following example illustrates this property.

Take (u,,u,) = (6,2). This is our earlier example [see
Eqgs. (5.13)—(5.18) ] rephrased in terms of binary quadratic
forms. We have

F(6,2,x,y) = 15x* — 12xy + >+ 20 =0. (6.22)

The (6,2) plane in L contains an infinite number of lattice
points given by the orbits + Hy(x,y,), where
(x,,5,)€B(6,2). These orbits, of course, constitute all in-
teger solutions of Eq. (6.22).

Under the transformation S given by (6.13a), an integer
solution (x,y) of (6.22) is mapped to an integer solution of

Fluj,u;x'y') =0, (6.23a)
where

(uju3) =4 —4(x+y),~7), (6.23b)

x'y) =(—42+{(x~p) (6.23c)

The point (u;.u;.x’,y’) belongs to L. The original (6,2)
plane is, however, hyperbolic, while for |x + y|>10, the
(u;,u5) plane is elliptical. The integer solutions (infinite in
number) of

G5, - 121 (x) = — 20 (6.24a)

are distributed by the map Sinto integer solutions, one each,
of the infinite number of Diophantine equations.

Qo c(—42+3x—y))=m, (6.24b)

where a',b',c’, and m’ are expressed in terms of (u],u;) by
Egs. (6.5).

The properties of the function F(u,,u,,x,y) discussed in
this section are intended only to indicate the deep structure
associated with the polynomial part of a 3/ coefficient. We
have not implemented methods discussed in Refs. 26-28 of
solving the Diophantine equation F(u,,u,,x,y) = 0, since
from a calculational viewpoint this would repeat much of
Secs. ITI-V, which have been based directly on Pell’s equa-
tion.
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The following procedure is described: Starting with a connection in a principal fiber bundle
P(M,G), where G is either the Poincaré group or one of the de Sitter groups, a connection in
the bundle of linear frames of a submanifold N of M is constructed by using the translational
components of the original connection for frame identification. The dimension of N is gauge
dependent, and the flat four-dimensional Minkowski space-time may appear of dimension less
than 4 when certain gauges are used. It is shown that in the case of a de Sitter group, the
minimum dimension to which the flat four-dimensional space-time can be reduced is 1, while
the number is O for the Poincaré group. The gauge transformation that achieves the maximum
dimension reduction in the de Sitter case is constant and leads to infinite strings as a result.
Variable continuous gauge transformations that can reduce the dimension over a finite region

of the base manifold are also considered.

I. INTRODUCTION

Ever since Kibble' proposed a theory with translations
included in the gauge group of general relativity, the subject
has been extremely popular. The emphasis has been, how-
ever, on the introduction of torsion into general relativity
(Riemann—Cartan geometry) and the construction of La-
grangians. Some examples of the literature are given in Ref.
2.

In this paper it is the geometry of the construction that is
primarily studied, expanding a short note listed in Ref. 3.
The main geometric role played by the translations in the
gauge group is that it can provide the necessary “solder-
ing,”* i.e., it changes a principal fiber bundle with no special
relationship between the points on the fibers and the base
manifold into the bundle of linear frames of the base mani-
fold. The soldering is based on an identification of the trans-
lational component of the original connection form with the
canonical form of the bundle of linear frames. The identifica-
tion is made on a partially fixed cross section subject only to
Lorentz gauge transformations. Since the Poincaré group
and de Sitter groups are indistinguishable as far as the ad-
joint action of the Lorentz subgroup is concerned, the sol-
dering can be done in the same way for all three cases. How-
ever, the procedure depends on the selection of the reference
cross section, and that is where the difference between the
Poincaré and the de Sitter groups shows up. When the rank
of the translational component of the connection form is less
than 4, full soldering is not possible, but in some cases it can
still be carried out on a submanifold of the base manifold. In
particular, a connection may yield the flat four-dimensional
space-time in one gauge, and a space of a lower dimension in
another gauge. One can ask about the minimum dimension
to which the flat four-dimensional space-time can be re-
duced by a transformation. In the de Sitter case, which is, in
general, geometrically more interesting than the Poincaré
case, the minimum dimension is 1. This could be somehow
connected with the fact that the most elementary constitu-
ents of matter seem to have the appearance of one-dimen-
sional strings.

Section II introduces the construction of a bundle of
linear frames from the principal fiber bundle with Poincaré
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or de Sitter structure using the formalism of the modern
differential geometry.® Section III discusses a physical inter-
pretation of the construction. Section 1V describes explicitly
the construction of Sec. IT in terms of coordinates, while Sec.
V is concerned with the construction of a flat Minkowski
space and its gauge dependence. Section VI gives an example
of a partial dimension reduction in spherical coordinates.

Il. SOLDERING BY GAUGE TRANSLATIONS

Chapter III of Ref. S describes the reduction of the bun-
dle of affine frames to the bundle of linear frames and the
affine connection. Since it is closely related to the construc-
tion described later, it will be briefly reviewed. A linear
frame of an n-dimensional manifold A is a basis (X,,...,.X,,)
of the tangent vector space T, (M) at xeM. An affine frame
is a linear frame together with a point in 7, (M) regarded as
an affine space. There is a natural map from the bundle of
linear frames L(M) into the bundle of affine frames 4 (M)
defined by

Y(XpeX,) = (0:X,.,X,) , (2.1)
where 0, is the origin of T, (M). If @ is a connection form on
A (M) then its image on L (M) splits naturally into G1 (#, R)
components,

Yo=w+d¢. (2.2)
Every linear frame (X,,...,X, ) at xeM can be considered as a
linear map u of R" onto T, (M) by

u(al,...a") = Z axX; .
i=1
The canonical form 8 on L(M) is the R”-valued form de-
fined by

0(X) = u~\(m(X)), (2.4)
where X is a tangent vector in the bundle manifold of L (M),
and 7 is the canonical projection in L (M) from the bundle
manifold to the base manifold. It is easy to see that

(R26)(X) =a"0(X)), (2.5)

where R, is the right action of a € G1(n, R) on L(M). Since
the form defined by (2.2) has the same transformation law

(2.3)
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(2.5) as 6, it is possible to define an affine connection in
A(M) as a connection for which ¢ = 6. The curvature form
Q) of an affine connection in 4(M) decomposes under the
injection y defined by (2.1) according to

Q=0+06, (2.6)

where () and © are, respectively, the curvature and torsion
forms on L(M).

If an affine connection in 4 (M) is reducible to a Poin-
caré type subgroup of the affine group, then the linear con-
nection in L (M) is reducible to the corresponding Lorentz
type subgroup of Gl(n, R).

The aim of this section is to use the above for defining a
construction of a bundle of linear frames from a principal
fiber bundle P(M,G), where M is a four-dimensional mani-
fold, and G is the Poincaré group. Only local aspects of the
construction will be considered in this paper. Thus the bun-
dle manifold P can be considered as M X G, and a subbundle
Q(M,H) of Pcanbeidentified. Here Q = M X H and H is the
Lorentz subgroup of G. If ¥ is the natural injection of Q into
Pand o is a connection form on P,

Yo=o+0, 2.7)
where @ and @ are forms on Q with values in the Lorentz
algebra and R”, respectively. Under the right action of a € H,
6 behaves exactly as in (2.5). It can thus be identified with a
canonical form of a bundle of linear frames, which is already
reduced to a Lorentz structure. By the identification it is
meant that (2.4) is used to determine # ', which in its turn
defines the frames by (2.3). To ensure the existence of u we
must have a condition

(X)) =0=7(X) =0. (2.8)
Let us now assume that
8(X)=0 if m(X)eU,, (2.9)

where U, is a subspace of T, (M). Selecting another sub-
space V, of T, (M) such that

T.My=U.eV, and 6(X)#0
if 7(X)#0 and w(X)€V,,

an invertible map v~ !: ¥, » R? can be defined by
plOX))=v (7(X)), w(X)eV,, (2.10)

where p is a canonical projection R*—R?, p = Dim V. If ¥
defines an involutive distribution on M then there exists (lo-
cally) a submanifold N of M such that T, (N) = V. In that
case map v can be used to define linear frames on N. A con-
nection in L (N) is defined by @ with values restricted to the
subgroup of the Lorentz group determined by projection p.

Several comments about the above described construc-
tion are in order.

(i) Depending on the original connection in P(M,G) it
may or may not be possible to construct submanifold N.
When the construction is possible, it is in general not unique.
The dimension of N, however, is unique since it is deter-
mined by the rank of 6.

(ii) The construction does not work only for the Poin-
caré group in the role of G. If G is ten-dimensional and its Lie
algebra can be written as
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G=HeaT, (2.11)

where H is the Lie algebra of the Lorentz group and T is an A-
dimensional subspace of G that transforms under the adjoint
map ad H in the same way as the translations in the Poincaré
group, then G can be used for the construction. Indeed, injec-
tion ¥ will still exist, y*@& will still decompose asin (2.7), and
it will still have the correct behavior under the right action of
H. Since the construction is on the subbundle Q(M,H), the
Lie aglebraic properties of T are not important, except for its
transformation under ad H. In this way G can be also a de
Sitter group of type either (4,1) or (3,2).

(iii) The construction may be possible also when M has
dimension higher than 4. Since & can have rank at most 4,
some dimension reduction must occur, and the success of the
construction will depend on the existence of the involutive
distribution V.

(iv) Most importantly, the construction depends on the
particular way in which P is represented as M X G. Such a
representation involves a selection of a reference cross sec-
tion corresponding to the identity element of G. In physical
applications this is called gauge, and a change from one ref-
erence cross section to another is called a gauge transforma-
tion. Gauge invariance of the construction is retained only as
far as a Lorentz gauge transformation is concerned (or the
appropriate subgroup of the Lorentz group in case of a lower
dimension), but a gauge transformation involving transla-
tions can change the result, including the final dimension of
the constructed submanifold. Gauge dependent results are
usually not studied in differential geometry. After all, a
gauge transformation is just a special kind of a coordinate
transformation, and the true modern differential geometry is
concerned only with the properties that can be described in a
coordinate-free fashion. Alas, in physical applications the
selection of a gauge and gauge transformations often play an
important role and, as discussed in the next section, the role
could be crucial in case of translations.

Il PHYSICAL INTERPRETATION

Before the construction described in Sec. II is demon-
strated on particular examples, let us discuss the physical
motivation and interpretation of the results. For a physical
understanding of concepts like connection and reference
cross section, it is better to introduce the connection via the
horizontal lift, rather than the connection form.

If P(M,G) is a principal fiber bundle with a connection
form w, the horizontal lift X  of X € T, (M) is the unique
tangent vector at p € P, x = 7(p), satisfying

T(X®M)=X and o(X®)=0. (3.1)

Physically, transport in the horizontal direction implies
no measurable change of the geometrical properties de-
scribed by G. For example, if P(M,G) were abundle of linear
frames of a three-dimensional manifold and G the group of
rotations, a frame transported in the horizontal direction
would be perceived as parallel to the original frame, i.e.,
without any observable rotation.

Thus 8(X) = 0 of Sec. II can be interpreted as “no ob-
servable translation” in the direction of 7 (X). Dimension of
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M is then just the number of parameters needed to describe
physical fields, while the dimension of the submanifold N is
the observable physical dimension. Qur macroscopical expe-
rience with space-time tells us that the observable dimension
is 4. Since the dimension depends on the selected reference
cross section (gauge), it must be assumed that the gauge is to
some extent fixed. It is not too surprising, since even the
Lorentz gauge, though theoretically free to choose, would be
difficult to set up practically if its Lorentz frames involved
high velocities. Hence it is possible that our macroscopical
methods of measuring space-time intervals restrict us to a
fixed gauge as far as translations are concerned. Such restric-
tions may not apply in the microworld of elementary parti-
cles, where the same space-time may appear to have a differ-
ent dimension due to the fact that it is viewed from a different
gauge.

IV. EXPRESSION IN LOCAL COORDINATES

To investigate particular cases one has to formulate
everything explicitly, using local coordinate systems.

Let M be a four-dimensional manifold with a local coor-
dinate system (x*, u = l,...,4). Consider a principal fiber
bundle P(M,G), where G is either the Poincaré group or one
of the de Sitter groups. In a particular gauge, a connection in
P can be defined by the horizontal lift of d /dx*eT, (M) ,

X =é%._%,4;{(x)wﬁ —AL(OT, .
Here W), and T; are the right invariant vector fields in G,
with W, spanning the Lorentz algebra. Functions 4 ] (x)
are the Lorentz components of the connection, while 4 }, (x)

correspond to the form & of (2.7) by
O(XP)=A4}(x). (4.2)

The coordinates in the Poincaré group can be chosen as
the elements of 5X 5 matrices

(4.1)

il
[’-‘u 9] , (43)
Y01
where
X_;giIXL =8k » (4.4)
g = diag(1,1,1, —1).
The right-invariant vector fields are then
a
u,tj=gikW;c_'gjkW:‘" Wf':an ax’ ’ (4.5)
and
; d
T =g.X’ R 4.6
i gu k aYk ( )

The coordinates in a de Sitter group can be chosen as the
elements of 5X 5 matrices [ X% ] satisfying

4.7
8, = diag(1,1,1,— 1, +1).
The right-invariant vector fields are then
d
W, = rWr— rW’7 W’=X: s (48)
pq gP q qq V4 p an
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where the restriction of indices to the range 1, 2, 3, 4 defines
W, while

i
T, =W,. (4.9)

A gauge transformation is characterized by the right
action of group G on the reference cross section with the
group element being a function of position in M. This causes
a change of the coordinate system in P = M X G with the
new coordinates in G measuring the position on the fibers
from the new cross section. If the variable group elements
are characterized by a} (x) and g; (x) in case of the Poincaré
case and by af (x) in the de Sitter cases, the respective trans-
formations are

#=x' Xi=bi(x)Xk,
Y, =Y, —a(x)bi(x)X},

J

(4.10)

and
X2 =b2(x)X}. (4.11)

Here matrices [b]] and [6%2] are inverses of [a]] and
[4].

Applying the transformations (4.10) and (4.11) to the
horizontal lift (4.1) yields the gauge transformation of the
connection components.

For the Poincaré case

AL =b'ANb] + (3,b%)big",

AL =biAk +biAbla, + g, a)) (4.12)
+g'b1(3,b%)a; .
For the de Sitter case
AP =b247b? + (3,b9)b%g", (4.13)

where

A=Al of (4.1).

Restricting the gauge transformation to the Lorentz
subgroup means a;(x) =0 for the Poincaré group, and
ai (x) =a;(x) =0, a3 (x) = 1 for the de Sitter groups. Of
course, the transformation of 4 ;, is then identical in all cases
and given by

AL (x)=bi(x)4}(x), (4.14)
which is just an explicit expression for the transformation
(2.5) of the canonical form.

Curvature of the connection in P can be calculated by
taking the commutator

[X'(‘h)’Xih)] - zv W, +SLVT,~ . (4.15)

The two terms on the right-hand side of (4.15) correspond
to the decomposition (2.6).

V. FLAT SPACE CONSTRUCTION AND ITS GAUGE
DEPENDENCE

Let us now assume that in a particular gauge the connec-
tion describes a flat Minkowski space. Explicitly it means
that the connection is described by a horizontal lift of the
form
(5.1)

n

a X
xw="_ 40T,
ax
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where the matrix [a}, ] is invertible for all x, and

4,4, —9,4, =0. (5.2)
Here A, (x) are proportional to the partial derivatives of
Minkowski coordinates x, i = 1,...,4, with respect to general

coordinates x*, 4 = 1,...,4. If the coordinates are considered
as measured in units of length, we can write
- 1 9x'
A, (x)=——,
w(X) T o
where / is a constant length.
Calculating the curvature of the connection defined by
(5.1), according to (4.15) one obtains

(5.3)

R ZV = s;’w =0 (5.4)
for the Poincaré group and

for the de Sitter groups. The curvature of the connection in
L (M) generated according to the construction described in
Sec. I1 is, of course, 0 in both cases.

Under a gauge transformation the components of the
curvature in (4.15) transform according to the action of
ad @~ !(x), a(x)€G. In the Poincaré case, R, and S}, re-
main O in all gauges. For de Sitter groups

Si,=+bi(4*4, —Aka!)b], (5.6)

and requirement E;V =0 leads to b; =0, b, =0, and
b3 = 1. Thus only a Lorentz gauge transformation is per-
mitted if S}, is to remain 0. At the same time, the induced
connection in L (M) is not changed by Lorentz gauge trans-
formations. Thus in the de Sitter case, the flat connection in
L(M) with §},, =0 is unique. The geometric meaning of
S Lv in L (M) is that of torsion. Hence we can state the fol-
lowing.

If a flat connection is generated from a connection in
P(M,G) with G being a de Sitter group, the gauge is deter-
mined up to a Lorentz gauge transformation by the require-
ment of zero torsion.

This is quite pleasing from the physical point of view,
since it hints on a possible relationship between space-time
measurements and the choice of the gauge. Macroscopical
measurements of space and time are based on the use of geo-
desics (light rays) and a connection constructed from geo-
desics (using the Schild’s ladder) comes automatically with
zero torsion.®

Let us now investigate how the dimension of submani-
fold N constructed from the connection described by (5.1)
depends on the choice of the gauge. In particular, we should
be interested in the minimum dimension to which the flat
four-dimensional space-time can be reduced, and in the
gauge that can achieve the maximum reduction.

In the Poincaré case the answer is rather trivial. Using
Minkowski coordinates (4}, = (1/1)8},), A ; =0in (4.12)
leads to

P =8, a = — (1/D)gux*. (5.7)

Thus the rank of @ is 0, and so is the minimum dimension.
This is not surprising, since the original connection in
P(M,G) is flat.

2827 J. Math. Phys., Vol. 28, No. 12, December 1987

In the de Sitter case it is easy to see that the minimum
dimension must be greater than 0. Namely, assume that it is
0. Then the horizontal lift (4.1) has only the Lorentz com-
ponent in the appropriate gauge. But then the curvature has
also only the Lorentz component, and that is impossible
since §;,,, can be 0 only in the original gauge. Thus the mini-
mum dimension must be at least 1. The direct way to show
that it is in fact equal to 1 is to solve the equations A ,’f =0,
i = 1,...,4, for as many values of index x as possible. Separat-
ing index 5 from the remaining values Eq. (4.13) reads

A, =bjAkb] —biALb] + (3,b3)big™
+(d,b)big”*=0. (5.8)
Working in Minkowski coordinates we have for, say u = 1,
(I/Dbibs — (1/Dbib; +bi(3,b3)g™
+bj(3,b})g*=0.
After multiplication by matric [a ] one obtains
(/D& — (1/DH&b3 + 8 (3,b3)8> +g7(d,b]) =0,

(5.9)

for p = 1,...5, which can be written as

(I/Db3 +g'"(d,b3) =0,

~ (1/Db} +8°(,b3) =0,

albg =31b§ =alb2 =O.

Similar sets of equations must be valid for every dimen-
sion u for which 4, =0. If only one more dimension is
added, say u = 2, the resulting set of equations leads to 5 ;
=b; = b3 =0. The process can be extended by one more
dimension. The third dimension cannot be chosen arbitrar-
ily, since [ 54 ] must belong to the particular de Sitter group
and due to b3 = 0 the equation

bigh;=g" (5.11)
must be satisfied. Thus if the de Sitter group is the type (4,1)
(e.g., &£ = + 1), the maximum dimension reduction can
be achieved by

i=b3=bi=b;=0 b3=1,

while if the type is (3,2) (g°> = — 1) then we have

by =b3=b3=>b3=0, b;=1.
In both cases the minimum dimension is 1, but its character
(spatial or temporal) depends on the type of the de Sitter
group.

(5.10)

V1. DIMENSION REDUCTION IN SPHERICAL
COORDINATES

The maximum reduction described in the previous sec-
tion is allowed by the ultimate symmetry of the flat space-
time expressed in Cartesian coordinates. The gauge transfor-
mation is also constant and cannot be continuously changed
into the identity. It is of interest to study variable transfor-
mations that can reduce the dimension of a finite region of
space-time while remaining everywhere continuous. In par-
ticular, eliminating the radial distance could lead to a model
of a pointlike particle that would at the same time occupy a
finite region of the base manifold and thus preserve an inter-
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nal structure. This could be used also for dealing with classi-
cal singularities caused by pointlike character of particles.
The Schwarzschild metric should be investigated in this
manner, but here only the reduction of a flat space-time met-
ric in spherical coordinates will be considered as a prelimi-
nary study.

In the initial gauge we can choose

A!'=(1/Dcos8, A?= (1/])sin @ sin ¢,

(6.1)
A= (1/Dsin 6 cos ¢,

and

A¥=0 for all i,j=1,..,4. (6.2)

The same reasoning that lead to Egs. (5.10) now results
in

0 cos ¢
sin - cos @sin ¢
[62] =] cos(r/l)cos 6 cos(r/l)sin 8 sin ¢
0 0
—sin(r/l)cos 8 — sin(#/l)sin @ sin ¢

At r = 2mnl, n integer, the gauge transformation (6.7)
reduces to a 3 X 3 transformation of spatial frames. The fact
that it does not reach the identity is due to the nonexistence
of a global frame selection on a spherical surface, and it could
be fixed by using an appropriate patching. The important
feature is that the translational components of the gauge
transformation disappear on the surface of radius 2mnl.
Thus it is possible to have a continuous gauge transforma-
tion that leaves the outside of the sphere as the four-dimen-
sional space-time, while the inside region loses one observ-
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Aib3 +g98,63) =0, i=123,

. (6.3)
g¥3,6j) =0, —Ab; +(3,b5)8°=0.
Eliminating b yields
g(db3) + (1/1*)b3 =0, (6.4)

with the general solution
b3 =acos(r/l) + bsin(z/1), (6.5)

ifg>° = + 1 [the case of (4,1) de Sitter group], and
b: =ae” +be~"",

if g = — 1 [the case of (3,2) de Sitter group].
For example, a complete solution for the (4,1) case can
be written as

(6.6)

—sin ¢ 0 0
— cos 0 cos ¢ 0 0
cos(r/)sinBcos¢d O sin(r/]) 6.7)
0 1 0
—sin(r/)sin@cos¢d 0O cos(r/l)

-
able dimension, namely the radial distance.
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Quantization: Towards a comparison between methods
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In this paper it is shown that the procedure of geometric quantiztion applied to Kéhler
manifolds gives the following result: the Hilbert space /2 consists, roughly speaking, of
holomorphic functions on the phase space M and to each classical observable f (i.e., a real
function on M) is associated an operator f on -7 as follows: first multiply by f + A f (Asr
being the Laplace—de Rham operator on the Kihler manifold M) and then take the
holomorphic part [see G. M. Tuynman, J. Math. Phys. 27, 573 (1987)]. This result is correct
on compact Kihler manifolds and correct modulo a boundary term f,,da on noncompact
Kihler manifolds. In this way these results can be compared with the quantization procedure
of Berezin [Math. USSR Izv. 8, 1109 (1974); 9, 341 (1975); Commun. Math. Phys. 40, 153
(1975) ], which is strongly related to quantization by *-products [e.g., see C. Moreno and P.
Ortega-Navarro; Ann. Inst. H. Poincaré Sec. A: 38, 215 (1983); Lett. Math. Phys. 7, 181
(1983); C. Moreno, Lett. Math. Phys. 11, 361 (1986); 12, 217 (1986)]. It is shown that on
irreducible Hermitian spaces [see S. Helgason, Differential Geometry, Lie Groups and
Symmetric Spaces (Academic, Orlando, FL, 1978) ] the contravariant symbols (in the sense of
Berezin) of the operators f as above are given by the functions f + 17iA g /. The difference with
the quantization result of Berezin is discussed and a change in the geometric quantization

scheme is proposed.

I. PRELIMINARIES

Let (M,») be a symplectic manifold describing the
phase space of some physical system in classical mechanics.
By n we always denote half the (real) dimension of M and by
€, we denote the 2k-form on M,

€ = (— 1)kE=D72/k ) ok,

in particular, €, = 1 and ¢, is the Liouville volume element
on M. On M we choose the orientation such that ¢, is posi-
tive and hence we can (and will) identify densities and vol-
ume forms on M.

Geometric quantization with the metalinear correction
incorporated then constructs a Hilbert space 5% out of sec-
tions of a complex line bundle QB over M and assigns (tries
to assign) to an observable f (i.e., M —R) an operator f on
. In Ref. 1 a general formula is derived for the local
expression of the inner product on 5 and moreover, for
those observables satisfying [X,,P + P "] CP+ Pt agen-
eral (local) expression for fis given that is derived by means
of an infinitesimal pairing (Ref. 2) [X, - denotes the Hamilto-
nian vector field associated to the function f: iy.w + df = 0,
P denotes the polarization and * means complex conjugation
(and in case of matrices it means transposition as well)].

We now briefly recall those formulas, in case the polar-
ization P is a positive Kihler polarization. The prequantum
bundle L (see, for instance, Refs. 2 or 3) is constructed by
means of a set of local potentials ¢ ;onU; for o (ie,
d¥; = w), where {U,} covers the symplectic manifold M.
On U;NU, one supposes &; — i, = du,, for some function
u; and then the transition functions of the bundle L are
given by exp(iu, /#). In the sequel we will identify local
sections of L with functions on M, always with respect to
such a trivialization, i.e., depending on the choices of local
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symplectic potentials ;. The quantum bundle QB is defined
as the tensor product of L with a line bundle associated to the
bundle of metalinear P frames. Since the bundle of metalin-
ear P frames has (locally) a canonical trivialization in the
case of a Kihler polarization (see Ref. 1), it follows that our
trivialization of L defines a trivilization of QB. Let ¢/, be a
local nowhere-zero section of L (i.e., identified with a local
nowhere-zero function) that is covariant constant along the
polarization P (with respect to the connection V on L, see
below) and let z',...,z" be local complex coordinates on M.
These coordinates exist because (M, ) together with a posi-
tive Kdhler polarization determine a complex structure on
M for which  is a (positive) Kihler form (e.g., see Ref. 4).
With ¢, and 2 as above each global section ¥ of QB which is
covariant constant along P determines (uniquely) a local
holomorphic function 4 (z) such that locally ¢ = A4,. More-
over, % consists of these covariant constant sections of QB;
to two such sections ¥ and ¢’ is associated a density =mea-
sure=volume form (¢',¢) on M and the inner product
(¢',¢) in 57 is calculated by integration of (¢',%) over M.

Because of the one-to-one relation between sections of
QB that are covariant constant in the direction of P and
(local) holomorphic functions on M we will use the two
notations ¢ and A, with ¢ = Ay, interchangeably. With these
conventions the local expression for (¢',3) as given in Ref. 1
becomes

(W) (22" = (h',h) (22" = H, ., (z,21)e,,
Hy,., (2.2") = h'(2)'h(2) |[¢o(2:2") |V det((2mifi)
Xw(Xz,,,sz))j,k= s (1.1)

Since (¢',%) and €, are globally defined densities it follows
that H,., is a globally defined function on M. Then #° con-
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sists of those ¢ that are covariant constant in the direction of
P and for which f,, (#,9') is finite. If we omit the condition
that 2 (and & ') should be holomorphic (i.e., if we omit the
condition that ¢ should be covariant constant in the direc-
tion of P) then (1.1) defines a density for each pair of global
sections of QB and one can consider the Hilbert space
L ?(M,P) of square integrable sections. Then 57 is the closed
subspace of holomorphic sections of L *(M,P),

H=L*(M,P),, CL*(M,P), (1.2)

and the orthogonal projection 7: L *(M,P) —2 admits a
(local) integral representation (local in the sense that it de-
pends upon the chosen trivialization of QB). Now let f be
an observable, then for he#” we can define a section Lk of
QB (which need not be covariant constant in the direction of
P) by

(th)'/’o = - iﬁXf(thO)

(f X)) ——tﬁ 2

ji=1

)h¢o (13)

or equivalently with our 1dent1ﬁcatlon of a section hy, with
the function A4,

Lok = — #Xh+ (f = 90K — X, log

——thza )h

where g, is deﬁned by the equation
[Xf,Xz.l] =2(‘1ij k +b kt)
k

and where ¢ is a local potential for @ (dd = @), used to de-
fine the trivialization of the prequantum bundle L; the com-
bination

Vx (h)o) = X (htby) — (i/)HX) (hify)
is the local expression for the connection V on L acting on
the section hi, in the direction X. Using the general
Blattner-Kostant-Sternberg (BKS) kernel one can show
that the operator f acting on 4 as defined by the method of
infinitesimal pairing is given by the orthogonal projection of
L/h on 7; more precisely,

domain f = {heS?|L hel *(M,P)},
and

th=wLh &
Vh'es” Vhedomain f: (h'fh) =f (h',.Lsh).
M

(14)

il. ON KAHLER MANIFOLDS

In this section we briefly recall some elementary facts
about Kihler manifolds, and then apply them to formulas
(1.1) and (1.3). Our basic reference will be the book of
Weil® and we will adopt the conventions used therein. A
Kihler manifold M is a complex manifold with a (complex)
Hermitian inner product G on each tangent space: if z,...,2"
are local complex coordinates then

G(m) =g, (m)dz/@dz*! with gl =g;
(g ) should be positive definite and we denote by g the de-
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terminant of (g ),

g = det(gy).
The imaginary part @ of G, @ = Im G, is an antisymmetric
two-tensor, hence a two-form. In the local coordinates z/ we
have

o = Yigzdz* Ndz 7",
and the condition M is Kihler equivalent to the condition @
symplectic. On the other hand, the real part of G defines a
Riemannian structure on M seen as a real manifold (of di-
mension 27) and hence there exists a Laplace~-de Rham op-
erator A, on forms. In the local coordinates this operator is
expressed on functions /: M- R as

— 4gjk- __a_zf—.

Bon /= 9237

The invariant volume form associated to this Riemannian
structure is the form ¢,; if we denote z/ = x/ + iy’ then

€, = (N"gdz' A~ Ndz"Ndz"t A -+ Ndz

=gdx' A" Adx"Ady' A -+~ Ady" = g-Leb™
with Leb” the Lebesgue measure on R”.

The complex structure on M defines a natural grading of
the k-forms and the exterior derivative splits accordingly,
d=4d’'+d" (d’'thedel operator and d ” the del-bar opera-
tor). Using the Grothendieck—-Dolbeault lemma on the
closed two-form w of type (1,1) one can show the local exis-
tence of a real function F on M such that

3F
az* azt
From this it follows that the local one-form ¢ defined by

L ' L (OF i+ _OF 14
J t(dF dF)——z( zkfd 8z"dz)

is a local symplectlc potential. Computing X ; we find

« 1.
X, = —2" 2, 9K = iKF,

with g*-g, =6/. (2.1)

w=%id'd"F<:>gjk=

o (X, 5.X ) = 2ig",

from which we deduce that the “function” i, defined by
= exp( — {F /%)
is nowhere vanishing and covariantly constant in the direc-
tion of the polarization P spanned by the X ; [see the defini-
tion of V after formula (1.3)]. This polarization is indeed a
positive Kahler polarization on M seen as symplectic mani-
fold, and conversely, if Pis a positive Kéhler polarization on
a symplectic manifold then there exist local complex coordi-
nates z/ (turning M into a complex Kihler manifold) such
that X ; span P, a fact that should explain our interest in the
local Hamiltonian vector fields X ,. Finally the condition
do = 0 implies that
dgh % dlogg )
——+gFf—==)=0 (Vk),

Ej: ( az! £ 9z’

and we find after some calculations that the expression
— Y2, ; in (1.3) is given by

1 1 dlogg  x df
——fiYa,= ——fdgf—# g .
5 a; 7 arS % g FYT
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Combining all these facts and substituting them in (1.1) and
(1.3) we find

H, ., (22" = (7)) ~"?h ' (2) h(z)exp( — \F /fi)g~'/?
(2.2)
and

L= —iﬁX,h+h-[f——-i—ﬁAde

__a(F+‘ﬁl°gg) ,gjk_ af .
az’ az+t
Since (h',L/h) figures in the expression for f we can inte-
grate by parts with respect to X, inside (4 ',L/4) and we find

(h'.Loh) = (h",[ (1 + Yidae )f1R) + R (R h),  (2.3)
A

R.(h',h) = ———[ a#) "k’ (2)'h

(b= 3 | o) @)h(z2)

—F 1/2 jk af] 2n
—FN gpg gic U | e
XexP( 21 )g S

= (— )" Yi#d [H,,d"(fe,_,)]
=(—1)""Y#id [H,,d"(fe,_,)] =da. (2.4)

From this expression we see that a=(-—1)"""!
XifiHy, ., d " ( fe, _ ) is a well-defined global (2 — 1)-form
on M (because H,, ., fand €, _, are global), so R (h’,h) is
an exact 2x-form and the following theorem immediately
follows.

Theorem 2.1: If M is a compact Kihler manifold with-
out boundary, if f: M- R is any observable, and if ¢, y'e#”
are global sections of QB, then

fy = m{[ (1 + }hdar )f ]¥)

or equivalently

Wt = [ (v[(1+ 3 58a)7]9)

Remark 2.2: If M is not compact then there might be an
extra term resulting from f,.da, which depends on the be-
havior of @ “at infinity” (or at the “boundary” of M). In
Secs. IV and V we will consider the cases M = Cand Misan
irreducible Hermitian symmetric space of noncompact type
and in these cases we will redefine f as if Theorem 2.1 were
true for these noncompact spaces. We then will give some
examples to make plausible that the boundary term (da is 0
for physically interesting observables, which should justify
the redefinition of f.

Remark 2.3: There is a remarkable resemblance be-
tween R.(h',h) and the inner product (4 ',h):

(h'h) =H, €, = (— 1"~ %(2n)"'H,.,dd" (Fe,_,),
Rf(h ',h) =d [( - 1)"~liﬁHh-hd"(f€n_l)].

(orthogonal projection),

11l INTERMEZZO

In this (brief) section we recall some definitions of Bere-
zin®’ in order to be able to compare our results with his. Let
5 be a Hilbert space and M ° a manifold with measure u and
let E = {e,, |meM °} be a set of vectors in .

2831 J. Math. Phys., Vol. 28, No. 12, December 1887

Definition 3.1: The system E is called (super) complete
iff

Vs (fg) = [ (fem)eng)dutm).

It follows that #° can be embedded in L2(M°u) by
SeFH ~f(m) = (e, [)

Definition 3.2: Suppose E is a super complete system and
A is an operator such that E is contained in the domain of A,
then the function 4, defined by

Ao(m) = <em ’Aem >/<em ’em)

is called the covariant symbol of the operator A.
Definition 3.3: Let E be a super complete system and A
an operator that can be calculated by

(g = [ (fen)A%m) (en)autm)

for some function 4 ® on M °, then A4 ° is called the contravar-
iant symbol of the operator A.

Proposition 3.4: Suppose A is an operator on #° for
which both the covariant and contravariant symbol exist,
then we have

(em’ €m ) <em €' )

M, (em’ e )

Ay(m') = A%m)du(m).

IV. QUANTIZATION ON C

On M = C with complex coordinate z = x + iy we use
the symplectic form @ = 1 dz Adz' = A dx Ady. For A>0
the polarization P = CX, is a positive Kahler polarization,
so we can apply the theory of Secs. I and II. The global
function F = Azz' satisfies v = 1id 'd " F so the general (lo-
cal) formulas (1.1), (1.2), (2.1), (2.2), and (2.4) become
global and reduce to

f |h(z)
C

2t
xexp( Azz )d Leb? < oo] ,
& = {heL *(C,P) |h is holomorphic},
i 172
hh) =72 f h'(2)h(2)
fi c

2

L*CP) = [h: C-C

—izz*)

Xex d Leb?,

p( 21

= —A713%+392),

Rp(h' k) =d [im= 2 (H/4)*h " (2) h(2)
Xexp( — yzz'/f)d "f].

Remark 4.1: In physics a symplectic form has the same
units as an angular momentum [kgm?sec™!]=[Joule
sec]; in mathematics coordinates usually do not have any
units, so one expects the symplectic form to have no units. In
order to separate these two aspects of a symplectic form we
have introduced a parameter A which has the same units as
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Planck’s constant # (i.e., Joule sec) and we have introduced
dimensionless coordinates z = x + iy; all units have been ab-
sorbed in the parameter A. As is clear from the above formu-
las, in relevant formulas this parameter always occurs in the
combination A /#, which is dimensionless (the combination
#iA 4 is dimensionless and it is this combination that occurs
in the expression for the operators), so one might be tempted
to omit one of them (as does Berezin, see Ref. 6). We will not
do so, because A and # have different physical interpreta-
tions: A represents a physical quantity and # represents the
quantum mechanical yard stick with which to measure A. In
Secs. V and VI a parameter A will be introduced in the same
way as in this section and with the same motivations; in this
section one can imagine that A represents the mass of the
(one-dimensional) system, in case M =S*( =M 1, See
Sec. VI) A represents the intrinsic angular momentum
(spin) (see for instance Refs. 8 and 9).

For an observable f we now define (redefine) (the do-
main of) f as follows:

domain f = {hed?”’|[ (1 + il g ) f ]heL *(C,P)},
fth=m([1+ AR f]h)

=a{[ f—Li(H#/A)(% +3)) f1h).

This definition is different from the definition given in Sec. I,
but we will make plausible by means of examples that in
interesting cases if Acdomain f and 4 ‘e then fR (h',h)
= 0, which implies that then the two definitions “coincide,”
the only possible difference being the case that in (2.3) the
left-hand side (A ',Lh) is finite whereas both terms on the
right-hand side are infinite.

Proposition 4.2: If 3f/9z" is bounded on C then
ScR(h',h) =O0for all h' hed?’.

Proof: For h'hhed” the function G=7"1?
X (A /#)"?h ' (2) h(z)exp( — LAzz'%) is absolutely integra-
ble over C (it is the integrand of (4 ',h }) so

© 2
f|G}dLeb2=J dRJ dpR|G|< 0,
C (] (V]
hence there exists a sequence R, tending to « such that

lim R,|G|dp =0.

koo Jia| = Ry

We now have

|Rq(h ") | =

lim f d[Gd"f] ‘
Izl <Ry

k- o
f Gd ”fl
|z = Ry

ar '
—1 d
azt ¢

= lim

k—

< lim

k— oo lz2] =R

|G | R

27

<const ’}im |G |R, dp =0,
o Jo

where the last inequality is a consequence of our assump-
tion. Q.E.D.

Proposition 4.3: If |3f /92%|<c,| (1 + by )f| + ¢, for
some positive constants ¢, and ¢, then hAedomain f and
h'e= fcRp(h',h) =0.
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Proof: If we define G as in Proposition 4.2 then the con-
ditions show that the function ¢|[(1 + Ay )f]G |
+ ¢,|G | has a finite integral over C and then we can apply
the same reasoning as in Proposition 4.2. Q.E.D.

Remark 4.4: Proposition 4.2 is clearly a special case of
Proposition 4.3, although the statement is slightly stronger.
The condition mentioned in Proposition 4.3 is true for the
observables x,p (linear momentum and position), x?, y?, and
x? 4+ y* (kinetic energy, quadratic potential, and the har-
monic oscillator) so for these observables both definitions
coincide, i.e., for these observables the procedure of geomet-
ric quantization gives the result of Theorem 2.1 for the (non-
compact) manifold C.

Remark 4.5: The condition of Proposition 4.3 is not sat-
isfied by f= xy = 22 — 22, However, if we are interested in
the angular momentum, then we have to consider the sym-
plectic manifold C*(n > 1) and there one can show with the
same arguments that for f=x,p, —x,y;, =z,2} — 2,2}
then again the two definitions coincide.

We now turn our attention to the orthogonal projection
m: L*(C,P) - 2; it is well known that 7 admits an integral
representation with a Bergman kernel K, (w,z") defined by

1 1\12 1wzt
K A Ty — —1/2( ) ( )
(w2Z') =—7 —} exp

and
1/2
(mg) (w) =7~12 (%) J K, (wzhg(z,zh
C

— Azzt

X exp( )d Leb?(z).

If we define the elements e, €% by e,, (z) = K, (z,w') then
this becomes

(7g) (w) = {e,,g) [inner productin L?(C,P)].

Since 7 is a projection we have the reproducing property
formula for ge#”: g(w) = (e,,.g), whence the set {e,, |weC}
is a supercomplete system in the sense of Berezin if we
denote by u the measure defined by

du(z) = 7= "2(A /#)"? exp( — } Azz'/#)d Leb*(z2).

With these conventions the expression for f becomes

(h'ghy — f h '(z)*[[l il ]f]h(z)d;u(z)

- J (h ',e,>[(1 + % ﬁAdR)/] (e, Y (2),

so the contravariant symbol of f is the function
contravar(f) = (1 + A )f.

For M = Ctherelation between covariant and contravariant
symbols is known (see Ref. 6),

Ay =exp( — 1Az )A°,
from which we deduce

covar(f) = (1 + AR Jexp( — A )f. 4.1)
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V. QUANTIZATION ON IRREDUCIBLE HERMITIAN w=14id'd"F with F(zz') = log K(z.2")
SYMMETRIC SPACES OF NONCOMPACT TYPE

According to the general theory'? the four series of irre-
ducible noncompact Hermitian symmetric spaces are just  The associated (positive definite) Hermitian metric is
the classical bounded domains in C" (Ref. 11). These do- ¢ apart from a multiplicative constant) the usual Bergman
mains are characterized by matrices as described in Table I metric which is invariant under the holomorphic diffeomor-
(matrix 4 > 0 means all eigenvalues positive). In the sequel phisms of Q. Since each € is homogeneous (the group G can

we will often ldentlfy a set of coordinates (Z 1,...,2") with the be realized as holomorphic isometries of Q) there exist posi-
corresponding matrix, so depending on the context z means  tiye constants ¢(£) such that

either the matrix or the set of coordinates.

These four series can also be described as certain homo-
geneous spaces; this alternative description is listed in Table
II. When seen as bounded domains, these spaces possess a
(classical) Bergman kernel K(z,w') (see Ref. 11) that is  Finally, the polarization P spanned by (X ;) is a positive
also listed in Table II (up to a multiplicative constant). We  Kaihler polarization with respect to the symplectic form @
now introduce a Kihler structure on £ (for all four series defined above and, moreover, F is global so the (local) for-

simultaneously) by | mula (1.1), (1.2), (2.2), and (2.4) are global:

for A positive and real.

2
g= det(ai ;;v) =c(Q)A K (z,2h).

L*(Q,P) = [h:Q—»C‘J |h(2) 2K (z,2")! ~*/%* d Leb*" < oo}, 5 = {heL *(Q,P) |k is holomorphic},
0
(h'.h ) =c(Q)~ V2 (mAh) ‘"/zf ") h(2)K(2,2") — A +A072g,
o

— C(Q)I/ZW.—n/Z(/'L /ﬁ)n/lf h '(Z)Th(Z)K(Z,ZT)(l —/l/ﬁ)/ZdLebZn,
(4}

Re(h'\h) =d [(— )" ific(Q) ™ 2(mAh) ~"*h'(2)Th(2)K (2,2") =" AP d " (fe,_)].

Remark 5.1: For A /# = 1 we see that 77’ is the ordinary Hilbert space of holomorphic, square integrable functions on the
domain € (with respect to the Lebesgue measure). For more comments on the interpretation of the parameter A, see Remark
4.1.

Remark 5.2: In Ref. 12 Berezin introduces a parameter # ~! when quantizing irreducible Hermitian symmetric spaces of
noncompact type, a parameter which in our treatment is given by 1(1 4 A /#) (seealso Remark 4.1). After the introduction of
h — ! he gives a definition of “allowed value” for 4 ~! that is, roughly speaking, the following condition: the Hilbert space %
depends upon the parameter # ~! (i.e.,onA) and 4 ; 'is allowed if # (4 ~!) is “analytic” in a neighborhood of 4 5 . He then
shows that the set of allowed values consists of a continuous part and a discrete part. In our case with A > 0 the corresponding
value of # —* always lies in the continuous part, i.e., in the set of allowed values.

For irreducible Hermitian symmetric spaces of compact type there is in Ref. 12 also a parameter /2 ! and a definition of al-
lowed value, but in the compact case the definition of allowed value is different from the noncompact case (see for more details
Sec. V1 after Theorem 6.5).

As on C we now define (redefine) for an observable f: ) — R (the domain of) the operator f as follows:

1

4

and again we wish to make plausible that this definition does not differ very much from the definition given in Sec. I. We do

this by considering the case Q] |, which can be interpreted as the Lobatschevsky plane =Q}, = D' = {zeC| |z| < 1}.
Proposition 5.3: If f: D' >R is such that df /dz" is bounded by (1 — zz") ~'on D ' then §, . R;(h',h) = Oforall b ', he .
Proof: On D ! we have K(z2,z") = (1 — zz') 2 so assuming 4 ’,he5” we find

domain f = [he;/'h (1 + ﬁAdR)feL 2(Q,P) AVh eyff R (h'h) = o} , fh=n([(1+#idg) f]h),
(97

TABLE I. Irreducible Hermitian symmetric spaces of noncompact type.

Name Description Coordinates Condition n=C dimension
Q).  matrices z of order pX g all pq entries of z I—-2z'>0 p°q
) symmetric matrices z of order p X p the upper triangle including the diagonal [ —zz'>0 ip(p+1)
QM antisymmetric matrices z of order pXp  the upper triangle without the diagonal ~ 7 —zz'>0 jpp—1)

1+ |zz"|>—2z2'>0

QY row vectors zin ¢7 all p entries
’ , |2z7] <1 (T = transpose)

4
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J B () h(2)K(zz") ~ P+ AP72K (2,2')|d Leb® <
Dl

1 2
<:>J- (1 —Rz)"de A" (2)'h(2)|[(1 —RH**Rdp<
0 0

2
=3Ret1: lim | b @h)|(1 - R} Ry dp=0
— 0 JO

=>U Rf(h’,h)l<1im
D! k—

3

k—s oo

0

Proposition 5.4: Let f: D'-R and suppose there exist
positive constants ¢, and ¢, such that (1 —zz")|df3z'|
<e;|(1 + MiAg )f| +¢, on D' then hedomain f and
h'e¥ = §R;(h',h) =0.

Proof: If one pastes together the arguments of the proofs
of Proposition 4.3 and 5.3 then one obtains easily a proof for
this proposition. Q.ED.

Example 5.5: The group SU(1,1) acts on D! as the
group of holomorphic symplectic isometries by

az+b

_.(” b).
E=\wt o/ —’b"z+a’r ’
gesSU(LD)Sal> - |b*=1.

We can exhibit three one-parameter subgroups g,(¢) of
SU(1,1),

(t)_(cosht sinht)
&) =\sinht coshs/’

cosh ¢ isinh t) _ (e"' 0 )
gz(t}—.(—isinht cosht/’ &1 = 0 e "/’

which become after differentiation the generators of the Lie
algebra su(1,1):

Lo {01y (0
g1<0>—(1 0), gz(m—(_l. 0),

o (i 0
33(0)_(0 -i)‘

The momentum map®'>!* associated to this action maps

these three generators of the Lie algebra to the functions:

zZf+z 142z
, fi=A .
1—2zzF fs 1—zzt

t_
f1=—z}%z z?’ fi=A
1—2zz

TABLE II. Bergman kernels for the bounded domains.

Alternative description as
Name K(zuwh) G /K (see Ref. 10)
Q,  det(l, —zw')~#—¢ SU(p.g)/S(U(p) xU(g))
QF  det(l, —zwh) ! Sp(p.R)/U(p)
Qr det(1, —zwh)-+? S0*(2p)/U(p)
QY (1 -2z + 2T (ww) P S0,(p,2)/{8O(p) XS0(2)}
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J |A"h |const(1 — R%)' +4/%
fzl = Ry a

2T
< lim constj |h"(2)'h(z)|(1 —R2)*"R, dp = 0.

g
/4

Q.E.D.

I
One can show that these functions satisfy the condition of

Proposition 5.4, so in computing f; we can forget about the
term R,(h',h). Since SU(1,1) acts holomorphically, the as-
sociated Hamiltonian vector fields X 7, leave the polarization
P invariant, which shows that L4 is already in #” and we
find

(L, 1) (2) = (£)h(2)

. dh A
- zﬁ((l - (1 +—ﬂ—)zh(z))
=77(h (1 +§ﬁAdR)f) »
(L. h)(2) = (f;h)(2)
- _ dh A
- ﬁ((l + 2% = +(1 + ﬁ)zh(z))
=77'(h (1 +iﬁAdR)f)9

(Lf,h)(z) = (f3h) (2)

- 1+ 2

=mlh (1 + ider )f).

On the other hand, one verifies easily that the action p(g) of
SU(1,1) on 57 given by

(p@hN2) = (a—bTz) M +4Pp(g~12),
geSU(1,1) as above,

is a projective representation of SU(1,1) on 7. For fixed
geSU(L,1) and |z]<1 we have |a—bT'2|>0,50
(a — b'z) ~ ' 2/ js holomorphic on D !; however, such a
branch cannot be chosen consistently for all geSU(1,1) si-
multaneously (see also Ref. 15). For the one-parameter
groups p(g ; (¢)) a consistent choice can be made, resulting in
a unitary representation of R on 57, showing that their gen-
erators f; are (essentially) self-adjoint operators:

plg; (1)) =exp( — itf;/#).
Back to the general case, the (generalized) Bergman

kernel K, (z,w") associated with the orthogonal projection
m: L(Q,P) - # is calculated by Berezin,?

K, (zw') =i, (Q)K(zwt)y A +2/572

ie.,
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(78) () = c(Q) V2 (mAs) ="
Xf K, (W,ZT)g(z,zT)K(z’zT) - +,1/ﬁ)/2€n
I

=c(Q) V2 (7Af) "R, (Q)

K(w,z*) —(1+A/#/2
[ san | K]
Lg(,z Xz

where the branch of the mapping £ —¢ ! +#/%/2 is chosen
such that K, (z,w") is real for z = w, and the constant 7, ()
is determined by 7, (Q) = |[1]| =% where ||1|| denotes the
norm in #° of the function which is constant 1 on £} (it
should be noted that indeed 1€ for each 4 > 0). If we now
define for each we() the function e, €#° by

e, (2) =K, (zu"),

then because of the reproducing property of the orthogonal
projection we know that the set {e, |weQ1} is a supercom-
plete system of elements of 7% and, moreover, by definition
of domain £, we can show with the same reasoning as in Sec.
v,

contravar(f) = (1 + }fiA )/

The relation between covariant and contravariant symbols is
in these cases more complicated then for M = C; explicit
expressions for the connecting operator in terms of powers of
A g is given by Moreno.'s"®

VI. QUANTIZATION ON IRREDUCIBLE HERMITIAN
SYMMETRIC SPACES OF COMPACT TYPE

In this section the main problem is not to “show” that
R;(h',h) does not contribute to f, because that is guaranteed
by compactness, but to exhibit a supercomplete system of
vectors in 5%, In particular, we will show that the allowed

_

U, = {[4 )€G /K |det((gh);) #0}

@g: U, —~C", [h]-gh(0) = (gh),(gh)n
U, = {[h ]G /K |(1,i) (gh),,(1, — )T #0}
@, U, =0T,

a chart which covers G /K except for a submanifold of lower
dimension. The local diffeomorphisms between two charts
U, and U, is given by z— kz for some keG, more precisely,
Py 0 (@) " 2= (887 (2). (6.1)
On each M = G /K there exists a Kéhler structure o
(invariant with respect to the action of G') which is given in

TABLE III. Irreducible Hermitian symmetric spaces of compact type.

[h]1-gh(0) = (8h)12(1, — DT/ (L) (gh) (1, — D)T

values of the parameter 4 ~! of Berezin in Ref. 12 (see Re-
mark 5.2) correspond exactly to the (pre)quantizable val-
ues of our parameter A (quantizable in the sense of Kostant
and Souriau, a condition on the cohomology class of the
symplectic form).

The four series of irreducible Hermitian symmetric
spaces of compact type (which are dual to the noncompact
ones) are listed in Table III. As in the noncompact case z
denotes either the local coordinates (z',...,2") or the corre-
sponding matrix. To obtain a full set of local charts we need a
(partial) action of G on the local coordinates; therefore we
represent each geG as block matrices g,; (i,j = 1,2) of ap-
propriate sizes as follows:

(gu 812
821 822

)=A(M)3A(M)",
with
A(M;_q) =1,,4 A(MII,I) = lzp,

1 i 1 0
AM) = (zlp 1 ,,) , AM) = (op i )
P 2

P
(note that as a result each matrix g;; is a special unitary
matrix ). Using these block matrices one defines the action of
G on the local coordinates by

g2 = (8112 + 812) (8212 + €22) ™,
and

for types I, II, and III

8112 + 8120,
gz =

(1,0) [8212 + 8220: ]
where v, is given by v, = (§(z"z + 1),4i(z"z — 1))". Since
the stabilizer of 0eC" is just the subgroup X in the definition
of the homogeneous space G /K (Table II1) we can use this
action of G on C" to define a set of local charts {U, |geG} for
G /K; the chart @, : U, - C" is defined by

for type IV,

1]for type L, 11, and II1,

]for type IV,

r

local coordinates z by @ = 4id 'd "F(z,z'), where Fis defined
by

F(z,z'y= —AlogK(z,2"), A>0,

K(Z,wf) = N(z’wT) —V(M)' (6.2)

The defining functions N (z,w') and v(M) are given by

Name Description as G /K Local coordinates n=C dimension
M, SU(p + ¢)/S{(U(p) XU(9)) matrices z of order pX ¢ pq
M) Sp(p)/U(p) symmetric matrices z of order p X p ipp+1)
MM SO(2p)/U(p) antisymmetric matrices z of order p X p ip(p—1)
MY SO(p + 2)/(SO(p) XSO(2)) vectors z of length p p
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+ det(1 + zw'), for types I, I1, and III,
N@w') = T, T, Tyt
14227z 4 (272)(z"2)Y, for type IV,
(6.3)
MI =p+q, ¥ MIII —p — 1’
viM,)=p+q vIM,)=p (6.4)

viMH =p+1, v(M}Y)=p.

Since A > 0 the associated Hermitian metric is positive defi-
nite and the polarization P spanned by (X ;) is a positive
Kihler polarization, so again we can apply the general for-
malism of Sec. II. Since M is homogeneous there exist con-
stants c(M) such that

2

det( I°F

3z 3"

(here we omit the letter g for this determinant to avoid con-

fusion with the elements of the group G); furthermore, since

each local chart U, covers M except for a set of measure O

(with respect to €, = the Liouville measure) it follows that

instead of integrating over M we may restrict the integration

to the local chart U,y = C". Hence formulas (1.1), (1.2), and
(2.2) become

)=c(‘M)/1 "K(z,z") (6.5)

L*(M,P) = [h:C"—»C|h represents a global section of QB

and f lh(Z) ‘ZK(Z,ZT)(A/ﬁ+ 1)/2
c'l

Xd Leb?" < oo} ,

# = {heL *(M,P)|h holomorphic},
(h ',h > = c(M)_"z(mlﬁ) —n/2

X f h'(2)h(2)K(z,z") AR D%, (6.6)
CII

- C(M) 1/217,—71/2(i)n/2
#i

Xf h'(2)Th(2)K(z,z") %+ 12 d Leb™,
c’l

and for any observable /: M — R we have (Theorem 2.1)
(h'gh) = (h',[ (1 + A )f]h)  [in L2(M,P)).

The only remaining problem now is the determination
of the structure of the (nontrivial) bundle QB. According to
the general theory the bundle QB is the tensor product of the
prequantum bundle L and a line bundle ML associated to the
bundle of metalinear P frames. It is not true that both bun-
dles do always exist: ML exists iff the first Chern class
¢, (@)"® of the symplectic manifold is even, and L exists iff the
symplectic form w/# determines an integer cohomology
class, and QB exists iff [@/7] and ic, (w)®eZ. However, if we
are only interested in the bundle QB and not in the two con-
stituents separately, then one can reduce the condition on
existence to

[w/#i] + ke (@) eZ, (6.7)

a result which can be obtained by using Mp* structures.'®
What we will do is to construct explicitly the transition func-
tions of the bundle QB and then finding those values of A for
which this system of transition functions is indeed well de-
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fined, which in turn are those values of 4 for which (6.7) is
satisfied. Since €, = const K (z,z")d Leb*" (6.5) is invariant
under the action of G it follows that

-2
K (gz,(g2)") = ’-agl K(z,z"), (6.8)

%z = det(Jacobian (z—gz)).
iz

Now suppose that the holomorphic functions 4 "’ on U,
(i = 1,2) are local representations of global sections ¥ of
QB, then from Sec. I we know that the function H, ., (1.1) is
a global function on M, hence A {’(z) = tr;,(2)-h$"(gz)
[where g is the diffeomorphism (6.1) between the two
charts U, U, and where tr,,(z) is the transition function
between the two trivializations above U, and U,] implies

k' (2)hy(2)K (2,21 AR D72
= [tr,(2) [*h 3 (82) ', (g2)K (2,2 * /"~ D72
= h 5 (g2)'h,(g2)K (g2,(gz))* /"~ 1”2

(= A/
= h;(g2)'h,(g2) (%g{\ K(zzh)AA—Dr2
iz

= |trp(2) |2 = ‘é&_z_ U—A/ﬁ)'
" oz

Because of the identification of local sections ¢ which are
covariant constant along P with holomorphic functions 4,
the transition functions are holomorphic (QB is in cases un-
der investigation a holomorphic bundle). Since dgz/dz is ho-
lomorphic, too, we deduce that

(1 —A/#%)/2
tr,(z) = (ég—z) .
dz

Remark 6.1: If one computes the transition functions of
the bundles L and ML seperately, one finds that for ML it
is (dgz/3z)'/? and for L(dgz/dz) ~*/*?, which also shows
that for QB = L ® ML the transition function is (dgz/dz)"/?
X (9gz/dz) ~*""? = (Jgz/dz) 1 ~ 4/,

Remark 6.2: In reality one has a degree of freedom, one
can modify (6.9) by a phase factor exp (i@) (which vanishes
when taking the absolute values). This freedom determines a
Cech 1-cocycle with values in U(1) (the phase factor de-
pends on the intersection U, NU,) and hence an element of
H'(M,U(1)), which classifies the space of the inequivalent
(pre)quantizations. However, each irreducible Hermitian
symmetric space of compact type is simply connected, hence
H'(M,U(1)) = {0}, somodulo a natural equivalence of bun-
dles L and QB our choice in (6.9) is unique.

We now want to “compute” the values of 4 for which
the transition functions (6.9) are well defined (perhaps by
using subcharts on which the function £ £ ~4/%72 js de-
fined) and for which they satisfy (at the same time) the
cocycle condition tr ,tr,; = try,.

Proposition 6.3: If w = g~ '(0)eC" exists then

(6.9)

%_z = const(g)K (z,w') = const N(z,w") =**".
)z

The proof of this proposition can be found in Ref. 12,
Theorem 2.1. It can be verified easily for the spaces of type I,
11, and I1I by using relation (6.8) to calculate dgz/dz expli-
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citly (=>dgz/dz = [det(g,1z + 822)] ~**, a formula that
is valid for all geG).

Corollary 6.4: tr;;(z) = const-N(z,

In Ref. 12 it is shown that for the manifolds of type I, I1,
and IV N(zw') is an irreducible polynomial in the un-
knowns (z,w") and for type III N(z,w') is the square of an
irreducible polynomial. This fact is the main ingredient of
the proof of the following theorem, a proof which will be
delegated to the Appendix.

Theorem 6.5: (a) The values of 4 for which the transi-
tion functions (6.9) define a bundle are given below [v(M)
is defined by (6.4) ]:

wT)(/l/fi— 1)'v(M)/2-

J(A /A — Dv(M)EZ,
(A /F— Dv(M)EZ,

for types I, II, and IV,

for type III, (6.10)

or equivalently,

name allowed A’s (k€Z) name allowed A’s (k€Z)
M}, p+q+2kﬁ Mm p—l+kﬁ
' p+q p—1
mp RELEZE, ptiky,
p+1 )4

(b) For 0 <A <fiand A allowed (i.e,, A >0 and k <0)
dim # = 0,forA = # (i.e, k =0) dim 7 = 1 andfor k> O:
0<dim 77 < .

When we compare our allowed values with the allowed
values of Berezin, we see that we can get a complete agree-
ment if we identify our “parameter” }(A /#% — 1) [which ap-
pears in the transition function (6.9) and in the description
of the inner product (6.6) ] with the parameter # ~' of Bere-
zin,'? which appears in exactly the same way in the inner
product. However, Berezin’s definition of allowed values
does not involve any condition on the bundle existence, it
involves a certain condition on the Bergman kernel on the
local chart C* (see below). Since the allowed values agree,
we may deduce that on the local chart Uy, the (generalized)
Bergman kernel K, (z,w') that is associated to the orthogo-
nal projection 7: L *(M,P) —» 5 is given by

K, (zw') =i, (M)K(zw) 1 —2/P72
[in fact it is the validity of this relation between the function

K(zw") (6.2), (6.3), and the Bergman kernel K; that is the
condition of Berezin], i.e., for keL (M, P),

(mk) (w) = c(M) ™" (wA%) ‘"”f K (wz"k(z,z2h)
c'l
XK(Z’ZT)(l/ﬁ-— l)/2€n
= (M)~ V2(mAH) =" fiy (M) f k(z,z")
c'l

y [ K(Z,ZT) (A/Fi—1)72
K(wz")
The constant #, (M) is determined by 7; (M) = ||1]| 73
where ||1]| is the norm of the global section ¢ which is repre-
sented by the constant (holomorphic) function 1 on the lo-
cal chart U,,; the branch of the function {—~¢ (! ~*/%72 jg
determined in the same way as for the tansition functions
(6.9), K, (z,w') is a polynomial in (z,w") that is constant 1

€p-
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for z=0. As in Sec. V it follows that the set
{e, (z) =K, (zw")|weC"} is a supercomplete system
[with M° of Definition (3.1) given by the (local) chart
C" = U, ] and that for any observable f: M >R,

contravar(f) = (1 + A )f

As in the noncompact case we refer to Refs. 18 and 20 for the
relation between covariant and contravariant symbols.

VIi. SUMMARY AND DISCUSSION

In Sec. II we showed that on Kihler manifolds the geo-
metric quantization scheme gives the following results: mod-
ulo aboundary term fda the operator fassociated to a classi-
cal observable f is given by the process (1) multiply by
(1 + }#iA g )f and then (2) take the holomorphic part (#°
is the subspace of holomorphic sections of QB with regard to
the space of all “square integrable” sections of QB). For
compact Kihler manifolds the boundary term fda is 0 and
the above described result is exact. It was made plausible
that for the physically interesting observables the result is
also true on irreducible Hermitian symmetric spaces of non-
compact type, from which one can deduce that it is true for
all simply connected Hermitian symmetric spaces (see Ref.
10 Chap. VIII, §6). On the other hand, the above description
of £ can NOT be true in general: for M = {|z] <1} CC,
o =}idz\dz" and f=2z+ 2" (a bounded observable) the
contribution fda is NOT zero for all A, h'e7.

In Secs. IV-VI we showed (forgetting for the moment
about the boundary term) that on the quantizable irreduci-
ble Hermitian symmetric spaces (which gave a condition in
the compact case) a supercomplete system (in the sense of
Berezin) exists and that the contravariant symbol of any
operator f associated to a classical observable f'is given by
contrav(f) = (1 + }#%iAsg )/ Moreover, the quantization
condition in the compact case coincides exactly with Bere-
zin’s definition of allowed values.

In order to relate our results to results obtained by
*.product quantization we need a few comments on the close
relationship between Berezin’s quantization method and
quantization by *-products. Both methods have as their ba-
sic assumption that quantum mechanics is a deformation of
classical mechanics; the algebra of operators (especially ob-
servables) on the quantum mechanical Hilbert space de-
pends upon a parameter # and in the limit %0 this algebra
reduces to the Poisson algebra of functions on the classical
phase space (in quantum mechanics products of operators
and commutators; in classical mechanics pointwise products
of functions and Poisson brackets). More abstractly they
study deformations (depending on a parameter) of the Pois-
son algebra. On the one hand Berezin realizes such a defor-
mation as the set of covariant symbols of operators on a Hil-
bert space, deducing the product structure on these symbols
from the product structure of the corresponding operators.
On the other hand, *-products study such deformations ab-
stractly. To compute physical relevant data (i.e., spectra of
observables) they use a beautiful theorem?! stating that to
compute the spectrum of an “operator” [i.e., an element of
the (deformed) algebra] one only needs the algebra struc-
ture, i.e., the *-product structure.
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In Ref. 12 Berezin has computed the quantization on
irreducible Hermitian symmetric spaces; for these cases the
connection between covariant symbols and contravariant
symbols and the associated *-products are calculated by
Moreno in Refs. 1618, 20. This gives us a way to compare
the geometric quantization scheme with the quantization by
*.products (deformations of the Poisson algebra), although
the comparison works only in the case of Kihler manifolds
(more precisely, for Hermitian symmetric spaces).

The results which have been discussed up till now are
obtained by (conventional) geometric quantization includ-
ing the metalinear correction. I now propose to “change”
this quantization scheme in the case of positive Kihler po-
larizations: “hypothesis”: the contravariant symbol of the
operator f associated to the classical observable fis given by

f;:ontravar = exp(}ghAdR ).f’

instead of (1 + 1fiAyg )f- At first this might seem a fancy
change, but let us discuss the merits of this hypothesis. One
of the first merits is that when we compare this quantization
scheme in C* [resulting in operators on the Bargmann rep-
resentation) with the usual geometric quantization scheme
on C" with the vertical polarization [resulting in operators
on the Schrédinger representation %’ = L 2(R") ] then the
results are the same for operators of the form
p*> +pa(q) + V(q) (ie., at most quadratic in the momen-
tum variables). If f,;,..var had been given by (1 + il )f
then the results would have been different (see Ref. 1 for
explicit calculations).

A second merit of our hypothesis can be found in the
comparison with the Weyl-Wigner quantization scheme on
C". In Ref. 6 it is shown that the Weyl symbol f, of an
operator f is related to the contravariant symbol £, pravar Of
the same operator by

f w = exp( - ‘{'ﬁAdR )ﬁ:ontravar .

With our hypothesis we find that f+ = f, i.e., the Weyl sym-
bol is the classical observable we started with. It follows from
the above observation that our hypothesis gives the same
quantization prescription as the Weyl-Wigner quantization
scheme, from which one deduces that our hypothesis gives
on C” the same quantization results as Berezin’s and as the *-
product approach (since these also coincide with the Weyl-
Wigner procedure).

Apart from the above-mentioned merits of our hypothe-
sis (i.e., giving the same results as various other quantization
schemes) there is another merit: in Ref. 9 a problem was
encountered in the (geometric) quantization of the classical
hydrogen atom including spin: the hyperfine interaction
term contains an incorrect factor  (for }-densities the incor-
rect factor is §) that cannot be absorbed by rescaling. Assum-
ing our hypothesis, this factor disappears (after reinterpret-
ing the classical intrinsic angular momentum). More
generally the situation is as follows: suppose we have two
(isolated) physical systems without interaction, described
by the symplectic (Kihler) manifolds (M;®,) and
(M,,w,). Then (M, XM,, , + w,) describes the two sys-
tems simultaneously and one can quantize it. Now suppose
we consider observables f; on M, and f, on M,, then
flm;,;m;) =f,(m,;)f2(m,) is an observable on M, XM,.
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Quantization of (M,;,w, ) yields a Hilbert space 7#°; (of holo-
morphic sections of QB,; ) and operators f; on 7, ; quantiza-
tion of M, XM, yields a Hilbert space 7 (which is in a
certain sense the tensor product 7%, ® 7#°,) and one gets an
operator f associated to f = f, f,. When we now assume that
after quantization the two systems should remain isolated (a
reasonable assumption in physics), then one expects that

[fl’f2] =0
£=1,f,
Although the relation [f,,f,] = O is satisfied, the second re-

lation f = f,f, is not satisfied. Investigating their contravar-
iant symbols we find

] (noninterference axiom).

contravar (f)
=f1f2 + ‘ltﬁ(Al + Az)flfz
=fifa + 18 f; + W6ALf,
contravar (f,f,)

= (fi+HA, [)) (o, + A 1)
= contravar(f) + 16~ '%2(A, f,) (A, f>),

80 geometric quantization does not comply with our nonin-
terference axiom [it is precisely the absence of the term
167'%#(A, f,) (A, f,) that explains the incorrect factor 3 in
the quantization of the hydrogen atom in Ref. 9]. On the
other hand, our hypothesis, which changes the quantization
results, does comply with the noninterference axiom:

exp(fi(A, + A1 fo = [exp(4fid ) fi] [exp(Sfid,) 5]
At this point we must remember that our hypothesis is valid
in the context of Kihler manifolds with their associated
Kibhler polarizations [so that ##°; consists (locally) of holo-
morphic functions on M, ]. If M, and M, are two cotangent
bundles M; = T *Q; and if we use the vertical polarizations
(=7, =functions on Q;) then the axiom of noninterfer-
ence is satisfied by the geometric quantization procedure (at
least for the directly quantizable observables, i.e., the ones
which are linear in p).

To summarize, the merits of our hypothesis are three-
fold: (1) the quantization results in C" are the same as for
Weyl-Wigner, Berezin, and *-products, (2) the quantiza-
tion results in C" are the same as for the vertical polariza-
tion, and (3) the quantization result satisfies the noninter-
ference axiom.

Considering the above-mentioned arguments in favor of
the hypothesis, I propose to change the geometric quantiza-
tion scheme in such a way that the factor (1 4 }#iA;g ) in
(2.3) isreplaced by exp(3#4 g ), i.¢., considering geometric
quantization as a first order approximation in # to “real”
quantum mechanics. Unfortunately however, I have no con-
ceptual idea how to change geometric quantization in order
to obtain this result.

Remark 7.1: The arguments in favor of our hypothesis
are arguments with physics in mind; from the point of view
of representation theory of Lie groups this hypothesis is not
so good. It should also be mentioned that the change
(1 + 1hA g ) > exp(4fid g ) does not explain the substitu-
tion 44 3 — 31 * -1 2J,( — 2i log A) made by Rawnsley and
Sternberg in Ref. 22 to obtain (by means of geometric quan-
tization) representations of SL(3,R).
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Remark 7.2: All preceding results concerning geometric
quantization were derived by using the metalinear correc-
tion. When one uses }-densities instead of }-forms, there are
some (minor) differences, some of which will be listed be-
low.

(1) H, ., (2,2") = (w#) ="k’ (2) h(z)exp( — L f /1)
[formula (2.2)].

. oF . df
D Lh= —ikXh+h|f—— g/ =_|.
(2) Ly £ S W, 4 PYL
(3) Starting at formula (2.3) the term (1 + A4y )
should be replaced everywhere by (1 + il g ),

(4) The formulas R,(h'h) =da, a=(— 1)1
Xi#iH, . d " ( fe,_,) remain valid (with the changed func-
tion H,.,1).

(5) In Sec. V the exponent — i(1+ A /#) should be
replacedby — JA /#iandinSec. VItheexponent}(4 /% — 1)
should be replaced by 44 /% (undoing of the metalinear cor-
rection).

The results with }-densities are exactly equal to results ob-
tained by using prequantization only and restricting oneself
to holomorphic sections.

APPENDIX: PROOF OF THEOREM 6.5

We start with some notations: (1) z(g,z) = dgz/dz and
(2) C(z) denotes the field of quotients of polynomials in the
variables z,,...,2".

Proof of (a): sufficiency: We suppose that A satisfies
(6.10) and we have to prove that the transition functions
(6.9) really define a holomorphic line bundle. Berezin
provedin Ref. 12 that ¥ (z,w') is (the square of) an irreduci-
ble polynomial in the unknowns (z,wh), so it follows from
Proposition 6.3, Corollary 6.4, and the condition (6.10) on 4
that for certain geG [i.e., g~ '(0) should exist] that

tr;,(z) = constoN(z,w") /2~ D v 2eC(z).

Since there exists a neighborhood of ideG for which this
condition on g is satisfied and since u(g,z) (see above) satis-
fies the relation

u(ggz) =p(8gz)u(g ),
it follows that tr,,(z)eC(z) for all geG [use that for nonzero
constants there always existsa [ (4 /# — 1) -v(M)/2] power
and use that the components of gz are in C(z)]. Hence for
each pair of charts U, and U, connected by the element geG
the function tr,,(z) exists as a holomorphic function (in
particular, as a quotient of polynomials).

The next step is to choose the functions tr;,(z) insuch a
way that they satisfy the cocycle condition, using the cover
{U, |geG} (the different choices are different branches of
the complex logarithm). For two charts U, and U, the con-
necting group element is g’g~" [see (6.1)] so tr,,, (2)
should be a choice for u(g'g—',z)"! ~*/"/2, We are going to
define tr .., in two steps. We start with

tr g (2) = p(gz) ! AP

with an arbitrary choice of the branch of the log [except for

2839 J. Math. Phys., Vol. 28, No. 12, December 1987

tr.., (2) = 1)]. Weknow that tr, ,, (2)€C(z). Then we de-
fine

e (2) = tre.q (g~ lz)/tr(e,g) (g~ 2)eC(z2).

This tr, ., (z) is for each fixed zeCa [ (1 — A /#)/2] power
of d(g'g~1)z/0z, hence it is a holomorphic solution of (6.9)
and moreover the system of transition functions tr, , (z)
defined in this way obviously satisfies the cocycle relation

tr(s.!) (2) 'tr(x’,g") ((g’g_ ! )z) = tr(g,g‘) (2),
which proves that for A ’s satisfying (6.10) there exists a line
bundle QB with transition functions defined by (6.9). N.B.
In general, one cannot expect that for any choice of
branches u(g,z)'~*/®/% the relation u(gh,z)"' -+
=u(ghz) AP 2y (hz) ' ~4/P72 is satisfied for all
g,heG simultaneously (there exist easy counterexamples);
this fact shows the necessity of our detour by tr, ., (2).

Proof of (a): necessity: We have seen that there exist A ’s
for which the line bundle QB is defined and in the same way
one can show that there exist A ’s for which the prequantum
bundle L is defined. This shows that the group of periods of
the symplectic form @ on M is discrete (see Ref. 15) and
since M is compact it must be isomorphic to Z, implying that
the set of allowed values of A is discrete (countably infinite).
Hence there exists a smallest positive A, for which L exists,
and this A, with the corresponding L, we will call the ele-
mentary prequantization. The general theory now shows
that, given one quantum bundle QB (A ) for a certain value of
A, all other QB’s (for other values of A) can be obtained by
tensoring with the elementary prequantization:
QB(4) ® Ly(4y) = QB(4 + 4,).

We know two obvious solutions A, and A,: 4, =4
[where QB is trivial: tr(z) = 1, see (6.9) ] and A, defined by
(A/fi— 1) -v(M)/2 =1 (for type I, II, and IV; | for type
III) with tr(z) = const S(z,w' ), where S(z,w') is the irre-
ducible polynomial from Berezin [S(z,w') = N(z,w') for
type I, II, and IV and S(z,w" )? = N(zw') for type III].
From this we deduce that the difference A, — A, is an integer
multiple & of 4,,.

Now choose any geG such that S(z,w') has a simple
zeroin z [w' depends on g; such a g exists, although it is not
true, in general, that for all w S(z,w" ) should have a simple
zero in z]. From A, — A, = kA, it follows that QB(4,)
=~QB(4,) ® ® “Ly= ® “L, [remember that QB(A,) is tri-
vial]. Denote by T'(z) the transition function of L, between
the two local charts U, and U, (our special g of above!) then
by the bundle equivalence there exist nonzero holomorphic
functions x, on U, and x, on U, such that T=«, 'Sk,.
Since U, = U, =C" there exist global k th roots of « so there
exists on U, NU, a k th root of S(z,w"). Because U, NU,
= {zeU, |S(z,w" ) #0} and because S(z,w') has a simple
zero in z this leads to a contradiction except if kK = 1, proving
the necessity of condition (6.10).

Proofof (b):Ifk =0 (i.e., A = A, and QB is trivial) then
Z7 consists of global holomorphic sections of the trivial bun-
dle over a compact complex manifold, hence these sections
must be constant, implying 7#°=C. Another way to derive
this result is by using the transition functions, if the global
section ¢ is represented on two local charts by 4,(z) and
h,(2) then h,(z) = h,(gz). Now both A,(z) and A,(z) are
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global holomorphic functions on C” and gz is a quotient of
polynomials with nonconstant denominator (in general) so
h,(z) and h,(z) must be constant.

Now suppose k <0 (and A > 0) then we know from the
proof of part (a) that tr,,(z) = polynomial(z)* so the rela-
tion A, (z) = tr,,(2)h,(z) combined with A,(z) globally ho-
lomorphic shows that this is possible only if 4,(z)

=0 = h,(z), hence # = {0}.

For k > 0 therelation A,(z) = tr,,(z)A,(2) poses a con-
dition on A, (z) and A,(z) which restricts these holomorphic
functions to polynomials of fixed degree, so 5 is finite di-
mensional. The same conclusion can be obtained by inspect-
ing the condition on the sections imposed by 77 [see (6.6) ],
h: C* - C holomorphic is an element of #° iff

J“h(Z)lzN(Z,zf) —(A/B+ 1) v(M)/2 d Leb2n< 0,

which also shows that 4 is restricted to polynomials of fixed
degree [N(z,z") is a polynomial]. Q.E.D.
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A class of time independent two-dimensional integrable potentials, all possessing an invariant
of the same general form, is constructed. One of these potentials is superintegrable, its
invariants realize the symmetry algebra sO(3) for negative energies, e(2) for zero energy, and
sO(2,1) for positive energies. A transformation of coupling constants reveals that in parabolic
coordinates this potential is the harmonic oscillator acted on by constant forces. This and
another potential in the class may be considered as successive extensions of the Kepler
potential. The analytic properties of these integrable systems in the complex time plane are also

discussed.

I. INTRODUCTION

The study of integrable systems has witnessed a rapid
growth in the past few years. Mostly study has focused on
infinite-dimensional systems governed by nonlinear evolu-
tion equations. Of late, the identification and study of finite-
dimensional integrable Hamiltonian systems has also
proved to be of considerable interest. This has followed the
realization that an arbitrary Hamiltonian system is likely to
be nonintegrable and perhaps chaotic, the canonical exam-
ple of such a system being the Hénon—Heiles system.’ Inter-
est in integrable Hamiltonian systems has been partly moti-
vated by the practical need of realizing them in plasma
physics and accelerators and partly by the desire to under-
stand what characterizes integrability.

We will consider only two-dimensional, time-indepen-
dent, classical Hamiltonian systems here. Such a system is
integrable if there exists an additional analytic, single-val-
ued, globally defined constant of the motion besides the en-
ergy. Darboux? may have been the first to give a systematic
method of constructing a constant (or invariant) for a Ham-
iltonian system. In this direct method one postulates the
form of the invariant, usually polynomial in the momenta.
Demanding that the Poisson bracket of the invariant and the
Hamiltonian vanish leads to a set of equations whose solu-
tion gives both the integrable potential and the complete in-
variant. This method has been used by several authors® to
construct a variety of integrable potentials. Most of the re-
sults obtained up to now have been reviewed by Hietarinta.*
All integrable potentials admitting invariants which are lin-
ear or quadratic in the momenta are known. At higher or-
ders our knowledge is much less complete. The majority of
results at higher order have been found by restricting the
form of the invariant or making a particular choice for the
form of the potential. In this paper we continue that tradi-
tion and choose our polynomial invariant to be of a certain
allowable form and construct a class of integrable potentials
which admit this type of invariant. There do exist other
methods of identifying integrable systems, in particular, the
Lax pair method,’ and Painlevé analysis.® Indeed the latter

* Present address: Department of Applied Physics, Columbia University,
New York, New York 10027.
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has proved to be a useful complement to the direct method in
integrability studies.

This paper is organized as follows. In Sec. II we intro-
duce the method due to Darboux and write the particular
choice of invariant. Assuming that the invariant is of nth
order in the momenta, we find the necessary general form of
a potential for it to admit an invariant of this type. In Sec. 11T
and I'V we carry out an explicit construction of the integrable
potentials at n = 3 and n = 4, respectively. The potential we
find in Sec. III,

V=az"'?+ 827"+ y(22)~'7?, (1.1)

is superintegrable and turns out to be closely related to the
two-dimensional Kepler potential. One of the four potentials
we construct in Sec. IV can be viewed as the next extension of
(1.1). In Sec. III we also look briefly at the quantum me-
chanics of (1.1) and obtain its energy spectrum by the use of
its dynamical symmetry group. In Sec. V we perform a Pain-
levé analysis on the equations of motion of the integrable
systems to test the nature of the singularities. Finally we
conclude in Sec. VI with some remarks.

ll. AN ANSATZ FOR THE INVARIANT

Consider the Hamiltonian to be of the standard form
H=}(p: +p}) + V(xy) (2.1)

admitting a polynomial invariant (of nth order in the mo-
menta) of the general form

I=3% % a;(xp)pip}, (2.2)

i=0j=0
i+j<n

where i + j is either even or odd, according as 7 is even or
odd.” The coefficients a;; (x,p) with total order i + j = n can
be determined to be®

& & 5 r+s r s r.
aP"—P= z z (_1) ( )Aptsn—p+sxys!

F=05=0 r
(2.3)
where the 4  are constants whose values depend on the po-

ij )
tential. So far most of the invariants known* with n> 2 are

those where a,,, _, are constants for all p. Thompson® and

more recently Leach'® and Sen'! have considered invariants

p=0,1,..,n,
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with

n .
”pn—p=(—1)"(n _p)x 2, (2.4)
the invariant being
I= (xp, —yp,)" + lower-order terms. (2.5)

Here we concentrate on finding those integrable potentials
for which
-2

%n—_p= (— l)p[(:_

+(,m 02 ) e,

i.e., the invariant is of the form

)xn—pyp—Z

(2.6)

I=(xp, —yp,)"~* (P’ +P}) + lower-order terms.
2.7)

ForI tobean invariant, its time derivative or equivalently its
Poisson bracket with H (since [ is explicitly time indepen-
dent) must vanish. This condition results in a system of
equations, the complete solution of which proceeds in two
steps. First, we find that the potential } must obey an nth-
order linear partial differential equation (PDE). The solu-
tion of this PDE determines ¥ as a sum of » arbitrary func-
tions of known arguments. Next, these arbitrary functions
are subject to certain nonlinear equations. Solving these non-
linear equations in the second stage of the analysis is consid-
erably simpler if we choose an appropriate coordinate sys-
tem. This choice of coordinate system is indicated by the
arguments of the functions appearing in the first step. For
our choice of invariant (2.7), these natural coordinates are
the complex coordinates. Complex coordinates were also
used by Kaushal ez al.'? but no new integrable systems were
found.

We now make the point transformation to complex co-
ordinates and perform the analysis from the beginning in this
system. The Hamiltonian (2.1) is now of the form

H=2p,p;, + V(z2) (2.8)
and the invariant (2.7) is
I(zzp,p:) = (2p, —2p;)" " *p.p;
n—2n—2
+ 3 3 ¢z P (2.9)
iTien_2

Here the coefficients c; (z,Z) of total order i +j=n are
p=1,.,n-1),

Con—p = (— l)n_p_l(

and

n—2 )z""‘?’"’“ (2.10)
n—p-—1
Co =0=1cg,. (2.11)

The condition that the Poisson bracket of 7 and H vanish
results in a system of equations (i, j = 0,1,...,n — 1),

2(d,¢;;_1 +3:¢15)
=0+ 1), ;0 V+ U+ ey, 35V, (2.12)

obtained by equating the different powers of p,p; to 0. One
must recall here the stipulation c; = 0if i, j<0ori+j>n.
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The solution to this set of equations at a particular » deter-
mines the integrable potentials and the complete invariants.

Consider the following set of » equations
(j=0,l.n—-1):

z(azcn_j_lj_l +aicn—j—2j)
=M—J)C_;; OV +(J+1De,_j_1;41 0V
(2.13)

obtained from (2.12) by setting i + j = n — 1. The ath-or-
der linear PDE for ¥V is obtained by eliminating the coeffi-
cients of order (n — 2) on the left-hand side from this system
of equations. Some of these PDE’s and their solutions (ob-
tained by the method of characteristics) are

(2928, —23,8%)V=0
= V(2Z) = A(z) + B(Z) + C(22), (2.14)
n=4 [23}9, —7°9,0% + 5(2928, —23,82)]V =0
=V =A4(2) + B(Z) + C(zZ) + (1/22)D(Z/z2),
(2.15)
n=5[(2£349, + 220292 — 7223232 —79,0%)
+ 12(2933; —7°9,33)
+30(2323; —23,02) 1V =0
=V=4(2) + B(Z) + C(zZ)

2 2() + o)
1oAY+ L _bp[?),
+zE \z t (2% Az

where 4,8,C,... are arbitrary functions of their arguments. It
can be shown that at nth order the solution of the linear PDE
is

n=3

(2.16)

= -, <1 z

V=A@ + B + €@ + 3 —bi(5),

(2.17)

This only completes the first stage of the analysis. At the

second stage we find that these n arbitrary functions in

(2.17) are also subject to [n/2] — 1 additional nonlinear

equations ([#/2] is the smallest integer>n/2). The solu-

tions to these nonlinear equations (which must be found at

each value of n separately) determine the exact forms of the

integrable potentials. In the following two sections we carry
out this process at n = 3,4.

ill. CUBIC INVARIANT
The invariant in complex coordinates is
I=(2p, —2p;)p.p; + C10P; + Cor P;- 3.1
The equations determining c,, and ¢, are [from (2.12)],
20.c,0=23;V,

23,6104+ 28560, =2(23,V—23;V), (3.2)
29,60, = —2zd,V

and
€109,V +c¢o V=0. (3.3)

Eliminating ¢, and ¢y, from (3.2) we get the PDE in (2.14).
We now choose to write the solution as

V=A4'(z) + B'(Z) + C(2Z). (3.4)
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The derivatives (denoted by primes) are taken for later con-
venience. The equations in (3.2) can now be solved for ¢,,
and c,,;. The general solution is

2c,0=224"'(z) — A(z) +zB’'(Z) + zC(zZ),
2co, = — [ZA'(z) + 2ZB'(Z) — B(Z) + zC(2Z) ],

(3.5)

where we have absorbed three arbitrary constants, one each
in 4,B, and C. The potential must also satisfy (3.3). Thisisa
nonlinear compatibility condition that will determine the
functional forms of 4,B, and C. Substituting from (3.5), this
equation can be written as

Az) —g(Z) + h(zZ2) =0, (3.6)
where
f(z2) = (224" —A)A", g(z) = (2ZB'—B)B",
h(z2) = [2(z4’' — A) — 2(3B' — B)]C" (3.7)
+[z4" —ZB"]C+2zB'A" —34'B".
To solve (3.6), set!?
flzy=a, g(Z)=b, h(zzZ)=0b—a, (3.8)

where a and b are constants. The first two equations in (3.8)
are used to determine 4 and B, respectively, and then the last
can be used to find C. The general solution of

f(2) =(224' — A)A" =a,
where a #0 can only be given in the parametric form
A(z) =2(t —a/t) + k, /1,

=) (b [ )] ).

where ¢ is the parameter, k, and k, are arbitrary constants. A
similar solution holds for B(Z) with b #0. The last of (3.8)
can be written in the form

d,[(z4’' —4)(B'+ O)]
—[EZB'—BY(A'+C)]=b—a. (3.10)

This equation together with the above solutions for 4(z) and
B(Z) has not proved tractable when either of @, b or both are
nonzero, nor even in the case b —a =0. The question
whether there do exist solutions to (3.8) under the above
conditions is left open. However, it can be shown that there is
no solution with 4, B, and C analytic in their arguments,
which is compatible with (3.10) and the solution for 4(z)
and B(Z) obtained above.
With @ =0 = b, A(z) and B(Z) are given by

A(z) =az'?, B(Z) =p7"7,

where a, 8 are arbitrary constants, complex in general. [We
canignore the cases 4 " (z) = 0 = B " (Z) since they lead toa
potential with spherical symmetry.] The equation for C now
reduces to

(3.11)

222C' + C=0, (3.12)
with the solution
C(zZ) = y(22) ~ V2, (3.13)

where ¥ is an arbitrary constant, complex in general. The
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integrable Hamiltonian is
H=2p.p, +az 24+ 272 4+ y(z2)""?  (3.14)

(after rescaling a,8) and is complex in general. As we will
see, this system turns out to be closely related to the Kepler
potential. Most real integrable systems remain integrable
under complex extension but complex integrable potentials
by themselves have also been considered before (see, e.g.,
Hietarinta'*). Physically we will be interested only in the
real versions but for the purpose of studying integrability we
work with the general complex potential. To complete the
determination of the invariant, the coefficients ¢, and ¢,
may be found using (3.5). The complete invariant is

= (zp, —2p;)p.p: +A[BZ ' + ¥(22) "' 1zp,
— ilaz™ "% + y(22) " ?12p,. (3.15)

Before we discuss the system (3.14) in detail, let us con-
sider the possibility of other solutions to (3.6), with
a =0 =b. If A and B both vanish then C can be arbitrary.
The potential is spherically symmetric and the Hamiltonian
admits a linear invariant, the angular momentum. In all oth-
er cases, e.g., if only one of 4, B, C vanishes, then it is
straightforward to show that the only possible solutions are
special cases of (3.14).

The Hamiltonian (3.14) reduces to the two-dimension-
al Kepler system when @ = 0 = 3. That system has the an-
gular momentum and the two components of the Runge-
Lenz vector as invariants. Checking for lower-order invar-
iants we find that the above system also admits two quadrat-
ic invariants

Il = (zpz _Epi)pz

+ 4 — az™ V%2 — 21737, (3.16)
I, = (zp. —Zp;)p:
+ 3Bz — az'? — yz' 7] . (3.17)

Thus this system has four invariants including the energy.
For an autonomous system with s degrees of freedom there
may exist only 2s — 1 independent invariants for the system
to be able to evolve in time. The invariants constructed here
are related by the algebraic equation

(L, + iy H + (&1, — B*],) + YaBy =213,

where the cubic invariant has been relabeled I;. With
a =0=p, I, and I, reduce to the two components of the
Runge-Lenz vector and I, to the product of the angular
momentum and the energy. The existence of the quadratic
invariants implies that the Hamilton—-Jacobi equation sepa-
rates in one of the orthogonal coordinate systems. The sys-
tem above separates in parabolic coordinates ¢,{,:
z= ({4 i;2)2 in which the Hamiltonian is

[— Pz, +p2)

(3.18)

N
FatBh -Gty 319
This is real valued if we take B = a* and it turns out to be
one of the four potentials found by Winternitz ef al.'® for
which the Hamilton—Jacobi equation separates in two coor-
dinate systems (here two parabolic coordinate systems mu-
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tually perpendicular to each other) and thus admits two in-
dependent quadratic invariants. Consider the physically
more interesting case of the real potential. Define the follow-
ing real-valued invariants:

Jy=i(e/2H)' ?[I, + I, + (1/2H) (a* — a*?)],
Jo=(e/2H)'*[I, —~ I, — (1/2H) (& + a*?)],
J= — QQi/H)I,

where € =sgn H. The Poisson bracket relations between
them are

{J1,J2} = - €J3’ {J29J3} = Jl! {J3,J1} = J2. (3.21)

Thus the Poisson algebra is isomorphic to the Lie algebra of
SO(3) for negative energies, to E(2) for zero energy, and to
SO(2,1) for positive energies, respectively. This of course is
also true for the two-dimensional Kepler potential. The real-
ization of a dynamical symmetry group (energy dependent)
by the invariants singles out this potential from the other
three potentials found by Winternitz et al.' These potentials
are

(3.20)

() V=a(x*+y*) +Bx 2+ By >
=arr + (1/r*)[B,sec® 6 + B, csc? 6],
(i) V=a(4x® +y*) +Bx + w2
= [T +&D][4a(St +55) + BT
—§3)+(7/4)(§‘2 £ M),

(iil) V= —+— Blsec—+B csc—Z—]
a+p +B8:65%],  (322)
§1 52 [a+B5 T2+ 8657

where (7,0) are the polar coordinates and (£,,£,) are para-
bolic coordinates. The configuration paths in each of the
four potentials are closed periodic trajectories. Further-
more, potential (iii) also reduces to the Kepler potential
when 8, = 0 = f5,. However, for these three potentials, the
invariants do not close under the Poisson bracket operation
to give a finite-dimensional algebra. Classically at least,
these potentials do not admit a symmetry group even though
their motions are completely degenerate.

Besides the harmonic oscillator, the Kepler potential,
and the four-potentials mentioned above, at least three other
potentials are known to be superintegrable (i.e., admit three
algebraically independent invariants) in two dimensions. In
an arbitrary number of dimensions N the known superinte-
grable potentials, admitting 2NV — 1 independent invariants,
are again the harmonic oscillator and the Kepler potential. It
would be interesting to check if the higher-dimensional ana-
logs of the potentials listed in (3.22) and in particular of
(3.19), are superintegrable or not.

The close connection of the system (3.19) to the Kepler
system can also be seen in the following way. It is well known
that under the time coordinate transformation

t-»s—-—~(§2+ ¢H Y

the Kepler potential is transformed into the harmonic oscil-
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lator when expressed in parabolic coordinates.' We have

d_, e

ds & ds

and the energy equation (3.19) for the real potential can be
written as

_7/_(2p§1+ p§2

=P,

"E(Q‘% +§§) + K181 + K265,
(3.23)

where «, =a + a*, «,=i(a* —a) are real constants.
Here — ¥ can be interpreted as the Hamiltonian for a two-
dimensional isotropic harmonic oscillator (with coupling
constant — E) acted on by a constant force. This noncanoni-
cal time transformation also serves as an example of a cou-
pling constant metamorphosis between two integrable sys-
tems.'”

One may try to look for a geometrical reason behind the
degeneracy of the system (3.19), given that it is so closely
related to the Kepler sytem. The Kepler potential is of
course spherically symmetric but in addition, the equations
of motion resulting from it are invariant under the transfor-
mation

ror(l +er)” Y, di-di(l +er)7?

where ¢ is an arbitrary constant vector. This invariance has
been shown to lead to the conservation of the Runge-Lenz
vector.'® No such invariance transformation (i.e., a point
transformation in space) exists here. Again, unlike the
Kepler potential, the equations of motion of (3.19) do not
admit any finite, nontrivial (i.e., besides time translation)
space-time symmetry transformation. See the Appendix for
the proof. Alternatively one might try transforming to mo-
mentum space, as was done for the hydrogen atom by Fock
who reduced the motion by a stereographic projection to free
flow on a hypersphere (for bound states) or on a hyperbo-
loid (for scattering states). The reason why this works is that
the invariants for the Kepler potential involve the space co-
ordinates only linearly or have 1/r whose Fourier transform
is simple. In our case, the nonlinear terms occurring with a,
B in (3.15)-(3.17) would appear to rule out such a simple
picture in momentum space. Thus the realization of the
space on which the motion of the system (3.19) would be a
free flow is still left open.

Let us look briefly at the quantum mechanics of this
system. The presence of the quadratic invariants implies that
the quantum version of this potential is integrable too.!° The
quantum invariants can be calculated from (3.15)-(3.17)
by use of either of the symmetrization, Born—Jordan, or
Wigner-Weyl correspondence rules® to get

Iy = (zp, —2zp:)p. — (i/2)p,

+ %(521/2 —az V% _ vz~
I, = (zp. —2p;)p;: + (i/2)p;

+ 3Bz — ' ? + 2V E VP, (3.24)
I, = (zp, — 2p;)p.p; + Y622 + y(22) ~ P)ep,

— Yaz™'? + y(22) = *zp,

+ (i/8) (az™ V2 — gz~ 1/2).

2
1/221/ ),

Tanaji Sen 2844



The relation (3.18) between the invariants is altered to
A8+ i, + W HE + 1T, — BT, + JBy

=212 — LH?). (3.25)

For the real potential the same gxpressions as in (3.20)
can be used to define the quantities J,, J,, J;. Now the com-
mutator algebras of these invariants yields the same Lie alge-
bras as in the classical case. Following Pauli’s derivation of
the hydrogen spectrum, the bound state energy spectrum of

this model can be obtained by using the Casimir operator for
SO(3),

c=J}

— (L (o 2ol Lol

4 2H H "
[using (3.25)). Equating this to the eigenvalues of C, viz,
Jj(j+ 1) where j=0, 1, 1,...we get the energy eigenvalue
equation (n =2+ 1 =1,2,3...),

n’E? +2°E? + |a|*yE + 2|al* =0, (3.27)

a result also obtained by Winternitz et al.'® by solving the
Schrodinger equation.

Analogous to the classical result, the commutator alge-
bra of the quantum invariants for the potentials in (3.22)
does not close. However, the symmetry group SU(2) [or
0(3), locally isomorphic to it] can be realized at the quan-
tum mechanical level by defining appropriate ladder opera-
tors.!®

IV. QUARTIC INVARIANT

The invariant is

I=(zp, —2p;)p.p: + C20 P> + €11 P:P5 + oy P2 + Coor
(4.1

+J3+J3

(3.26)

The system of equations (2.12) at n = 4 reduces to

f(2) =324 —22A + k,)A" +3(PA" + 224" —A)A ",
h(zZ) = [22*(z°A' — zA) — 22*(Z°B' — ZB) +k222 —

+ (24" + 324" —zzB"'-3zB"]c+i4[2z(zA'—A) —2z(ZB' — B) +k2£_k0§]1)"'
VA zZ zZ

23;¢,=223;V,
20,000+ 20;¢,, = 3223,V — 4223, V,

4.2)
29,61, +20:c0,= — 4223,V + 322 8, V,
20,0, =723,V
and
2azc00=cllan+260262I/’ (4.3)

285000 =2000, V+c¢,,3; V.

Differentiating thrice to eliminate the coefficients on the left-
hand side of (4.2) we find that the potential obeys the linear
PDE (2.15). As before, we write the general solution for ¥ as

V(zz) =A'(z) + B'(Z) + C(2Z) + (1/22)D(z/z).
(4.4)

The coefficients at order 2 may be obtained by integrating
(4.2) to get the general solution

€0 =14[3224" — 224 + 2°B' + 2°C + zD /Z + k,],
¢, = — [2(224"' — A4) +2(2zZB’ — B) +2zC + 3D + k],
Cor =1[Z2A’ + 322B' — 2ZB + Z°C + (2/2)D + k],

4.5)
where k,, k|, k, are arbitrary constants. Two other constants
have been absorbed in 4 and B. The nonlinear compatibility
condition on ¥ can be obtained by eliminating c,, from
(4.3). Itis
[202033 —2¢0,0% + (29,¢20 — 0:¢11)9,

+ (azcu ‘263“02)82] V=0. (4.6)
As was the case for the cubic invariant, this can be written in
the form

f(z2) —g(@) + h(zZ) = 4.7)
where
g(Z) = (322B' — 2ZB + k,)B™ + 3(Z*B" + 22B' — B)B ",

koz*]C" +3[2(z°A" +z4' — A) —z(z*B”" +ZB' — B)]C’

(4.8)

+ L —-—1—(322A"~52A’+5A)——1—(3EZB" B’ +B) + Y2 _ 2k°]p"+i[i(z3A"'+zA'—A)
z? z z z |z

—é(?B"’ ‘B’——B)+————]D+(z’A’”+3zA YB'—A'(ZB" + 3ZB").
V4

On the grounds of tractability, we solve (4.7) by setting each of f; g, and /& to 0 and look for power law solutions for 4 (z) and
B(Z). This also requires k, = 0 = k,. The power law solutions obtained from f(z) = 0 are

A(z) =z,2'2, 2'3,

and similarly for B(Z). Writing 4 (z) = az", B(Z)
reduces to

= fZ’, where a, 5 are arbitrary complex constants, the equation #(z,2) =

[2a(r— 1)z ' =28 —1)ZZ T C" +3[la(r— D+ DZZ—BG— D(s+ DZ1C’" + [ar(r— D) (r+ 1)z !

—Bs(s—1)(s+1DZF'C+z74*[2a(r—1)2"2 —

—BGs—1DGBs—DZ "D +z 77 [a(r—1)%27 !

— =D+ D]z " '=0.
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28— 1)zZ D" 427 —a(r—1)(3r—5)z !
—B(s—1YZ-'1D—

afrs[(r—1)(r+1)
(4.9)
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This is a linear equation for the two functions C(zZ) and
D(z/z). It will be solved by the method of separating vari-
ables. There are six distinct values for the pair (7,s): (1,1),
(LY, (1L,D), 4,1, (1,1), (,3). Withr = 1,4 ' (z) reducestoa
constant and can be dropped from the potential, i.e., we can
put @ = 0 for r = 1. Similarly for s = 1, set 3 =0.

Consider first (#,5) = (1,1). In this case (4.9) is satis-
fied identically so C and D can be completely arbitrary. The
Hamiltonian is

H=2p,.p. + C(2Z) + (1/22)D(z/z)

=L (pf + 1 z) +F(r) +L6(6), (4.10)

2 r r

where r, 8 are the polar coordinates. For this system the
Hamilton-Jacobi equation separates in polar coordinates,*'
thus there exists an invariant quadratic in the momenta. The
quartic invariant found here is just the product of that invar-
iant and the Hamiltonian.

We give as an example, the method of solution for one of
the other cases, (7,s) = (1,4). On separating variables, (4.9)
reduces to

8EC" + 18£C' +3C =A€7,
S(aﬂl/Z —ﬁ)”IZD "4 2(7a17”2 — D’
+ (an'? = B)D = — Alan'? —B),
where £ =2z, n =2/2, C = C(£), D = D(7n), and A is the

TABLE I. Integrable potentials with quartic invariants.

separation constant. These equations have the solutions
C=,u1§_”2 +/.t£ —3/4 +ﬂ§_1,
D= (q'? =8 v (' + 8) + vin'?] — 4,

where § = B /a and 4, u,, v, v, are arbitrary complex con-
stants. The potential is

V(z,z)
=az”1/2+ﬁz'"”2+,u1§_”2 +,U7§_3/4

+ £ 2= 8) 2 v A (' + 8) + vm'?].
4.11)

The A terms cancel out and we have rescaled o, 5.

For the case (1,}) it is easy to show that there exists no
solution to (4.9). In the other three cases the analysis pro-
ceeds similarly.

Thus we have four new and distinct cases of integrable
potentials with quartic invariants

(D V(z2) =B + i~ g~ 4
X [V1771/4 4 1/2,)71/2],
(ID) V(z2) =Bz + i~ Pk 7P 4+ 671
X (v +v?),
(II1) V(z,Z) -z 12 +,BE_”2 +,u1§_”2 R 1 —3/4
+ET (P =82
X [vig 4 ("2 + 8) +vp''?),

Potential

Invariant

V=A4'(2) + B'(Z) + C(&) + £ ~'D(1) I=IL+1I

I,=(zp, —2p,)°p.p;

E=2z, 1=%/z L

(I)Bz-—llz +/"l§—”2 +‘u7§ —3/4
+§—1(Vl7’l/4 + v2ﬂ1/2)

LB+ C+£7'Dy2pE — (C+ 36 7'DY¥ep,p; + 4( — B' + C + £ ~' D)2t

A+ v [z VA 4 vz 3 ”2+z‘3’22_”2(v,+v217”“)]

+(B/8)(py~ Vi — v~V 1 By}

(D) B2 4§ 710 o 22 YB'+C+ET'DYFP + (B'—C—367'D)p.p; +4(—3B' + C+ £ ~'D)Zp2

+§_1(Vl77”3 + VZ"Z/S)

- {(Vl + 1,2111/3)[#12—2/3 +/122_‘E’”3 +z_5/32”3(v1 + Vzﬂm)]

+ B2k 7P vz 4 By %)}

(III) az—l/z +ﬂz'_”2 +.U1§'_”2 +’u£—3/4
+ET (M2 5)?
X [Vlﬂl“(ﬂln + 6) + V21]l/2]

{(—A4'+B' +C+£7'D)Ppl — (C+ 36 'DYep.p, +3(4' —B' + C+ £ 7'D)Zp2
+ b pa(an' + By — L vy TV 4 K(aB VR — B2 — (M- 8) ")
X i ™ 4 222 4+ 8) + vo g + ok ~ V)]

_ (171/2 — &) —42—2[1,117—1/4(171/2 +8) + ‘V2]2

(IV) %273 4 B252/3 4y =13 4 pf =213 W —=34"+B' +C+E'D)2p2 + (4" + B — C— 3£ ~'D)ep,p, +4(4' —3B' + C

+§_l1]”3[V1(1]”3 _6)—2 + Vz(nl/:l +5)—2]

+ £ TIDYPPE + p(@Pp"? + BV + 2 V(@ — B — [ (v, + vy)

—2aB(v; — V) 1272 + (' = 8) (2B — i, 8) (2 TP — 52777

—poz"

§=F/a

V3] 4 ('R 4+ 8) 2287 + py8) (26 NP 4 827 — ppz T
_2—5/32—1/3[1,1(1’1/3 -5+ Vz(nllél +5)?
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where 6 =5 /a,
(IV) V(z3) = a2~ %3 4+ g%~/ F R

+,ug —2/3 +§ —11’1/3[1/1(171/3 _ 5)—2

+v,(n'2+68)72), (4.12)

where § = 8 /a, along with those obtained by z-Z.

To complete the determination of the invariant, the
equations in (4.3) must be integrated to find ¢, for each of
the potentials. The potentials together with their invariants
are listed in Table I. With « and £ equal to 0, the quartic
invariants reduce to products of a quadratic invariant and
the Hamiltonian.

Now some comments may be made on the nature of the
potentials. All the integrable potentials constructed here
(including the one in the previous section) are discontin-
uous along the positive real axis because of terms like z~*/%,
etc. Potentials I and I in (4.12) are complex valued for all
choices of B. Potential III is real valued under either of the
following choices: (i) @ = B and all coefficients are real; (ii)
B =a* and V? /v¥ = v,/v¥=a**/a* u,, p, are real. Po-
tential IV is real valued under either of the following choices:
(i) @ = B and all coefficients are real; (ii) 8 = a* and v,/v}

= v,/v¥ = a**/a% u,, u, are real.

Potential III can be considered as an extension of the
potential in (3.14) which itself was an extension of the
Kepler potential. Do there exist extensions of these poten-
tials with invariants at higher order? At fifth and sixth order,
with power law solutions for 4(z) and B(Z), no integrable
potentials exist. Such is likely to be the case at higher orders
as well. Thus there would appear to be no extensions to
(3.14) and (4.11) along the lines considered here. With A4
and B set to 0, the solution (2.17) of the linear PDE for the
potential reduces to

V=C@) + S —D (Z)
&, (22)%7? k

2 Z

n—4 1

=F
)+ kzo 2

It has been found (Sen'?) that this is precisely the neces-
sary general form of a potential for it to admit an invariant of
the form given in (2.5) but of order (n — 2). Thus if the
potential is not to admit a lower order invariant both 4 and B
must not vanish. The possibility of solutions other than pow-
er law for A(z) [or B(Z)] at fifth and sixth order has not
been investigated. Even at fourth order our results are in-
complete and there might well exist other solutions to (4.7)
besides those found here. The complexity of the forms of
f(2),8(Z), and A(z,Z) in (4.8) would appear to indicate that
construction of other solutions may not be straightforward.
It should also be noted that the quantum integrability of the
potentials in (4.12) is not assured but must be checked for
each case by computing the Moyal bracket of 7 and H. How-
ever, that question is not considered here.

At this stage one might well question the utility of con-
structing invariants at high orders. Certainly from a practi-
cal point of view, the behavior (in say, configuration space)
of an integrable potential with a high-order invariant might
appear to be little different from that of a nonintegrable po-

(4.13)

G, (9).
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tential. However, the existence of the invariant permits one
to make global statements about the system. For instance, if
the motion is bounded and a periodic solution is known to
exist, then there must in fact be a one-parameter (or d — 1
parameter for d-dimensional integrable systems) family of
periodic solutions. Moreover, many systems can be approxi-
mated by integrable ones and it is useful to understand the
kinds of behavior exhibited by a variety of integrable sys-
tems. If one’s interest is more in the mathematical question
of what determines integrability, then explicit examples of
integrable potentials can be used to test any proposed inte-
grability criteria. We do precisely this in the next section.

V. PAINLEVE ANALYSIS

The original conjecture that integrable systems should
possess the Painlevé property, i.e., their only movable singu-
larities in the complex time plane must be poles, was made by
Ablowitz, Ramani, and Segur?? for nonlinear partial differ-
ential equations. This has been extended to discrete dynami-
cal systems and has proved to be useful in identifying various
integrable cases.® There is, however, no general proof as of
yet that integrable systems must satisfy this property and the
relation between this analytic property and the existence of
an invariant is still unclear. In this section the integrable
potentials constructed in the previous two sections are tested
for this property,

V=az—1/2 +ﬂ2—”2+y(zi)‘”2. (51)
This is the potential in (3.14). The second-order equations
of motion are

F=F7 32 f oy V232 5= az=3? + 72—3/22—1/2.
(5.2)

Assume that the dominant behavior of z and Z as
7= (t—t,)~0is z~ar®, Z~br?. Balancing the most sin-
gular terms, one finds the two possibilities: (i) p=¢g =14
The resonancesarer= — 1,3, —§, — 4 (i) p=¢ =13 The
resonances arer =0, — 1,4, — .

Besides — 1,0 the other values of 7 should be positive in
order to get the complete four-parameter solution. Since that
does not hold in either case, the leading order behaviors ob-
tained above cannot describe the general solution. However,
we know that for this potential, the Hamilton—Jacobi equa-
tion separates in parabolic coordinates leading to two one-
dimensional problems. The trajectories can be obtained ex-
actly. This was done by Winternitz et al.'® and we quote their
result (for the real potential 8 = a*),

b=t () (T2 4+ b), =12
J QL —_—— sin —_ T i)y 1= L4
I 4E%* E !

(5.3)

where £; are the parabolic coordinates, E is the energy, 7isa
time parameter, and x; = a + a*,x, = i(a* — a). Here a;,
b, are the four arbitrary parameters. Clearly this does not
show any singular behavior.

Now consider the potentials with quartic invariants giv-
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en in (4.12), in order,
V=ﬂ2_l/2 +:u'l§—l/2 +/,t2§ —3/2

+ &7 vyt + vyt (5.4)
The equations of motion are
Z_ﬂ- 3/2 +# z—1/2— 3/2 +%#22—3/4———7/4
+ gv,z_5/45—7/4 + V22—3/2z—3/2’
*z‘=ﬂlz—3/22—l/2 + %ﬂ22_7/42—3/4 + §V12—9/4E—3/4
+ 3w,z 3%V, (5.5)

Assuming z~ar?, Z~br? as 7= (t — t,) -0, we have the
following possibilities: (1) p =g = 1. The resonances are

r= —}, — 1,1,}. This gives a three-parameter solution. (ii)
p=2= —gq.Theresonancesarer = — 1,0,1,2. This givesa
four-parameter solution. (iii) p = — 3, ¢ = 5. The reson-

ancesare7 = — 2, — 1,0,1. This gives a three-parameter so-
lution. Thus only (ii) can describe the general solution. The
expansions for z, Z read

'y Z= (/DM (56

Potential (II) in (4.12) shows similar behavior. Now con-
sider potential (III),

V(z3) =az" V2 + Bz~ 1/? g TV 4 ok —_3/4
+§ —1(1]1/2 _ 6)—2[1,1771/4(771/2 + 6)
+ V2771/2], (57)

where § = B /a. It was remarked earlier in Sec. IV that this
potential can be considered as an extension of the potential in
(3.14) and indeed the singularity analysis shows similar be-
havior. The equations of motion for this potential are

3=pz3" +,ulz_”22'—3/2 + %#22—3/45—7/4
+ (z~ V2 _ 6)‘3[31/,2_9/42’3/4 + 3v,z %!
+ 8(3v,z7 7977518 _ g g —3125 7312
— 36,2737,
Z=0az73? 4 p 273V Jp,z 7
+ (27 V2 5)—3[31,12—13/431/4 +vyz—3
— 5(31,12—11/42—1/4 + 3V2z—5/22—1/2
+ $8viz 23 . (5.8)

With z~a7?, Z~br?, none of the various possibilities for p
and g give a four-parameter solution. The most we get are the
three-parameter solutions with either (i) p=5, ¢g= — 3.
Resonances arer = — 2, — 1,0,1; (ii) p= — 3, g =5. The
same resonances as above.

We argue that the leading order behavior is not expected
to be singular because of the following reason. For p =5,
g = — 3 the most singular terms on the right-hand sides of
(5.8) arise from the term v,z >/~ 5/4in the potential (5.7).
Now z 3/43—5/4 = r‘ze‘e/z, where (7,0) are the polar co-
ordinates. With a potential of the form V= r=%f(6) the
Hamilton—Jacobi equation separates and the coordinates are
expressible in terms of periodic functions of time. A similar
argument holds for case (ii). Thus the potential (called here
the second extension of the Kepler potential) shows similar

z=ar’+ -
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nonsingular behavior as the potential in (5.1) (the first ex-
tension of the Kepler potential).

Potential (IV) in (4.12) shows similar nonsingular be-
havior as the previous one. Thus it is seen that the equations
of motion for the integrable potentials constructed in Sec. III
and IV either do not exhibit nonsingular behavior or else
have the Painlevé property.

VI. CONCLUDING REMARKS

In this work we have constructed examples of two-di-
mensional integrable Hamiltonian systems which admit an
invariant of the chosen form (2.7). The potential in (3.14)
reveals itself to be a close relative of the Kepler potential.
Under the same time transformation which turns the Kepler
potential into the harmonic oscillator in parabolic coordi-
nates, the system (3.14) is transformed into the harmonic
oscillator acted on by a constant force. The system (3.14) is
also superintegrable and its invariants provide a representa-
tion of the Lie algebra sO(3) for negative energies and
50(2,1) for positive energies. Unlike the Kepler potential
however, its equations of motion do not admit any finite
symmetries. The potentials in (4.12) admit a quartic invar-
iant of the form (2.7) and of them, potential (III) can be
considered as an extension of (3.14). Recently it was shown
by Yoshida®® that potentials of the form

V=a/r+bx" 4+ c¢y", (6.1)

where a, b, ¢, n are constants are integrable only if (i) n = 1,
b, ¢ arbitrary, (ii) n =2, b=c, and (iii) n =2, b = 4c¢ (or
¢ = 4b). Other perturbations to the Kepler potential of this
form do not lead to an integrable system. In this context one
may view (3.14) and potential IIT in (4.12) as perturbations
of the Kepler potential which do preserve integrability. One
should bear in mind that all potentials of the form

=a/r+ (1/7) f(9), (6.2)

where f'is an arbitrary function, are integrable and admit a
quadratic invariant. In other words, the Kepler system may
also remain integrable under a whole class of perturbations
unlike the cases mentioned above where integrability is pre-
served with only specific perturbations.

The analytic structure of the integrable systems con-
structed here has been studied and it was found that they
either do not show singular behavior or else their movable
singularities are indeed poles, thus verifying the Painlevé
conjecture.

Let us indicate possible extensions to this work. Using
(2.3) we can rewrite the general form (2.2) of an invariant
as

I=CouL"+(Cig 'p, +Co p)L""!
+(C5%7 P, + Cipep, + Sz‘zpﬁ)L"‘2+---
+ChoPr +Co_npi'p + +Copy
+ lower-order terms in the momenta, (6.3)

where C,’-j. are constants and L = xp, — yp,.. In this work we
took C’3; % =1 = C%;~ ? and all others O while in Sen,"’ in-
variants with CJ, = 1 and all other constants 0 have been
studied. Clearly one must try to establish similar results or
show the nonexistence of integrable potentials for other
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choices of coeflicients. In addition to polynomial invariants,
Darboux’s method can also be used* to treat invariants
which are rational or transcendental in the momenta. This
extension needs to be studied in depth.
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APPENDIX: LIE SYMMETRIES OF (3.14)

Prince and Eliezer?* have shown that the Kepler poten-
tial admits three point Lie symmetry generators. They also
claim that as a consequence the Runge-Lenz vector is con-
served but this has been disputed.?® We follow the notation
of Prince and Eliezer and show that the system (3.14) (the
first extension of the Kepler system) admits only the trivial
time translation generator.

A system of second-order differential equations,

F(r,x,x,%X) =0, (A1)

admits a point Lie symmetry if it is invariant under the infin-
itesimal point transformations

t'=t+4e£(x,t), (A2)

xl’ = xl' + 6771' (x:t)

(€ is an infinitesimal parameter) generated by the operator

U=£&(x,1)d, + 7,(x,t)d,,. (A3)
The condition of invariance is

U"F=0, (A4)
where U " is the twice extended operator

U" =£0, + 1:9,, +1i6;, + 170, (A5S)
with

(XX, X P ,t)Eg; g1 —x® %5, (A6)

where x* = (d* /dt* )x. The equations of motion for the
system (3.14) are

=P 4z VF T2 F=ar 3 4y 3E Y2
(A7)

The infinitesimal symmetry generator is
U=§(Z,E,t)a, + 7]1(22,1)3; + ﬂz(z,z,t)az, (As)
and its twice extended form is
U" =§£3, + 1.9, + 0:0; + (i — )3, + (3, — 26)3;
+ (G — 2 — 26)0, + (5, — 226 —36)3;.  (A9)
Applying this to (A7) and equating the coefficients of differ-
ent powers of z, Z to 0, we get (£ ,, =3 2£, etc.),

£2=0 £:=0 £z=0, (A10)
Mz =262 Mz=8z Mz=z=0 (All1)
Mo =0 Mz =E0 Mom =265 M= 3(52_3/2 + 7’2_”22_3/2)5,: + (az73? + 72—3/22—1/2)5,2 +&.
Nz = (52—3/2 + 72_1/25_3/2)§,;, Mo = (az—s/z + 72—3/22—1/2)52,
20 = (B2 P+ yz7VZTINE, 4 3@z 2 Z N L, (A12)
1]1,2 (&—3/2 + ‘}’Z_I/ZE_3/2) + 171’2 (az—3/2 + 72—3/22—1/2) + 77],“ + 57117,(22)—3/2

+ 3772('32_5/2 + 7,2—1/22—5/2) _ 2(32-—3/2 + 72—1/2;—,—3/2)5,’ =0,
(B 4+ y277272) 4y (@272 + 9272227 11%) 4y + Yy (23) 202

+ 3@z 4 yz737 72y — 2@z 4z R)E, = 0. (A13)

It is straightforward to check that the only solution of these
equations when a#0#8 is

& = const, 7, =0=17,, (Al14)
giving the Lie symmetry generator
U=34,. (A15)

This time translation symmetry that exists for all time-inde-
pendent potentials is associated only with the conservation
of energy. The importance of Lie symmetries arises by virtue
of Lie’s theorem that the infinitesimal point transformations
can be integrated to give a finite continuous group of trans-
formations. This is usually not the case for other kinds of
local symmetries. The lack of any finite space-time symme-
try transformations for this completely degenerate potential
shows that there is no direct connection between such sym-
metries and degeneracy.
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Second-order equation fields and the inverse problem of Lagrangian
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The transformation properties of determined, autonomous systems of second-order ordinary
differential equations, identified as vector fields on the tangent bundle of the space of
dependent variables, are derived and studied. The inverse problem of Lagrangian dynamics is
studied from this transformation viewpoint as well as the problem of alternative Lagrangians.
In particular, regular Lagrangians which are analytic as functions of the first derivatives are
considered. Finally, the inverse problem for second-order systems corresponding to the
geodesic flow of a symmetric linear connection is investigated.

I. INTRODUCTION

The inverse problem of Lagrangian dynamics asks for
necessary and sufficient conditions that a given system of
second-order ordinary differential equations are the Euler—
Lagrange equations corresponding to a regular Lagrangian
function. Allied to the inverse problem is the question of
when two Lagrangian functions, which are not trivially
equivalent (a term which will be explained in Sec. III), de-
termine the same second-order system, the so-called prob-
lem of alternative Lagrangians. There has been a certain
amount of progress made recently in answering these impor-
tant questions, which have all sorts of theoretical and practi-
cal ramifications, but a complete solution is, for the moment
at least, not in sight.

The main aim of this paper is to make a thorough study
of the transformation properties of systems of autonomous
second-order ordinary differential equations and apply the
results obtained to the inverse problem. For the sake of sim-
plicity, throughout this paper I shall only consider autono-
mous systems, though for the most part this is not an essen-
tial restriction. In Sec. II I consider the correspondence
between such systems and certain kinds of vector fields
known as second-order equation fields. This correspondence
leads in a natural way to a “transformation law’’ for second-
order systems, several simple consequences of which are pre-
sented. The material of Sec. II (and Sec. III) is not intended
to be simply an exercise in mathematical erudition: a modern
approach to a system of differential equations (even in the
context of Euclidean space) is to consider two such systems
as being equivalent, if one can be transformed into the other
using a change of coordinates belonging to some specified
pseudogroup of coordinate transformations. This pseudo-
group is chosen at the outset and is dictated by the signifi-
cance attached to the independent and dependent variables.
A set of differential equations then is more properly regard-
ed as an equivalence class of systems, any two representa-
tives of the class being related by a coordinate transforma-
tion of the given pseudogroup.

The other theme of the paper, in Secs. III-V, is a study
of a restricted class of second-order equation fields, namely,
those corresponding to second-order systems analytic in the
first derivatives. In particular, the inverse problem for such
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systems is investigated. In Sec. III the inverse problem is
introduced and some basic points concerning it are made. In
Sec. IV some simple consequences of a direct approach to the
inverse problem are derived. This approach is an alternative
to the Helmholtz equations which provide necessary and
sufficient conditions for the existence of a regular Lagrang-
ian, whose Euler—Lagrange field is the given second-order
equation field." In Sec. V I consider the inverse problem for
second-order equation fields which are the geodesic sprays
of symmetric linear connections. It is shown that the condi-
tions for the existence of a Lagrangian have a simple geomet-
ric interpretation. These conditions are used to exhibit sever-
al examples of sprays which admit alternative Lagrangians.

Sections II and III employ some geometric machinery
of the tangent bundle, a comprehensive treatment of which
can be found in Crampin,’ whereas Secs. IV and V are analy-
tical in character. As regards notation, M consistently de-
notes a “smooth,” that is class C*, manifold. The tangent
bundle submersions from 7M to M and TTM to TM will be
denoted by 7 and II, respectively, and the tangent mapping
of 7 from TTM to TM is denoted by T'r. The second-order
tangent bundle to M, that is, equivalence classes of (germs
of)) curves on M which agree to second order, is denoted by
T>M.If (x') is a system of local coordinates on M, thereis a
naturally induced system (x', ') on TM which I refer to as
an adapted coordinate system. Similarly (x,2',y',v’) denotes
a coordinate system on T7M induced from (x, ') on TM.
The notation of classical tensor calculus is used with a re-
peated index denoting summation. For a (covariant) tensor
field of valence » whose components are 4, ..., , its symmet-
ric part is denoted by 4; ..., , -

Finally, I mention two lifting constructions on the tan-
gent bundle. First, a one-form a on M defines in a natural
way a real-valued function on TM, denoted by a. If ueTM
and 7(u) = x, &(u) is defined as the result of pairing u with
a(x) (as elements of T, M and T *M, respectively). In an
adapted coordinate system (x', u') on TM if locally a is
represented by a; dx’, & is given locally by (x/, u')—a;u’.
Second, if 4 is a tensor field on M of type (1, n) which is
symmetric in its covariant arguments, it determines natural-
ly a vertical vector field on TM written 4°. If (x/, ') is an
adapted coordinate system and A is represented locally by
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A% - (8/X) @dxh dx’:- -dx™, A° is given locally by
Ay utute -u™(3 /). This vertical lift construction is
the natural generalization of the usual vertical lift construc-
tion in which a vector field on M is lifted to a vertical field on
TM which is “constant on fibers.”>*

1. FOUNDATIONAL REMARKS ON SECOND-ORDER
EQUATIONS

A second-order equation field (SOEF) T" on an m-di-
mensional manifold M is a section of TTM over TM with
respect to both the submersion maps T'r and II. In other
words, I' is a vector field on TM such that for all « in TM,

(7, 1), =u Q.1

A SOEF provides a convenient geometric description of a
regular, determined, autonomous system of second-order
ordinary differential equations. To say the system is “deter-
mined” is to say that there are as many independent equa-
tions as there are dependent variables and by “regularity” I
mean that the second-order derivatives can always be solved
for as functions of the first-order derivatives and dependent
variables. If (x’, u') is a local coordinate system on TM
adapted to the tangent bundle fibration, I" assumes the form

r=uo2 +f —é—

ax' au'

where the f'’s are functions of x’ and «'. The second-order
system corresponding to I is given by

¥ =fi(x, ), (2.3)

where the dot denotes differentiation with respect to the in-
dependent variable ¢. Setting ' = x’ is the well-known de-
vice which effectively converts (2.3) into (2.2).

The second-order system (2.3) is amenable to a some-
what different geometric interpretation which at once ex-
plains the significance of the regularity condition and en-
ables one to interpret (2.3) in terms of the second-order
tangent bundle 7"2M. In fact consider 7>M as a bundle over
TM. (One should note carefully that 7'>M naturally has the
structure of an affine rather than a vector bundle over TM;
for more about affine bundles see Crampin and Thomp-
son.”) If (x', &', v) is an adapted coordinate system on T*M,
then one may consider (2.3) as defining (locally) a codi-
mension m submanifold, 2 say, of T>M by the conditions

v'=f(x’u’). 2.4)
In fact = actually defines a section o of T>M over TM and
thus may be identified with 7M. Notice that it is precisely
the regularity condition which guarantees that = defines a
section of T>M over TM.

I shall explain next how the considerations of the pre-
vious paragraph lead naturally to the definition of a SOEF as
given above starting from the second-order system (2.3).
Note first of all that 7" 2M is naturally an embedded submani-
fold of TTM. If (X', u', ¥, v') is a coordinate system on TTM
consonant with the adapted coordinate system (x'u 'y v ")
on T2M, T*M is locally the submanifold given by the condi-
tions «’ = y'. Let the submanifold map from 7*M to TTM be
denoted by j. Notice that j( 72M) is invariant under the ac-
tion of the canonical involution 7 on 77M. It follows that the

(2.2)
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map joo defines a section of TTM over TM with respect to
both the submersion maps T and I1, in other words is a
SOEF on M.

I next introduce the notion of isomorphism SOEF’s,
which makes the collection of SOEF’s on manifolds diffeo-
morphic to a fixed manifold into a groupoid. Suppose that ",
and I'; are SOEF’s on M, and M), respectively. Then I, and
I', [or more accurately (T, M,) and (I",, M,) ] are isomor-
phic or equivalent, if there exists a diffeomorphism ¢ of M,
with M, such that at each point of TM,,

(T$).T, =T, (2.5)

Equation (2.5) enables us to define what it means for
two second-order systems to be equivalent (at least second-
order systems corresponding to SOEF’s). It is important to
appreciate that this is the appropriate categorical meaning of
equivalence of second-order systems; one could envisage
other notions of equivalence, but these will either destroy
some property which is characteristic of such systems or
preserve some uncharacteristic property.

We can ask what (2.5) means locally. To this end, let
(x',u"), (x', u) be two adapted coordinate systems on TM,
and TM,, respectively, and suppose that

9 g0

=« —+f—, 2.6
et G (26
— d = d
F = ul —_— + ' -_— 2.7
2 ax' s ai (27
If now the transformation 7 is described locally by
X=x(x"), (2.8)
u= E u’, (2.9)
ox’/

we find (2.5) gives the following transformation law of sec-
ond-order equations:
7,-=f‘,3_7c" e % ox° 3x"’.
ox°® IxOx® Ix° dx°
Equation (2.10) may be interpreted in the spirit of clas-
sical tensor analysis; it says, assuming that I'; and T, are
analytic in the fiber u, that every term transforms tensorial-
ly, except the quadratic one, which transforms according to
the transformation law for Christoffel symbols. Thus, for
n#2, the term of degree nin f°, A¢.... u’---u’" say, arises

Ji*in
from the type (l,n) tensor field A4 J"j on M and

A7 w13 /3u°) is just its vertical lift in the sense of
Sec. I. We can therefore decompose a given SOEF T, which
is analytic in %, into a sum of a spray together with various

vector fields which are vertical lifts. Thus I shall write
FT=A+A5+A{+A]+A]+ -, (2.11)

where A is the spray associated to " and 4 | is the vertical lift
field corresponding to the terms of degree  in « and which is
invariantly associated to I'. It is worth noting too that the
notion of a spray, which is by definition a SOEF in which the
f7’s are homogeneous quadratic polynomials in u/, is well
defined in virtue of (2.10); this is not obvious a priori.

I shall present next some applications of (2.5). I shall
make use of the well-known result in connection theory

(2.10)

G. Thompson 2852



which asserts that if the curvature of a torsion-free (linear)
connection vanishes, one can always introduce local coordi-
nates relative to which the Christoffel symbols of the connec-
tion are zero.%’

Proposition 2. 1: Suppose that I', and I, are two SOEF’s
analytic in the fiber variables. Suppose further, that I", has a
nonzero term of degree n (#2) in u but that I', does not.
Then I'; and T, are not equivalent.

Proposition 2.2: Suppose we are given a second-order
system of type (2.3) with corresponding SOEF I'. Then we
can find a local representation as

'=fi(%) (2.12)
iff (i) ' = A + 4!, that is, the £ s are even quadratic in u,
and (ii) the curvature of the connection corresponding to A
vanishes.

Proposition 2.3: Suppose we are given a second-order

system of type (2.3) with corresponding SOEF I'. Then we
can find a linear representation

¥=A'+B¥ + Ci¥, (2.13)
where 4 ' is a constant m vector and B} and C are constant
m X m matrices iff (i) '=A 4+ A4} + A7, that is, the f s
are quadratic in u; (ii) the curvature of the connection V
corresponding to A vanishes; and (iii) VA4, =0 and
V24, =0.

Condition (ii) says that we can remove the term qua-
dratic in ¥ and thereafter, according to (2.10), we must only
consider transformations which are affine linear in x. (Any
other transformation would reintroduce terms quadratic in
u.) Condition (iii) then guarantees that the term of degree 0
in u is affine linear in x.

Thus for autonomous systems of second-order ordinary
differential equations there is a complete characterization of
those systems that are equivalent to linear systems. More-
over, this characterization yields an effective practical test
for determining whether a given second-order system can be
linearized. This is in stark contrast to the situation for even
scalar nonautonomous second-order equations. (See Ref. 8
for some recent results on this subject.)

lil. THE INVERSE PROBLEM OF LAGRANGIAN
DYNAMICS

In this section I shall briefly review the geometrical ap-
proach to Lagrangian dynamics and describe the inverse
problem in the light of the material of Sec. I1. This is intend-
ed to put the inverse problem into some kind of perspective,
prior to the more specific analysis in Secs. IV and V.

To formulate Lagrangian theory invariantly, we shall
have to investigate the geometry of the tangent bundle TM in
greater detail. In particular we shall need the canonical
Liouville vector A and the 1-1 tensor field S, the so-called
vertical endomorphism. The vector field A arises out of the
action of the multiplication group of nonzero reals on each
fiber of TM; specifically, if F is any real-valued function on
TM and u an arbitrary point in 7M,

d
== . 31
(AF) (u) ar (F(tu)) . 3.1

0
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The tensor S is defined as follows. Let ueTM and
XeT, (TM); then S(X), is A(7, X), which makes sense be-
cause 7, X is an element of TM. In an adapted coordinate
system (x', u’) on TM, A and S assume the form #'(3 /du’)
and (3 /du’) ® dx’, respectively.

Now suppose that L: TM —R is a regular Lagrangian.
This means that in the adapted coordinates (x’, ‘),

diL )
det| 0
(au'aif >

Now since Sis a 1-1 tensor, it can be applied to the one-form
dL to produce another one-form SodL. It follows from (3.2)
that the two-form w; = d(S°dL) is a symplectic form. The
Euler-Lagrange field A determined by L is the unique vector
field which satisfies

i(A)w, = —d(AL—L). (3.3)

One may readily check that A so defined is indeed a SOEF on
M. The inverse problem of Lagrangian dynamics asks for
necessary and sufficient conditions that a given SOEF is the
Euler-Lagrange field corresponding to some regular La-
grangian function on 7M. For more on the invariant formu-
lation of Lagrangian dynamics the reader can refer to Refs.
3,9, and 10.

Now consider all pairs (M, L) consisting of a manifold
M diffeomorphic to M and a regular Lagrangian function L
on TM. The collection of all such pairs forms a category,
indeed groupoid, in the obvious way. We can now describe
the assignment of a SOEF corresponding to a regular La-
grangian as a functor .# from this groupoid to the groupoid
of SOEF’s on manifolds diffeomorphic to M. The inverse
problem is then precisely that of characterizing the image of
Z and the problem of alternative Lagrangians is essentially
that of describing the extent to which F fails to be injective.

Concerning the problem of alternative Lagrangians, it is
well known that there are several rather trivial ways in which
a given regular Lagrangian may be modified and yet still
yield the same Euler-Lagrange vector field. Specifically, let
L be such a regular Lagrangian; then the Lagrangian L,
where

L=AL+a+c,

3.2)

(3.4)

A,ceR, and « is a closed one-form on M (& denoting the
corresponding real-valued function on 7M which is linear in
u) does indeed determine the same Euler-Lagrange vector
field as L. The term & is known usually as a “gauge term”
and is the global, autonomous version of the addition of a
total time derivative of a function on M to the Lagrangian.
Two Lagrangians L and L related as in (3.4) will be called
trivially equivalent; the problem of alternative Lagrangians
is to be solved modulo this equivalence relation.

An important and basic question relating to the inverse
problem is whether the property of a SOEF being a Euler—
Lagrange field is invariant under transformations of the
form 74, for ¢ a diffeomorphism of M. This fundamental,
conceptual point is usually not addressed in the literature,
though the answer to the question just posed can hardly be
said to be obvious, given the definitions of a SOEF and the
Euler-Lagrange field. In fact, let us apply the diffeomor-
phism T to either side of (3.3), noting that since A and S are
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natural objects on 7M they are certainly preserved by T4,
that is, A-T¢ = A and S- T = S; one obtains

{(T$) 'Alor.zy = —d(AL-T) —L-TH). (3.5)

Equation (3.5) says precisely that (7$), 'A is the Euler—
Lagrange vector field corresponding to the regular Lagran-
gian L' T9.

In terms of an adapted coordinate system (x’, 4’) on
TM, the f”s in a Euler—Lagrange field [see (2.3)] are deter-
mined in terms of the Lagrangian L according to the condi-

tions
L , L, d 2L

u'dul” I aou
The reader may care to give a proof in local coordinates of
the result derived in the previous paragraph using (3.6).
[One has to check that the /s defined by (3.6) transform
according to (2.10).] Perhaps the most obvious and direct
approach to the inverse problem is to consider (3.6) as a
system of m second-order partial differential equations for
the unknown L; one has to give necessary and sufficient con-
ditions on the /s for there to exist a solution L which also
satisfies the transversality condition (3.2). Of course thisisa
highly nontrivial problem. Now an answer of sorts to the
inverse problem, as is well known, is provided by the Helm-
holtz conditions.'> However, this “solution’ is no more an
answer than that which says that a Lagrangian exists, if and
only if there is a regular solution to (3.6). Indeed, the Helm-
holtz conditions, as given by Crampin' for example, are real-
ly only a way of recasting (3.6) as a first-order system of
differential equations in terms of the intermediate variables
gy =92L /0u’ du’ (together with some purely algebraic
conditions on the g;;’s).

The one case in which (3.6) can be analyzed completely
is when m = 1 so that (3.6) reduces to a single equation. In
that case the existence of a Lagrangian L follows, at least if
one assumes that the single function fis analytic in x and «,
from the Cauchy-Kowalewski theorem. Furthermore, L
can be found such that dL %/3u?#0, at least on an open set in
TM, and so L is a regular Lagrangian. As to the problem of
alternative Lagrangians, it is easy to verify the following: if L
is a regular solution of (3.6) (with m = 1), and the energy
H, is defined by H; = u(JdL /3u) — L, then up to trivially
equivalent Lagrangians, every other Lagrangian is given by
L where Fis an arbitrary smooth function of H; and

y uJ‘ F(H, )du .

uZ

(3.6)

3.7

[Of course in (3.7) an arbitrary function of x enters because
of the integration with respect to &, but this simply results in
the addition of a gauge term to the Lagrangian. ]

The case of m = 1 is of fairly limited interest in its own
right of course; however, it is useful for checking that results
conjectured for arbitrary values of m reduce to a correct
result for m = 1. Furthermore, if one is given a Lagrangian
system with m arbitrary, one may always take the “direct
product” (in the obvious informal sense) of it with a one-
dimensional Lagrangian and the resulting Lagrangian sys-
tem will be one which admits alternative Lagrangians. Any
attempt to solve the problem of alternative Lagrangians
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then, has to incorporate some way of detecting when this
situation occurs; indeed it begs the question of whether alter-
native Lagrangians always arise in this way.

IV. LAGRANGIANS ANALYTIC IN &

The notion of equivalence of SOEF’s introduced in Sec.
II, namely, an equivalence that preserves the structure of
tangent bundles, suggests that we consider systems of sec-
ond-order equations like (2.3) in which the £ *’s are analytic
functions of u. For a diffeomorphism of two tangent bundles
which is lifted (or “prolonged”) from a diffeomorphism of
the corresponding manifolds, preserves all such notions as
(real-valued) functions being “polynomial or analytic in the
fiber.” (On the other hand, it has to be admitted that this
assumption of analyticity is a significant restriction; it would
exclude, for example, the interesting families of alternative
Lagrangians for a particle moving under a spherically sym-
metric potential given by Henneaux and Shepley'!).

In this section I investigate what the implications are of
expanding the f7’s in powers of u and using the decomposi-
tion given by (2.11). I shall begin by deriving some simple
consequences of (3.6) in the shape of the following proposi-
tion.

Proposition 4.1: Let I" be an SOEF on M. Then if there
exists a Lagrange function L on TM such that I' is the Euler—
Lagrangian vector field of L and if L is analytic in - (about
the zero section of M), I' is analytic in 4. Furthermore, if L
and the f7’s are polynomial [in « and &', respectively, where
(x', u') is an adapted coordinate system], then the f/’s are
at most quadratic polynomials. Finally, if it is assumed sim-
ply that L is quadratic in # (and regular), the f7’s are neces-
sarily at most quadratic in u'.

Proof: The proof of the first statement is quite straight-
forward. [One may show that the matrix (9 2L /du’ du /) ~?
consists of functions analytic in u, the coefficients of which
are determined in terms of the coefficients in the series ex-
pansion of L; I shall return to this point below.]

The proof of the second statement is clear from (3.6),
because if L is of degree, say n, in u, the right-hand side of
(3.6) is of degree at most n. Thus the left-hand side is of
degree no more than n, which evidently means that the f/’s
can be at most quadratic.

To prove the third assertion, differentiate (3.6) fiber-
wise three times assuming that L is quadratic in . One easily
obtains

%L a3f
ou’ du’ Au* du™ du”

=0. (4.1)

Now (4.1) implies that the f/’s are quadratic in 4’ because
the matrix 3 °L /du’ du’ is nonsingular.

It is important to appreciate that the converse of each
assertion made in Proposition 4.1 is false. Counterexamples
can be obtained by considering a free particle (when the f/’s
are identically 0) in one dimension and noting some of the
remarks made in Sec. III on one-dimensional systems. Simi-
larly it is easy to generalize to appropriate counterexamples
with an arbitrary number of dependent variables.
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To return to the proof of the first assertion in Proposi-
tion 4.1, let us suppose that L is developed as a power series
in u. Specifically, let (x', ¥’) be an adapted coordinate sys-
tem and suppose

L=A+ A4+ (1/2)A,u'% + (1/30) Ay u'n'u*

J

+ (/4 A u'u ik + -, (4.2)
where 4, 4;, A;, Ay, Ay, etc., are functions of x’ only.
Then one may show from (3.6) that the first three terms in
f7 are given explicitly by

. . A a4 ) "
[l = g”a 4H+ [(‘Zx: — ax;)(A ~')“f~%A,-k,(A ~1yic4 —‘)"']uk
X X

1 a0 | OAu, aAk,) (( 94,  0d, ) (aAa 3Ak) ) g g
+ - — A l)a]( + _ + _ Ai " + e _ it A NG A Iyam
2 [ ( ax* " ax' o o e ) G T e flem )4V

+_‘9A((AikmAInp + Ay Ay ) (A A T4 TN — Ay, (A THHA ) R -
ax° ’

(4.3)

The terms in f; of degree 3 and higher can be determined, in principle, in a similar manner, the term of degree n depending on
the coefficients corresponding to terms in L of degree up to and including » + 2.

There are some other points worth noting about (4.3). First, if in (4.2) A4 is constant and the term 4,4’ corresponds to a
closed one-form on M, that is, is a pure gauge term, the zeroth- and first-order terms in the expansion (4.3) are 0. Conversely,
suppose that one is given a SOEF and that in the expansion of the corresponding f7’s, the zeroth- and first-order terms are 0;
then if there is a regular Lagrangian L such that I is its Euler-Lagrange vector field, in the expansion (4.2), 4 must be
constant and 4, u' must be a gauge term. In other words, in looking for such a Lagrangian, one may assume without loss of
generality that its lowest-order terms are quadratic in .

The second point about (4.3) concerns the spray associated to SOEF I'" which is the Euler-Lagrange vector field of a
regular Lagrangian L. Suppose that in an adapted coordinate system (x’, u’ ) the Christoffel symbols of this spray are I}, so
that (4.3) gives

L, = —%[(A TN Aph F Argy — Arge) (A — Ay A + Ay — Ay ) Ay, ) (A 714~

6A — 1\ i —1ym, —1yan —1yam —1yij
2 A Ay + Ay ) (A DA YA ™ — A (A4 (44)
x
Thus if we interpret 4; as a Riemannian or pseudo-Riemannian metric on M (4,; must be nonsingular if L is to be regular on
the zero section of TM), we see that the spray associated to I' is the Levi connection of 4;; if either L is quadratic in « or is triv-
ially equivalent to a Lagrangian whose lowest-order terms are quadratic (and possibly in other cases, too). By performing

maniupulations similar to these in Riemannian geometry,® one can derive from (4.4)

Apy = AT + Ayl + By,

where

4.5)

Bbkl = %[ (Aa,k _Ak,a )Ablm + 2(Aa,l _Al,a )Abkm + (Aa,b _Ab,a )Aklm ] (A —l)am

+ 34, Ay Arnp + 245k Aty + AiimApnp ) (A “HPA TN — A Ay, (A T

Equation (4.5) can also be written in the form
4.7)

where the semicolon denotes the covariant derivative with
respect to the connection whose components are I¥,. Differ-
entiating (4.7) covariantly again and invoking Ricci’s iden-
tities which measure the extent to which iterated covariant
derivatives fail to commute,® one obtains the following inte-
grability conditions:

Ay Ry + A R 3y = By — By, (4.8)
where R 3, are the components of the curvature tensor de-
termined by the I'Y,’s.

It follows amongst other things from (4.8) that if the
right-hand side is O (again if L is quadratic or its lowest-
order terms are quadratic, for example), that the curvature
of the connection associated to I has a Ricci tensor which is
symmetric.

Abk;l = Byus
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(4.6)

|
V. THE INVERSE PROBLEM FOR SPRAYS

I shall consider in this section what is in effect a special
case of the inverse problem, but one which is of considerable
interest in its own right, namely, when the given SOEF is a
spray. We have already seen in Sec. II, that the f/’s being
(not necessarily homogeneous) quadratic is an invariant
condition, whereas the f’s being independent of «, for ex-
ample, is not. The special status of quadratic systems is
further reinforced in Lagrangian theory by Proposition 4.1.
The reason for considering sprays first, as opposed to more
general quadratic systems, is that sprays are the most natural
kinds of SOEF’s from the geometric standpoint. In particu-
lar, given a spray on M, one may ask if it is the geodesic flow
of the Levi-Civita connection of some Riemannian or pseu-
do-Riemannian metric on M. This is indeed a special case of
the inverse problem because one is asking for a quadratic
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Lagrangian for which A is the associated Euler-Lagrange
vector field.

Suppose then that A is a spray corresponding to the
second-order system

W= — T, x%" .1
If we look for a Lagrangian analytic in «, by a previous re-
mark we may assume that 4 = 0and 4, = Oin (4.2). Insert-
ing the remaining terms in (4.2) into (3.6) with the f/’s
given by the right-hand side of (5.1), one finds the following
conditions for n = 2,3,... :
— Ai:'”inyk =n (n —_ l)rj(i.izAis"'in)jk'
{5.2)
Thus, for a spray and indeed essentially in that case alone,
(3.6) decouples by degree. In other words, (5.2) are precise-
ly the conditions that there should exist a Lagrangian, which
is a homogeneous polynomial of degree n in ¥ (n>2), and,
for different values of n, these conditions are independent of

each other.
From (5.2) it follows by symmetrization that

(n— DA ..o,y =nn— DT, A, 0, (5.3)

which in turn, by choosing & as a distinguished index in the
symmetrization in the left-hand side of (5.3), implies that

(/(n+ DA+ 0/ (0 + DA, iy

— v i
=nlV Ai. i)

ndq,...

iy 1rin)

(5.4)
From (5.2) and (5.4) we easily obtain

n+1\_, n\_.
% P =( 2 )Fja.e'zAiswi,,ku - (2)F1<f.:'2Afg~--f,,>kj~

(5.5)
Equation (5.5) can be rewritten as
Az,»-~i,,,k = r{:,kAjz‘z-”i,,
+ FjizkAi.ji‘,‘“i,, + o+ Fji,,kAi.mi,,w,j,
(5.6)
which in turn is equivalent to
Ai.~--i,,;k =0, (5.7)

where the semicolon denotes the covariant derivative with
respect to the connection defined by the I';,’s. Conversely,
since (5.7) is equivalent to (5.5) and also implies (5.3), it is
clear that (5.7) is equivalent to (5.2). I summarize the pre-
ceding discussion in the following theorem.

Theorem 5.1: Given a spray A on M, a function L on TM
analytic in u is a regular Lagrangian for A iff L satisfies the
following conditions: L is trivially equivalent to a Lagran-
gian Z which has an expansion of the form (4.2) in which
A =0and 4, =0, 4; is nonsingular and each nonzero term
in (4.2) corresponds to a symmetric, covariant tensor field
on M parallel with respect to the parallel transport defined
by the connection associated to A.

A number of observations about Theorem 5.1 are in or-
der. First of all, given a spray A, if there is to be a regular
Lagrangian whose Euler-Lagrange field is A, (5.7) must be
satisfied for some nonsingular 4; in the case n = 2. In other
words, A must be the geodesic spray of the metric 4;. Sup-
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pose that such a metric 4, exists; then L =44 ,u'u’ is a
regular Lagrangian for A and we may enquire whether an
alternative Lagrangian exists. In fact, such a Lagrangian will
exist if either one can find another metric compatible with
the connection defined by A or else there is symmetric tensor
A, ...; of valence n parallel with respect to parallel transport
defined by that connection. Condition (5.7) is very restric-
tive; despite this, when a metric 4;; exists, all tensor powers
of 4; satisfy (5.7). Thus 4 ;4,,, satisfies (5.7) with n =4
because

(A4 1m = Ay [Akym ] + A [Aipyim ]
= ZAcsjAkz);m
=0,

since A,;,,, = 0. So for a spray A compatible with a metric
A, there are always many (nontrivial) alternative Lagrang-
ians obtained by adding to the Lagrangian L functions on
TM corresponding to symmetric tensor powers of the met-
ric.

Another somewhat different way in which solutions to
(5.7) arise is in the context of locally symmetric spaces.” A
manifold M with a metric 4;; is said to be locally symmetric
if the curvature tensor R j,, is parallel with respect to the
parallel transport of the Levi-Civita connection defined by
Ay, in other words, if

Rjkl;m = O. (5.8)
Equation (5.8) implies of course that
R?kl;m == 0, (5.9)

that is, the Ricci tensor R, = R, is parallel. Since we are
dealing with a manifold with a metric, the Ricci tensor is also
symmetric and thus satisfies (5.7) with n = 2. Of course it
may be that R,; is a constant multiple of 4; in which case
(M,A;) is said to be an Einstein manifold. Furthermore,
there is no reason to suppose in general that R;; is nondegen-
erate and so may not serve as an alternative metric compati-
ble with the connection V.

Again suppose that A is a spray on M which is given in
an adapted coordinate system (x’, u') by

pw ) P (5.10)
Then one may readily show that the necessary and sufficient
condition that a polynomial homogeneous of degree 7 in u,
B, ..., u"---u" say, is a first integral of A is

=0 (5.11)

Chplay 1) T

B,.
A symmetric, covariant tensor field B; ..., which satisfies
(5.11) is said to be a Killing tensor field of the connection V
corresponding to A.'*'* [ The notion of a contravariant Kill-
ing vector on a manifold with metric is extremely well
known. The Killing condition on the corresponding covar-
iant object is precisely (5.11) with n = 1, so that (5.11) is
the natural generalization of this condition.] Equation
(5.11) is of course a weaker condition than (5.7). In particu-
lar, when looking for Lagrangians L corresponding to A,
each term in the expansion (4.2) of degree 2 or more is a first
integral of A. This shows how restrictive (5.7) is: to the

G. Thompson 2856



knowledge of the author, there are no known examples of
manifolds with a metric that have a homogeneous first inte-
gral of degree n in u, which is notrivial when r > 2. [A Kill-
ing tensor of degree n is said to be trivial if it consists of a
(finite) sum of symmetrized products of lower-order Killing
tensors. ] For n = 2, however, a limited number of examples
are known such as the Kerr metric!? and the Ricci tensor in
locally symmetric spaces as described above.

The conditions given in Theorem 5.1 for a spray to ad-
mit a Lagrangian are easily extended to systems in which the
f7’s are quadratic in #', though the geometric interpretation
becomes somewhat more contrived. Indeed, instead of (5.1)
consider the following system:

W= — (IV+ Tu' + T,uu®), (5.12)
where I, I, and I, are functions of x’ only. Then if one
seeks a Lagrangian of the form (4.2), one finds by modifying
(5.2)—(5.7) that the following conditions are necessary and
sufficient for the existence of such a Lagrangian:

A, = —4,T) (5.13)

A, — Ay = — AT, (5.14)
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1 Ay o + M[‘j

LIRR n—1 2(” _ 1) (i, iy ik)j
— (/)T A,y (132). (5.15)
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The inverse scattering problem for the soft ellipsoid
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A soft triaxial ellipsoid, of unknown semiaxes and orientation, is excited into secondary
radiation by a plane acoustic wave of a fixed low frequency. It is proved that one measurement
of the leading low-frequency coefficient and exactly six measurements of the second low-
frequency coefficient of the real part of the forward or the backward scattering amplitude are
enough to specify completely both the semiaxes, as well as the orientation of the ellipsoid.
Therefore, only the first two low-frequency coefficients of the real part of the scattering
amplitude are needed in order to solve the inverse scattering problem for the soft ellipsoid. For
the case of spheroids, the number of measurements is restricted to one for the first and three
for the second coefficient. Finally, the sphere is specified by a single measurement of the
leading coefficient. The special cases where the orientation or the semiaxes are known are also

discussed.

I. INTRODUCTION

The problem of scattering of a plane acoustic wave of
fixed frequency by a soft body has a history of approximately
one century. Its complete mathematical analysis can be
found in Ref. 1, where also the low-frequency approximation
of the wave problem has been reduced to certain potential
problems through Neumann series expansions. Sleeman?
has applied Kleinman’s method' to the case of an ellipsoid
and he evaluated the low-frequency coefficients up to the
second order in terms of elliptic functions. In Ref. 3, a differ-
ent technique has been used to evaluate the four leading coef-
ficients of the scattering amplitude, using also Lamé prod-
ucts but in their algebraic form, which simplifies the final
results considerably. In fact, the scattering amplitude is giv-
en explicitly in Ref. 3, in terms of the three semiaxes of the
ellipsoid, the directional cosines of incidence, the directional
cosines of observation, and four well known elliptic integrals
connected through two algebraic relations. The actual ge-
ometry of the scatterer is implicit in the values of these ellip-
tic integrals, while the directions of incidence and orienta-
tion, which are at our disposal to control, specify the relative
orientation of the ellipsoid. It is in fact the simplicity of the
expression of the fourth low-frequency coefficient of the
scattering amplitude that allows for an exact solution of the
corresponding inverse problem.

In order to solve completely the inverse problem, all we
need to specify are the three semiaxes as well as the three
Euler angles that fix the position of the principal axes of the
ellipsoid. Therefore, we need to excite (“see””) the ellipsoid
from six different angles and for each one of them to measure
the forward or the backward scattering amplitude, which
conveys all the information about the scatterer that can be
“seen” from the particular direction of incidence. It turns
out that these six measurements give rise to a highly nonlin-
ear system involving four elliptic integrals. Therefore, we
need one more piece of information to effectively solve the
inverse problem. The choice of the six directions of incidence

2 This work was done while the author was visiting the Department of
Mathematics, University of Tennessee at Knoxville, Knoxville, Tennes-
see 37996.
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should be such as to make an optimum use of the symmetry
inherited in the ellipsoid. We note that our technique de-
pends crucially upon the inversion symmetry, as well as on
the particular form that the scattering theorem assumes for
scatterers having inversion symmetry.*

We remark that as long as we are in the low-frequency
realm no measurement of any frequency is necessary.’ Also,
only the expression of the zeroth- and fourth-order low-fre-
quency coefficients of the normalized scattering amplitude,?
or equivalently, the first two nonvanishing terms of its real
part are needed for the complete solution of the inverse prob-
lem.

As it is well known,’ the inverse scattering problem is
intrinsically nonlinear. In the case of the ellipsoid the nonlin-
earities enter the problem via the elliptic integrals, the sec-
ond and fourth powers of the values of the semiaxes, and the
quadratic expressions of the components of the directions of
incidence and observation. To a large extent, the worst part
of these nonlinearities has been eliminated by algebraic ma-
nipulations and the use of the seventh measurement. Never-
theless we cannot avoid dealing at least with one standard
elliptic integral for the determination of the semiaxes. The
effect of nonlinearity in finding the orientation is reflected
upon the nonlinear expressions providing the three Euler
angles.

Angell and Kleinman have reduced the inverse scatter-
ing problem for an ellipsoid to a constrained optimization
problem.® They have considered all the physically important
boundary conditions in acoustics as well as in electromagne-
tism except the scalar Dirichlet problem explored in the
present paper by a completely different method.

After giving all the necessary information from the solu-
tion of the direct problem in Sec. I, we proceed to Sec. I1I
where the solution of the inverse scattering problem is given
in its generality. The special cases of known orientation of
geometries with higher symmetry are discussed in Sec. IV.

Il. THE DIRECT PROBLEM
Let S be the ellipsoid

x2/at +x3/a +x3/a =1, N
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where 0 <a; <a, <a, < + oo are the three semiaxes and X,
%,, X, are denoting the unit vectors of the orthogonal Carte-
sian system that coincides with the principal axes of the giv-
en ellipsoid. Suppressing the harmonic time dependence

exp{ — iwt}, the direct scattering problem for (1) consists in
finding a solution # of the Helmholtz equation
Au+k*u=0, (2)
in the region ¥, exterior to S, which assumes the values
u= —e*’, (3)
on .S and the asymptotic form
a—u-zku)—-o(1) 4)
or

asr— -+ oo. The vector k determines the direction of propa-
gation of the incident wave exp{/k-r}, while its magnitude &
is the wave number. Far away from the scatterer, the scat-
tered field # has the asymptotic form

u(r) = g(£k)h(kr) + 0(1/P), (5)

where A (x) = e* /ix and g(#,k) is the normalized (dimen-
sionless) scattering amplitude which describes the response
of the scatterer in the direction f to plane wave excitation of
direction k. Due to the symmetry of the ellipsoid the scatter-
ing amplitude satisfies the following relations*:

g(k) =g(k,f) (6)
and

_ Reg(kk) =4L gBRPdad) . (D
T

Bl =1
As a consequence of (6) and (7) if the amplitude g has the
low-frequency expansion®

g(Bk) = ikA, (1K) + k24,(8k)
+ ik 34, (RK) + k*4,(F k) + O(k%)  (8)

as k-.O +, and if the leading two coefficients of the
Im g(r,k) are known, then the leading two coefficients of
Re g(r,k) can be found from’

Al 1
A, (k) = — —

47 Jip =1

= —— A, (p,$)4,(pk)
o Iﬁ|=1[ 1P 3P

+ A, (B,8) A, (B.K) + A5 (B.B) 4, (B,k) 1dA(P) .
(10)

The actual coefficients of g(f',ﬁ) for the case of the soft ellip-
soid are given by®

A,(8k) = — /I,

A,(Rk) = — 1/17,

A (R.k) =1/1° — (1/30) (&% + a2 + &2)
+ (1/3I%)(a* I, + a1, + at1,)

1 (ilol 1,0, i3o3)
3\ I, I

+ (1/6D) (53 @} + i a5 + 15 a3)

(11)
(12)
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+ (1/61) (0} a* + 0% a2 + 02 %), (13)
AFBK) = /T~ (5912 (&* + @ +a2)
+ (2/30%) (@}, + @i 1, + a3 1,)
+ (/IR dd +Edk+Badd)
+ (1/61%) (0} @i + 03 a5 + 0} a}), (14)
where k = (i},ii3), F = (0,,0,,03) ,
~+ oo dx
1_—f , (15)
\/}+af Vx+a \Jx+d
L =L1(" dx
2 (x+a2)Jx+aix+aix+a;
n=1223. (16)

The four elliptic integrals 1,1,,1,,1; are related via the formu-
las

aaa(li+1L,+1;) =1,

(17)
al,+aL+dl,=1.
In particular,
—Reg(ﬁ ﬁ)
=k +k*[T- (B3I (Ba +5d5 + 8 a3)]
+O0(k®), k-0+, (18)
where
T= —1/I*+ (5/91%*)(a +a% +d?)
— (2731 (a1, + a3 1, + a3 15) . (19)

The parameter 7' depends only on the semiaxes of the ellip-
soid and it is independent of its orientation. The reason why
we choose to work with the real, instead of the imaginary,
part of g is due to the fact that the coefficient 4, has only one
nonisotropic term connecting the directional cosines of k to
the corresponding semiaxes, while the coefficient 4; involves
two such terms connecting k to the elliptic integrals I,,,
n = 1,2,3. Then the only really “bad” partin 4, is the expres-
sion T which is evaluated by introducing one more measure-
ment.

Furthermore, expression (14) and hence also (18) pro-
vide the same value independently on whether one measures
the forward or the backward scattering amplitude.

lll. THE INVERSE PROBLEM

The question we try to answer in this section is the fol-
lowing. Suppose we have a way to measure the coefficients
A,(kk) and A4(k k) ofg(k k) how many measurements
(corresponding to different k’s) are needed in order to effec-
tively specify the ellipsoid (1) as well as its orientation?
As is shown in the sequel we need to know 4, for a fixed
k and 4, for six different directions of k.

In fact, let

my= — A, (kk) (20)
and

m, = — Ak k), j=123456, (21)

be the values obtained by the corresponding measurements.
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Let k' be an arbitrary direction,

k=%, j=123, (22)

and

k; = (1/2) (%] + %)

ki = (A2 (%5 +83), (23)

ki = (1A2) (% + %),
where {%],%;,%; } form an orthonormal base of an arbitrary
chosen Cartesian system whose origin coincides with the
centroid of the ellipsoid.

Let P be the orthogonal matrix that transforms (by ro-
tation) the arbitrarily chosen primed system x},x5 ,x} to the

unprimed system x,, X,, x, determined by the principal di-
rections of the ellipsoid, i.e.,

r="Pr. (24)

Of course, the matrix P is not known, since the orientation of
the ellipsoid is not known, but its existence and its unique-
ness within the orthogonal group is ensured by the orthogo-
nality of both the chosen unprimed system and the system of
principal axes of the ellipsoid. The knowledge of the matrix
P will provide the exact orientation of the ellipsoid. The ele-
ments P; of P are expressed via the three Euler angles ¢, 6, y
(Ref. 8) as follows:

P,,=cosgcosy—cosOsingsiny,

P,=singcosy+cosfcosgsiny, (25)
P,=sinfsiny;

P, = —cosgsiny—cosdsingpcosy,

Py, = —singsiny+ cos @ cospcosy, (26)
P,; =sinfBcosy;

Py, =sinfsing,

P,= —sinfcos g, (27)

Py;=cosf.

Therefore, the orientation of the ellipsoid is known when-
ever the three Euler angles, @, 6, y are known.

Since the form (18) for the scattering amplitude is re-
ferred to as the principal axes system it follows that (18)
holds true after the transformation P has been applied to the
directions of incidence k, i.e.,

(28)
J

k =Pk, j=123456.

Consequently,
my=1/I7 (29)
and
m, = T — (1/31%) (k) Ak, (30)
forj = 1,2,...,6, where
a2 0 0
A=|0 a 0]. 3D
0 0 a
In view of (28) and (29), Eqgs. (30) take the form
3(T—my)/my= (k) P'AP(K) , (32)

forj=1,2,...,6.

Substituting (22) and (23) into (32) we obtain the fol-
lowing nonlinear system of equations for the unknown quan-
tities @, 6, y, a,,a,a5:

P}, d} +P3 @} +P% ak =3(T—m,)/m,, (33)
P ai + P, a3 + P, a5 =3(T —my)/my, (34)
P, d} + P33, a} + P a =3(T—m,)/m,, (35)
(P11 + Pp)’al + (Py, + Py,)%d}

+ (P + Pyy)%a} = 6(T — m,)/my, (36)
(Py, + Pi3)’at + (P + Py3)a}

+ (P, + Py3)%a5 = 6(T — ms)/my, (37

(Py1 + P3)°a} + (Py, + Py3)%d}

+ (Py, + Py3)%a5 = 6(T — mg)/my, . (38)
By virtue of (33)-(35), Eqgs. (36)—(38) can be written as
Py Prai + Py Pyal + Py Pyyd

=3(m, +my, —2m,)/2m,, (39)
P,P13a} + PyyPysal + PyyPyydl

=3(m, + my—2ms)/2m,, (40)
Py P3at + Py Py3al + Py Pysa;

=3(ms + m, — 2mg)/2m,. (41)

Equations (33), (34), (35), (39), (40), and (41) can be
combined in the following matrix form:

PAP = (3T /my)I+ M, (42)

where M is the real symmetric matrix of measurements of
the A, coefficient given by

—2m, my+m,—2m, my+m;—~2mg
M= . my+m,—2m, —2m, my+my—2mg|. (43)
O Lmy+m, —2mg my,+m; —2ms —2m,

The matrix M has the real eigenvalues 4,,4,,4; and its eigenvectors form an orthonormal basis in R>.

Equation (42) is also written as
A — (3T /my)I = PMP’.

(44)

Since the left-hand side of (44) is a diagonal matrix, M is a real symmetric matrix, and P is orthogonal, it follows that the

eigenvalues of M are given by
Av=ai —3T/m,, k=123,

2860 J. Math. Phys., Vol. 28, No. 12, December 1987

(45)

George Dassios 2860



while the columns of P’ are the corresponding orthonormal eigenvectors. Therefore, the squares of the three semiaxes are

given by
a:=A, +3T/my, k=1273.

(46)

The value of the expression 7" can be calculated from (29), which in view of (15) is written as

2

(47)

—+ o dx
Jf; VXA, ¥ 3T /mgx + A, + 3T /mox + A, + 3T /mg  mg

The transformation
x= (A, —A3)/t* = (A, + 3T /my) (48)
brings the elliptic integral in (47) to its canonical form

F( ¢’o,ao)

_J<in4po dt
o J1—12J1 —+t%sin’q,
_ A4

mg

where F(g,,a,) denotes the incomplete elliptic integral of
the first kind,® with amplitude

(49)

@o=sin"' (A, —43)/ (A, + 3T /m,) (50)
and modular angle

ag=sin"'V(4, —4,)/ (4, —4,) . (51)
From (50) we obtain the value of T as

T = [my(A, — A3)/3]cot? gy — mol;/3 . (52)

Putting everything together the steps we need to follow in
order to evaluate the semiaxes and the orientation of the
ellipsoid are the folloyving: (a) we measure, in the forward
direction, 4, for any k and A4, for the six directions given by
(22) and (23); (b) we write down the matrix of measure-
ments M as it is given by (43); (c) we evaluate the eigenval-
ues 4,,4,,4, (this involves the solution of a cubic equation)
and the eigenvectors (P;,P2,P3), (P,,Py,P,3), and
(P;31,P52,P53) of M; and (d) using tables, or a numerical
procedure, we evaluate 7 from (49)-(52). Then, the
semiaxes are given by

a = (A, —Ay)cot? @+ (4, —A43), (53)

a: = (A, —A)cot> @y + (A, — 43), (54)

a3 = (A4; — As)cot’ @, (55)
while the orientation is given by the Euler angles

@ =sin"! (Py,/y/1—P%), (56)

t9=sin“1\/1_—_P_§3, (57)

y=sin"! (Py/y/1—P%), (58)

which are derived from (25)-(27).

IV. DEGENERATE CASES

The case of a spheroid corresponds to @, = a;, while the
rotational symmetry reduces the number of independent pa-
rameters for the determination of the orientation to 2. There-
fore, we only need to evaluate the two semiaxes a,, @, and the
two Euler angles @, ¢ that fix the axis of the spheroid. As-
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suming y = O, the orthogonal transformation that brings the
arbitrarily chosen primed system to the system of principal
axes of the spheroid, takes the form

cos @ sin @ 0
Po=| —cos@sing cosfcosg sin 8 (59)
sin @ sin @ —sinf@cosg cosd

Then, the m,,m,,m; measurements provide us with the sys-
tem

a} cos’ @ +a?sin® @ =3(T—m,)/m,, (60)

al sin®@ + a3 cos’ @ = 3(T —m,)/my, (61)

@ =3(T—m;)/m,, (62)
which has the solution

al =3(T—m,—my+my)/m,, (63)

a} =3(T—my)/m,, (64)

sin® @ = (my — m3)/(my + my — 2m;) . (65)

Therefore, the three measurements along the axes are
enough to determine both semiaxes as well as the first Euler
angle @. Using (59) into Egs. (39)—(41) we confirm that the
measurements ,,ms,mg are not independent any more and
they can be expressed in terms of m,, m,, and m,.

Note that any rotation around the axis of the spheroid,
which is fixed by the angles ¢,8, leaves the spheroid invar-
iant. Therefore, the measurements m,,m,,m, will be invar-
iant under any rotation by the third Euler angle y. In particu-
lar, if y = #/2, then the elements of the first column of P,
are given by

P, = —cosfsing,

P = —cCOs@, (66)

P, =sinfsing,
and since the value of m, is still the same, Eq. (33) yields

a? cos? @sin’ @ + a3 (cos’ @ + sin” @ sin® @)

=3(T—m1)/mo, (67)
or, in view of (63) and (64),
cos’ @ = (m; — my)/(my —m,) . (68)

The value of T'is obtained from (29) where the elliptic inte-
gral (15) can be evaluated in this case and its value is given
by?

(1/yJa? —a)cosh~ ' (a,/a,), a;>a,,
I= (69)
(1/yJa3 —a?)cos™! (a,/a,), a,<a,.
Therefore,
T=[(5+1)m3_m1—m2]/(5—1), (70)
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where
_ {cos RA302ms —m, —my)/myl, a,>a,,

cos? [V3(m, + m, —2m;)/mo] , @ <a,.
(711)

Consequently, rotational symmetry reduces the number of
necessary measurements by 3.

The case of radial symmetry reduces the number of mea-
surements by another 3. In fact, for a sphere the only quanti-
ty we need to evaluate is its radius ¢ and this comes out from
the m, measurement, since I = @~ and @ = ymy,,.

Of course, the reduction of the total number of measure-
ments, from seven for the ellipsoid, to four for the spheroids,
and to one for the sphere assumes a priori information about
the actual shape of the scatterer. If there is no such informa-
tion at our disposal then we have to perform all seven mea-
surements and then decide whether the scatterer is an ellip-
soid, a spheroid, or a sphere by looking at the number of
equal eigenvalues of the matrix of measurements M.

Finally, we discuss the case where the orientation or the
semiaxes are known. In particular, if the orientation is
known, then by choosing the coordinate system along the
principal axes the three Egs. (33)-(35) take the form

@& =3(T—m)/my, k=123 (72)

In this case every measurement determines a semiaxis and of
course T is evaluated as before via (29). Hence, as it is ex-
pected, if the orientation is known the number of measure-
ments is reduced by three (the three Euler angles).
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On the other hand, if the three semiaxes are known then
my is readily evaluated from (15) and (29). Also T'is known
from its expression (19), via (16). Hence, the eigenvalues of
M are known, which in turn implies that the elements of the
matrix M are connected through the known values of the
three invariants of M, i.e., the trace 4, + A, 4+ 4,, the deter-
minant A,A,4; and the second invariant 4,4, + 4,4,

+ AsA,. Consequently, only three out of the six measure-
ments m,, k= 1,2,...,6, convey independent information
about the orientation of the scatterer.
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Integrability of restricted multiple three-wave interactions
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Using a Hamiltonian framework with complex canonical variables allows for the
determination of irreducible forms, which serve as building blocks for polynomial invariants.
All the independent invariants in involution are thus obtained for the restricted multiple three-
wave interactions, where all triads are coupled through a common pump (or daughter) wave,
in the case of equal coupling strengths in all triads. The mixed, common pump/daughter

wave case is not integrable.

I. INTRODUCTION

Nonlinear interactions between coherent waves or cou-
pled oscillators can take place in many different physical
systems, such as plasma physics, nonlinear optics, ocean
wave dynamics, and many more. In the last decade, atten-
tion has been focused on the integrability or nonintegrability
of the Hamiltonian equations describing the interactions
between several wave triads, where each triad of coupled
waves interacts with the other triads via one or possibly two
common waves.'™’

As shown already elsewhere,® the sets of coupled-ampli-
tude equations usually originate in complex notation and
they can be studied with great advantage by using a Hamilto-
nian formalism, in which the complex conjugates of the wave
amplitudes are also their canonically conjugated variables.
The Hamiltonian remains a real quantity, in contrast to the
recent study of integrable multiwave systems by Wojcie-
chowski ef al.,” who also use complex canonical variables.

Not only is the algebra greatly simplified, but one can
use with great advantage the concept of irreducible forms to
find in a rather systematic way the real invariants in involu-
tion needed to prove complete integrability, and this without
having to resort to Lax operators, as was done by Menyuk et
al.>® or Wojciechowski et al.” These irreducible forms are
the simplest combinations possible of wave quantities which
remain constant on the fast oscillation time scale, and hence
they can serve as building blocks in the construction of poly-
nomial invariants on the slow modulation time scale.’

Il. BASIC EQUATIONS FOR MANY COUPLED TRIADS
WITH A COMMON PUMP WAVE

The nonlinear interaction between 2N 4 1 waves is ob-
tained by using a multiple time scale analysis'® that separates
the fast oscillations of each wave or oscillator from the slow
modulation of its amplitude due to the nonlinear coupling
between the different waves.

For simplicity, we will start from selection rules for the
wave or oscillator frequencies, where the wave common to
all triads is a so-called pump wave,

W=, +Q, +98, (m=1,.,N), (nH

with analogous relations for the wave vectors, if need be.
Other cases of selection rules will be discussed further on.
In (1), §,, is a small frequency mismatch or detuning.
The complex amplitudes of the waves with frequencies w,,
w,,, and £}, (m=1,..N) are denoted by ¢, a,,, and &,,
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(m = 1,...,N), and their slow-time variations are given by
a, =iA,cb,, &,= —il,cb,,
b, =iA,ca, +i8,b,, b, = —il, ca, —ib b
N N

¢=iY Aplpbn, t=—i3

m=1 m=1

A,,a,b,,. 2)

A different scaling on the wave amplitudes can put the fre-
quency detuning into these equations in various ways, but
(2) is about the simplest possible form. The dot refers to a
derivative on the slow modulation time scale, and the bar to
complex conjugation.

The set (2) is derivable from the Hamiltonian

N -_— —
H= z Anla,b,c+a,b,c)+8,5,0b,), (3

m=1

provided Hamilton’s equations are written as®

; =i__‘9H ; =i__aH é:iéﬁ

" &, " b, g’ 4)

- oH = oH . .OH

m= —l——, m = — I, €= —1—
da,, ab,, de

The analysis of Menyuk et al.>® showed that (2) is ge-
nerically nonintegrable for arbitrary initial conditions and
arbitrary frequency mismatches, except when all coupling
constants A,, are equal, in which case one can rescale all
amplitudes soasto get4,, = 1.

Menyuk et al.,” using the Painlevé criteria, also found a
second case in which (2) would be integrable for arbitrary
initial conditions, namely when

/{1=”'=/1M=2/1M+1 = =24y,
Si= =8y =28y, = =26y.

However, in this case the direct proof of integrability via a
complete set of independent invariants in involution has so
far eluded all efforts.

Finally, with perfect frequency tuning, one can select
special initial conditions, making the value of H zero, and
then the system described by (2) is integrable for arbitary
A (Ref. 3).

Here we will look at the restricted multiple three-wave
interactions (2) with all 4,, = 1. The coupling is also re-
stricted in the sense that the different triads share only a
common wave, the same common wave in each triad.

(5)
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1Il. IRREDUCIBLE FORMS AND INDEPENDENT
INVARIANTS IN INVOLUTION

In the Introduction, the irreducible forms have been de-
scribed as the simplest real polynomial combinations of
a,, expi(k,,x — &,,tna ), b, expi(K,x —Q,.t.),
c exp i(kyX — wole, ), and their complex conjugates re-
maining invariant on the fast time scale. For a system such as
(2), governed by selection rules (1), the irreducible forms
are

a,a b, b ¢,

m*m? m~m?

a,b,c+a,b,c,

m

(6)

a,b,ab, +a,b,a,b

m=p~p m=>=p=p-*
All other real polynomial forms remaining constant with
respect to the fast time scale (or the space scale, for that
matter) are necessarily combinations of those mentioned in
(6).

Irreducible forms as in (6) are usually not constant on
the slow time scale, but suitable combinations can be invar-
iant. Such invariants can be found by taking a closer look at
the slow time derivatives of the irreducible forms and seeing
how these can cancel.

The irreducible forms of the first line in (6) yield pre-
cisely N 4 1 independent Manley~Rowe relations or invar-
iants, say one for each triad,

4,8, =b,b, +C,, N

besides a global one,

N —
€+ Y b,b,=E. (8)
m=1
Through the correspondence between invariants or first in-
tegrals and symmetries of Hamiltonian systems,'' these
Manley-Rowe relations generate the following (N + 1)-
parameter group of transformations:

a,, =4a,, exp ie,,,
b,, =b,, exp(ie — i€, ), 9)
¢c=7Cexple,

which leave the set of equations (2) invariant. Since the
N + 1Manley-Rowe relations are already in involution, one
could attempt to extend them to a complete set of 2N + 1
first integrals in involution. If this can be done, the addi-
tional first integrals will automatically have to be invariant
under the (N + 1)-parameter transformation group (9).
Real polynomials invariant under this group are precisely
the irreducible forms given in (6) or combinations thereof.
So it is entirely natural to look upon the irreducible forms as
building blocks for additional polynomial invariants in invo-
lution.

Returning now to (6), one sees that the irreducible
forms of the first line combine to the Hamiltonian (3).

Thus one starts for the other invariants from the irredu-
cibleformsa,,b,,a, 1_7,, +a,b, a,b,. Tosee how we proceed,
let us call

H, =a,b,c+a,b,c+38,5b,b,, (10)
so that
N
H= z H,, (11)

m=1

2864 J. Math. Phys., Vol. 28, No. 12, December 1987

with

H, =i ﬁv" (a,b,d,,b,, —a,b,a,b,). (12)
s
Similarly, setting
U,, =|lana, —b,b,|?
=a,,d,,a,d, + b,,0,,b,b, —a,,b,,3,b,
— a,b,3,,b,,, (13)

which contain the last set of irreducible forms, one sees that
U,, =i, —8,)(a,b,d,b, —3,b,a,b,). (14)

m=p=p
If all §,, are different from each other, one gets immediately
a set of N additional invariants.

N
I,=H,+ Y U, (5,—-6,)"". (15)
p=1

p#m
These correspond essentially to the invariants found ear-
lier%7 by use of the Painlevé analysis and the Lax operator
framework. However, as

N N
H= 21,,,: zH,,,, (16)
m=1 m=1
the Hamiltonian is functionally dependent upon the 7,,. The
system (2) is thus completely integrable, as we have 2N + 1
invariants (C,,,E,l, ) in involution, meaning that their
Poisson brackets vanish. This last point can easily be
checked.
If all §,, are equal, it is clea}r from (14) that the U,
themselves are | N(N — 1) additional independent invar-
iants, besides the Manley-Rowe relations. Notice that

Upm = C2,. (an

However, as the U, are not all in involution, it becomes
necessary to group them in a proper way. This can be done in
various equivalent ways, one of them being

N

K,= S U (18)

m . mp*
p=m+

There are N — 1 of these combinations, and now the 2N + 1

independent invariants in involution are (C,,,E,H,K,,).

For the intermediate cases, where some but not all fre-
quency mismatches are equal, we proceed as follows.

Suppose first, to fix the ideas, that §, and §, are equal,

but all the others mutually different. One cannot then use 7,

or I, as given in (15), but can take instead U,, and

N
Io=H +H,+ Y (U, +U,,)(8, —6,)""
P=3

= lim (J, + L,),
L]

8,8,

(19)

and similarly for every pair of equal detunings.
Were three frequency mismatches to be equal, say
&, = §, = 8, then one replaces I,, I,, and I, by

I,s=H, +H,+ H,
N
+ z (U1p+U2p+U3p)(5p —5])—l, (20)
p=4
Ki=U,+U; K; = Us;.
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All possible choices of equal and unequal detunings can be
dealt with in an analogous way. The new invariants in (19)
or (20) are independent and in involution, with each other
and with the others, with H as a dependent invariant.

IV. OTHER CASES AND FINAL REMARKS

In the above discussion we treated multiple three-wave
couplings, where the one common wave was a pump wave in
each triad.

The case of a common daughter wave in each triad is
governed by the selection rules

Q, =+ o, +6,, (21)

but runs entirely on analogous lines and will not be given
here explicitly. Such systems have been proposed as models
for internal ocean waves or plasma turbulence and are de-
tailed elsewhere'-®’ via different methods.

Rather surprisingly, the mixed case where the common
wave is a pump wave in some triads [ with selection rules of
type (1)] and a daughter wave in the others [with rules of
type (21)] is qualitatively quite different, but seems to have
been overlooked in previous studies.®” For N = 2 it seems
already nonintegrable, even when A, and A, are equal, and
the addition of more triads will not improve matters.’

It is hoped that the above given treatment of restricted
multiple three-wave couplings amply demonstrate the pow-
er of the combined method of a complex Hamiltonian for-
malism and irreducible forms. Although it was not detailed
further for lack of space, the use of irreducible forms also
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directly points out that all A,,, have to be equal if integrability
is to exist.

The fact that the other case, where the couplings and the
detunings obey (5) and which was also surmised by Menyuk
et al’ tobe integrable, so far seems intractable could perhaps
be an indication that its missing invariant (or invariants)
cannot be a simple polynomial.
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Two different approaches to a characterization of the degree of (in)compatibility of quantum
observables are investigated. First, recent examples of the (partial) commutativity of spectral
measures of incompatible observables are proved to be generic. The analysis is extended to the
case of compatible or incompatible unsharp, or stochastic observables, leading to a general
criterion for commutativity of position and momentum effects. Further, a recently proposed
information theoretic quantification of the (in)compatibility of noncommuting observables is
generalized, and the relation between “maximal information,” “minimal uncertainty,” partial
commutativity, and strict correlation is further clarified. Both approaches are illustrated in a

number of examples.

1. INTRODUCTION

This work contributes to a more refined understanding
of the operational content of noncommutativity of quantum
observables. It is well known that noncommutativity is e-
quivalent to incompatibility in the case of sharp observables
represented by projection-valued (PV) measures.’ On the
other hand, the so-called unsharp, or stochastic observables
[represented by effect-valued, also called positive-operator-
valued (POV) measures] may be compatible, or coexistent
(that is, admit joint observables) without being commuta-
tive.” Recent investigations have shown that the degree of
noncommutativity can be quantified; for example, the in-
compatible sharp position and momentum observables pos-
sess pairs of spectral projections which are either totally non-
commutative, or partially commutative, or even
commutative.> The underlying characterization of the de-
gree of (non)commutativity can be extended to the case of
stochastic observables. This is the subject of Sec. II where the
most general criterion for the commutativity of position and
momentum effects is given. We show that the introduction
of unsharpness does not necessarily change the degree of
noncommutativity. Thus all POV measures representing
(unsharp) position and momentum have different choices of
arguments (Borel sets) for which they partially or totally
commute, for other choices do not commute, and still are
coexistent in the sense of having joint observables. We con-
clude that commutativity is not an ideal characterization of
compatibility (simultaneous observability) of observables.
We turn to an alternative quantitative measure concerning
simultaneous measurability, namely a quantification of the
indeterminacy of the simultaneous measurement of any ob-
servables.

Noncommuting observables cannot be simultaneously
determined with arbitrary accuracy; there must in general be
a certain amount of indeterminacy, no matter what measure
of the spread is used. This fact raises the question as to how
much information can simultaneously be available about
those observables. In Ref. 4 several functionals
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Flo] =f{E )4 ,{F),) expressible as functions of the ex-
pectation values of effects E, F in state ¢ were studied as
potential measures of (maximal) information. Here (Sec.
III) the maximization of a general class of functionals will be
investigated in some detail, leading to a clarification of the
relation between ‘“maximal information” and “minimal un-
certainty.” In particular, maximal information in whatever
sense requires the vanishing of the expectation of the com-
mutator and equality in the uncertainty relation, that is,
strict correlation for that maximal information state. Thus
commutativity in the expectation value arises as a conse-
quence of a general information analysis.
In Sec. IV the main conclusions will be summarized.

Il. DEGREE OF NONCOMMUTATIVITY

For pairs of Hilbert space projections P, Q the degree of
noncommutativity can be described in terms of the “com-
mutativity projection”

com(P,Q) = (PAQ)V (PAQY)

V(PAQ)V (PAQY) (H

(PAQ, PV Q denoting the projectors onto the intersection,
union of the ranges of P and Q, respectively, P =1 — P,
etc.). The operator com(P, Q) is the projector onto the sub-
space of vectors on which Pand @ do commute. This formu-
lation can immediately be extended to the class of effects E,
F (O<E, F«1, thatis, E and F have spectra within the inter-
val [0, 1]): com(E, F) projects onto the subspace of states
on which E and F are commutative, that is,

com(E,F)H = {¢ecH |(EF — FE)¢ = [E,F 1¢ = 0}.
(1"
Then one may call E, F commutative if com(E,Fy = 1, par-
tially (non)commutative if 0% com(E,F) #1, and (totally)
noncommutative if com(E,F) = 0. In Ref. 3 examples of
pairs of position and momentum spectral projections
E2(X), E* (Y) were given for each category. Here Q and P
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may be introduced as any (irreducible) representation of the
Weyl commutation relation; that is, Q, P may be any Fourier
couple. For technical reasons, such as the use of Fourier
transformations, one employs the Schridinger representa-
tion. Then the results of Ref. 3 can be extended to unsharp
position and momentum observables, defined as POV mea-
sures through the following:

a2(X) = f dv(q)E2(X + q)
R

- f dE2(q) (vayy ) (@) = (veyx (D),
"
2)
at (V) = fdv'(p)E”(Y+p)
R

= de”(p) (V'ryy)(p) = (Vayy ) (P),
R

where v, v’ are normalized, positive confidence (Borel) mea-
sures, X,YeB(R). Thus

CX,V)=[a2(X),al (V)] = deV(q)dv’(p)

X[EQX+¢q),E*(Y+p)]. (3)

Now one may readily translate some of the results obtained
in Ref. 3 for the spectral projections.

It has been shown in Ref. 3 that E2 (X), E¥ (¥) may be
(i) totally noncommutative, e.g., for X, Y being half-lines;
(ii) partially commutative, e.g., for X, Y being bounded
Borel sets; (iii) commutative for (X,Y) being a-periodic,
that is, (X,Y) = (X + a, Y + 27/a) for some positive con-
stant «.

From the above expression for C(X,Y) it is seen that
commutativity holds for arbitrary measures v, v' if (X,Y) is
a-periodic: in that case also (X + ¢,Y + p) is a-periodic for
arbitrary g, p. Now let us assume v, v’ to have bounded sup-

ports [ —a,a]l and [ —b,b], respectively. Let X
= [ —xpXol, Y=[—poyo] and define X* =[ —x,
—axo+al, Y’ =[—~y,—by,+b]. Then X +q¢CX°,

Y + pC Y* for q € supp v, p € supp v/, s0
E=E%R\X°) NE"(R\Y")

<E9(R\X +¢) AE*(R\Y +p),

for all g € supp v, p € supp +'; and all eigenvectors of E will
be eigenvectors of all E9(X +gq), E*(Y +p). Thus
C(X,Y)$ =0 on the subspace EF, that is, a2(X) and
a’ (Y) are partially commutative. (We will argue below that
these effects are not commutative.) Next, if X, Y are half-
lines, supp v and supp ' bounded, then a2(X), af (¥) are
totally noncommutative because £2 (X) and E” (Y) are: the
supports of a2(X) and a?, (Y) are half-lines again so that the
intersection of their ranges is {0}; this holds for all pairs
(@2(X"),af (Y7)) with X e {X,R\X}, Y/ e{Y,R\Y} so
that there is no common range at all.

The last two examples rest on the assumption of com-
pact supports for v,+/; the introduction of more general kinds
of unsharpness (confidence measures) seems to decrease the
extent of partial commutativity. On the other hand, it is the
introduction of unsharpness that opens the possibility of
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compatible position and momentum observables,>* and it is
necessary to avoid compact support of at least one of the
measures v,v' for achieving compatibility. Take absolutely
continuous measures dv(q) =f(g)dq, dv'(p) =g(p)dp,
where f(q) = [$o(9) >, 8(2) = [%h(P)[*, for Yol *(R).
Then a2, a¥, are marginals of the phase space observable

242 = [ [ dadpliy )ty ), ZeBRD,
Y = expli( — gP + pQ) 19, (4)

and therefore are coexistent although they do not commute
in general. The opposite will also occur: for compactly sup-
ported measures and bounded sets X, Y the effects
a2(X), af. (Y) possess no joint observable, but these effects
do partially commute as was shown above. This confirms the
conclusion of Ref. 2 that commutativity is not essential to
coexistence (compatibility) in case of stochastic observ-
ables.

We now generalize the a-periodicity condition slightly
to get a necessary and sufficient condition for commutati-
vity. For this we consider the following,

Let v, v' be positive normalized Borel measures and de-
fine

Vy = V¥Yyx, Vy=V%yy, forX,YeB(R);

that is,

vy (q) = fdv(y)xx (g —y) ae,etc.

Then vy,vy € L® (R,dq). If we also let & (F ~!') denote
(inverse) Fourier transform in L 2(R,dq) and working in the
Schrodinger representation for Q, P, we then have, for un-
sharp observables,

CX,N¢=[a%(X),a}(Y)]¢
=vxF [vyF (4)]
—F e F (vg) ], (3

forall¢ € L*(R,dg). Since fe L=, ge L?implies fge L?,
this defines C(X,Y) as a mapping on L % A complete charac-
terization of C(X,Y) = 0 is given by the following theorem
the proof of which can be found in the Appendix.

Theorem 1: Let f,g € L~ (R,dg). Then

fFgF ()] =F '[gF (P)] (6)

holds for all ¢ € L *(R,dq) if and only if fand g satisfy one of
the following: (a) at least one of for g is constant a.e.; or (b) /'
and g are both periodic with minimal periods 8, a satisfying

27/apf € Z\{0} (“generalized a-periodicity™).

We remark that case (a) is of little interest here since we
identify f = vy, g = v}. If we have either constant, this leads
to one of a2(X), a®, (¥) being a multiple of the identity. The
case (b) with v, v taken as point measures (delta measures)
generalizes the known results for sharp observables.? For the
general case, consider

vy(q) =vy(g+ ) ae.gq
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iff

[avonxta—y = [#xia+8-1aeq
iff

v(i—-X+q9)=v(—X+g+B)ae.gq
iff

v((—X/(~X+B)+q)=v(—-X+B)/X+g)ae.q,

from which we see that periodicity of X leads to periodicity
of vy . We therefore obtain a second derivation of commuta-
tivity of the unsharp observables from the (generalized) a-
periodicity of (X,Y). We also note that there are no solutions
vy #0 for X essentially bounded or essentially semi-infinite
since this leads to a contradiction to v being a normalized
positive measure.
In view of the one-to-one correspondence between L=

functions f,g and bounded operator functions of position and
momentum,

AD) =Jf(q)dEQ(q), g(P) =fg(p)dEP(p), (7
R R

Eq. (6) can be rewritten as

[AQ)g(P)]=0 (8)

which holds in any Hilbert space representation of the ca-
nonical commutation relations if and only if one of the fol-
lowing is satisfied: (a) at least one of /{Q), g (P) is a multiple
of the identity operator, and (b) fand g are both periodic
with minimal periods B, satisfying 27/af € Z\{0}.

{ii. INFORMATION MAXIMIZATION

In Ref. 4 various measures of ““joint information” for
(expected values of) pairs of effects E,F have been studied
with regard to their maximization. The first variation (in the
sense of the Fréchet differential®) of the functional
F 18] =f(({E)4,{(F),) with respect to g is given by

F ¢+ 641 — F 9] =565 [64:6] + €[64],
where 8% must be a continuous linear functional in 8¢ and
limy 54, -0 (€[641/1|6¢||) = 0. Here & will be locally extre-
mal on a vector ¢ with ||¢|| = 1 only if

8(F +4(¢1¢)) =0,
which implies

0= (fLE +oF +iL)¢, €))

where f; = (df/9x;)((E)4,{F),;) (i=12). The La-
grange parameter is found by taking the expectation

A= ""fl(E )¢ '_.f2(F)¢;
therefore Eq. (1) can be written as

0= (LHE'+1iF")é,

(10)
E'=E—(E),1, F'=F—(F),1L

Multiplying this equation either with E’ or with ' and tak-
ing the expectation yields the system
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0=/f(E")y +/AE'F'),,

(11)
O=f(F'E"), +[o{F'?,.

Here f; and f;, are fixed as partial derivatives of f; so in order

to have local extrema for & one must have either f; = f, = 0

or have the vanishing of the determinant,

Var, (E)-Var, (F) — [{E'F'),|* =0. (12)
In that latter case one solves (assuming f,#0)
fi_ _AE'F)y _ Vay(F) [Vart,,,(F)]V2 (13)
5 Var, (E) (F'E"), Var, (E)]

Here we have assumed f tobe real. If /, = Otheneither f; =0
or Var, (E) =0, i.e., E'¢ = 0. Therefore we may separate
the “trivial” solutions corresponding to f, =f, = 0 (local
extremum of /'), or f{ =0, F'¢=0,0r f,=0,E’'¢ =0, or
F'¢ = E’'¢ = 0, and the remaining solutions of (10) have to
satisfy (12) and (13).

These connections can be generalized in several re-
spects, as we shall see in the following theorems. In particu-
lar, we shall consider functionals not only on the Hilbert
space of pure states but also try to include mixed states. The
most natural way of extending the above derivations to this
general class of states turns out to be in terms of the Hilbert
Schmidt class B,(H); the choice of the trace class B,(H)
leads to trivial results only.

We shall first prove the following.

Theorem 2: Let ¥ be a real-valued functional on B, (H)
such that & [r] = f({4,),,..{4,),), A; bounded self-ad-
joint operators, p = rr*, r € B,(H) [sopis a positive element
in B\(H)], (4;), =Trlpd;] = (r,4,r), f differentiable.
Then # is Fréchet differentiable. In particular, if % has a
local extremum on r=p'? under the constraint
Trlp| = (r,r) = 1, then the first Fréchet variation vanishes,
0=56(F + A Tr[p]), which implies

0= £ — (1), 1)p"? (14)

where
fi= 3‘1& Ay rold)),

or, equivalently,

0=7 fi(4; —{4;),1)¢, forall ¢ in the range of p.
' (15)

Proof: The Fréchet differentiability of % is shown by a
straightforward but gory computation. The Fréchet differ-
ential of ¥ is

SF [bryr] = Ef,. [(4,0r) + (6r.4,r)].
It is linear, i.e., 8.F [h + kyr] = 8.F [h;r] + 6.F [k;r], and
bounded with respect to the B,(H) norm (|||,
= (n)'2 = {Tr[r*r]}'"):

65 Lerr1| < [25 41 I ot
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Then for a local extremum of % one has
0=6(F +ATr[p]) = (6r,{2f},4,~ +/11]r) + c.c.,

which yields, due to the arbitrariness of r € B,(H),

0= [Zf,.A,. + /11] P2

The Lagrange parameter A is found by evaluation of the con-
dition 1 = Tr[p] = (7,r):

A= —Zf;'<Ai>p‘

The remaining step is straightforward since for bounded 4,
Ap*’? = Ois equivalent to Ap = O and also to 4¢ = Ofor all #
in the range of p. This completes the proof.

At first sight it appears surprising that all vectors in the
range of the maximizing p satisfy the same equation (15).
However, this simply means that the pure states maximizing
the functional .% span a closed subspace which is an eigen-
space of the bounded linear operator 27_ , f;4,.

Theorem 3: The coefficients @; in the (linear in ¢) equa-
tion0 = (2,a;4; + A1), or equivalently (in the nonlinear
equation) Z,aA/¢=0 (4] =A4,—(4,),), are deter-
mined as functions a; = g; ({4 ;4 [)4;¥;)of the (complex)
covariances {4 ;4 ;) , and r parameters y; where n — ris the
rank of the matrix ({4;4/);). A nontrivial set
(aysty, ) #(0,...,0) requires det({4 ;47),) =0.

Proof: Multiplying the equation with 4, k=1,...,n,
and taking the expectation yields the system

S {44y =0, k=1..n

I=1
The remainder is a simple application of linear algebra.

The case n=1 has a nontrivial solution
iff Var, (4,) = 0; that is, ¢ is an eigenvector of A,. The case
n = 2 has been solved completely in Ref. 7 with the following
result.

Theorem 4: In the uncertainty relation (Cauchy-
Schwarz inequality) for self-adjoint 4, B,

Var, (4)Var, (B)
E(A 12>p<Bl2)p>|(A /Bl>p|2

=[4.B]), 1+ 3{4",B"},),)? (16)

equality is obtained if and only if Var,(B) =0 or
Var, (B)#0 and [4’' —({B'4"),/Var,(B))B "1p2=0.
This latter condition is equivalent to

0=[4'—((B'A"),/Var,(B))B']p, (17)
or
0=1[4'—((B'A"),/Var, (B))B']4,
for all ¢ in the range of p. 18)

So we arrive at just the “linear” equation obtained earlier

from the maximization of f({E )4,(F),) [cf. Eq. (10)].
We summarize and combine the above statements.
Theorem 5: A real functional & [r]

=f({4)p,{4,),), p=rr*, re B,(H), with f and self-
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adjoint bounded A4; such that % is Fréchet differentiable
will be locally extremal only on states p satisfying

zf;'(Ai_(Ai)pl)p::O (19)
i=1

and for ( f,..., f,, ) obeying
Y fidi4), =0, (20)

i=1
where either f, = -+ = f, =0ordet({4;4/),) =0.

The solutions of these equations yield extrema of % iff
at (xy,...,X, ) = ({4),,...,{4, ), ) the function fis extremal
on the numerical range of 4,,...,4,,,

num ran(4,,...,4,)
= {(xl,...,x,, ) lx,- = <Ai>p,

p any positive trace 1 operator}.

Consequences: (i) For n = 1 the only possible solutions
are (df/dx)({4),) =0orVar, (4) = 0, thatis, pis an “ei-
genstate” of 4.

(ii) For n = 2, either p is a common eigenstate of 4, B,
or fi=f,=0 on p, or Var,(4)=0 and f,=0, or
Var,(B) =0 and f; = 0, or Var, (a) #0# Var, (B) and

Il_= 3 (A'B')p _ Vars (B) -4 [Varp(B) 172
b Var, (4) (B'A ')p L Var, (4)
(21)
and
Var, (4)Var, (B) = 1({{4",B'}, ),)* = [cov, (4,B)]>.
(22)

In particular, the reality of ,, f; forces (4 'B’}, to be real so
that only the covariance term appears in (22), and

(23)

Equation (22) tells that in such states p the observables 4, B
are strictly (anti-)correlated, corr, (4,8) = + 1.

With these results we arrive at a generalization and a
complete clarification of the relationships (9)-(13) re-
viewed in the beginning of this section which had been found
earlier® in some examples. Furthermore, we obtain a means
for comparing the various possible measures of information
insofar as different functions f(x,y) admit different solutions
for possible extrema. This will be illustrated in a number of
examples. First we consider pairs of projections 2, 0, so that
num ran(P,Q) C[0,1] X [0,1], and the unit square will be
the natural domain of our functions f(x,y).

Example 1:

Sxy)=xInx+ (1 —x)In(1 —x) +yiny
+ (1 =p)In(1 —y).

([4,B1_), =0 on any extremalizing state p.

Here

IL,(Q)=(Q), n{(Q), +(1 - Q) In(1 - Q),

represents the (missing) information about Q in state ¢ in
the sense of negative entropy, and

I, (QP) =1,(Q) +1,(P) =f({Q@)4,{P)y)
is a measure of the information simultaneously available on
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Qand P.Now f; = In[x/(1 — x)1,f, =In[y/(1 —y)], and
f1 =/, =0if and only if x = y =} which is known to yield
the absolute minimum —2ln2 of f and thus of
F [¢] =1, (Q,P). The absolute maximum 0 of fis assumed
on (x,y)e{(0,0), (0,1), (1,0), (1,1)}, which can be realized
by ({(P)4, (@), ) if and only if there exist joint eigenstates.
Thus it depends on the degree of commutativity whether or
not the information can be absolutely maximal or not.

The variance of a projection is Var,(P)

= (P), — (P )4 so that condition (21) on f,/f, reads

[x(1 =x)1"3n[x/(1 —x)]
= + [y(1 =y 1" Inly/(1 — )]
or
Y(x) =Y, W(x) = (x/(1—x)=t -0,

where by continuity W(0)=W¥(1)=1. Noting
V(0) =¥() =¥(1) =1 and that ¥ has a minimum on
x,€(04) and a maximum on x,€(},1) and satisfies
W(1 —x)=¥(x)"', one obtains exactly four solutions
y=x,y=1—x,y=x* and y =1 — x*, where x and x*
are the solutions of W(x) = u for « in the range of ¥ (for
X = X, O X = x, it follows that x = x*, so in that case there
are only two solutions).

Example 2: f(x,y)=x+y. Here F[¢]=(P),
+ (@), is the sum of probabilities. Then f, =/, =1, so
Eq. (21) yields

L=fi/fa= (1 =p)/x(1-x0)]"?
which has y = x and y = 1 — x as the only solutions.

Example 3: f(x,y) = x'y corresponds to the product of
probabilities. Here f; =y, f; = x. The absolute minimum oc-
curs on x = 0 or y = 0. Otherwise [Eq. (21)]

S/fa=y/x=[y(1 —p)/x(1 —x)]"?
or
[(1=x)/x]"?=[(1 —y)/y]'/?

with y = x as the only solution.

Example 4: f(x,y) =x(1 —x)-y(1 —y) corresponds
to F[¢] =Var,(P)-Var,(Q). Here f, =(1-2x)
Xy(l—p), L=x(1—x)(1—2p),and f; =0iff x =} or
y €1{0,1}. Thus the absolute minimum 0 of f occurs on the
eigenstates of P,Q, the absolute maximum on x =y =1. If
neither is the case, (21) yields

Y(x)=[x(1—x)]1"/(1-2x) = + ¥(»)

with (1 —y) = — ¥ (), ¥'(x) > 0. So the only solutions
arey=xandy=1—x.

In all of these examples the solutions y=x (and
y=1—x) lead to (local) extrema if the boundary points
(x,y) of num ran(P,Q), satisfyingy = x (ory =1 — x) be-
long to the set num ran(P,Q). We see that the number of
possible extrema depends essentially on the degree of sym-
metry of the functions f (f(xy) =f(yx); f(1 —x,p)

= f(x,y), etc.) as well as on the shape of the (convex) nu-
merical range of P,Q. We remark that Lenard® gives an ex-
haustive description of num ran(2,Q) so that in principle all
extremaof functionals F [¢] = f({P}4,(Q )}, ) canactual-
ly be determined.
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Example 5: The final example deals with a more compli-
cated functional,

F [$] = Var, (4)-Var, (B)
= ({4 —(4),H By — (B)4?)

=f( (A >¢,<B )¢,<A 2>¢,(BZ>¢ ).
Application of Theorem 2 yields for the extremal states,
0= [Var,(B)(A*> —2(4 ),A) + Var,(4)(B?

—2(B),B) +A11¢;

sinced > — (4 )31 =47% — 2(4 ) ,A, etc., this equation can
be brought into the form

0= [Var,(B)A"* + Var,(4)B"
— 2 Var, (4) Var, (B)1]4.

Possible solutions are eigenstates of 4 or B; further solutions
will be found by observing that this equation is precisely an
instance of the case n = 2 in Theorems 4 and 5, leading to
Egs. (21)-(23). In particular, Eq. (23) reads

((47,B?]1 )y =0.

If we insert for 4,B the position Q and momentum P opera-
tors (although they are not bounded), then

[Q2P7?]_=2#{Q" P},

SO ([Q'z,P'z]_),,5 =0 if and only if ({Q’,P’}+)¢ =0
which singles out the coherent (Gaussian) states of minimal
uncertainty.

IV. CONCLUDING REMARKS

In Sec. II we constructed examples of generalized, un-
sharp position and momentum observables whose effects
a2(X),al. (Y) may be either totally noncommutative, or
partially commutative, or commutative. We established a
characterization of the commutative case:
[¢2(X),al (Y)] =0 whenever (X,Y) is a-periodic,
(X,Y) = (X + a,Y + 2n/na) for some fixed a > 0. For the
investigation of partial commutativity the question of posi-
tive lower bounds® a<a®(X),a” (¥) may be of relevance, as
it is in the case of projections.

One possibility of introducing approximate measure-
ments of noncommuting observables 4, B within conven-
tional quantum mechanics is in terms of joint measurements
of commuting functions f(4),g(B) of 4, B. Then Theorem 1
tells that the only approximate joint measurements of ¢, Pin
this sense are those by means of (generalized) a-periodic
functions £, g (as long as only bounded functions are consid-
ered). In contrast, after introducing POV observables com-
mutativity is no longer necessary (though still sufficient) for
coexistence so that much more flexiblity is gained.

These results show that “commutativity” and “compa-
tibility” are quite unrelated in general from the mathemat-
ical standpoint. This is also true from the viewpoint of mea-
surement theory.” There are compatible observables that do
not commute; the “price” to be paid for obtaining coexis-
tence “in spite” of noncommutativity is unsharpness, that is,
lack of certainty inherent in the results of joint measure-
ments.
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This lack of certainty can be estimated in the way indi-
cated in Sec. III, by searching for maxima of ““information”
functionals # [¢] = f({4,),,....(4, ), ). It turns out that
optimal upper and lower bounds for the information are de-
termined by the extrema of f on the numerical range of
(A4,,..., 4, ). In particular, for » = 2 extrema occur only on
strictly correlated states with vanishing expectation of the
commutator. This means that on any state of maximal infor-
mation, in the sense defined here, the variances have to be
finite. Thus at least in this respect the usefulness of the var-
iances as uncertainty measures is supported.*°

According to Theorem 2, the information maximizing
states ¢ satisfy an equation of the form [Eq. (15)]
2.fiA;¢ = A1¢. In the context of U(n) representations with
A; being self-adjoint generators of infinitesimal unitary
transformations, this equation generalizes the statement
that ¢ is a highest weight state.’

For pairs of projections P, Q we found the locations of
the solutions of the variational equations in the case of sever-
al functions /. The examples show that functions of the form
Sfxy) =g(x) + g(y) (examples 1 and 2) are more suitable
for the description of uncertainty than f(x,y)

= h(x) h(y) >0 (examples 3 and 4): in the latter type min-
imal uncertainty in the case of small 4 remains quite undeter-
mined since the minimum 0 occurs if only one factor is zero.
The symmetry f(x,y) = f(y,x) appears natural since Q and
P should be treated on equal footing. But this yields y = x as
a natural candidate for maximal information (examples 1-
4). If in addition f(1 — x,y) = f(x,y) then also the comple-
ments 1 — Qand 1 — Pare treated equivalently, and further
solutions may lie on the line y = 1 — x (examples 1 and 4).

To conclude, there is again only a very limited connec-
tion between (non)commutativity and maximal informa-
tion. In Ref. 4 it was pointed out that for the totally noncom-
mutative spectral projections £2 (R*), E* (R*) one may
have information arbitrarily close to the supremum without
reaching it. For bounded X, Y, maximal information is
achieved on the states satisfying (E2(R\X)
AEE(R\)p=¢ or (E%X)+E"(Y))=|E%X)

+ E®(Y)||¢; note that these E2 (X), E” (Y) are partially
commutative. In general, both commutative and partially
commutative projections admit absolutely maximal infor-
mation in the sense of example 1, but this last example indi-
cates that the measure of example 2 [ without the symmetry
Sflxy) =f(1 —x,p)] is more suitable since it points more
directly to a characterization of the degree of “reality” of
E9(X) and E” (Y): the larger the intervals X, Y are chosen,
the larger the maximal probability sum ||E2 (X) -+ E* (Y)||
will be.
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APPENDIX: PROOF OF THEOREM 1

Assume

fF 7 eF ($)] =F gF (/)] (*)
holds for all ¢cL?(R,dg) and for some nonconstant
f8eL* (R,dg). Fix f and let G, denote the set of all
heL> (R,dg) such that (») holds with g replaced by % for all
¢eL 2(R,dq). One sees that G, is a nontrivial translation in-
variant subspace of L (R,dg) which is closed in the weak*-
topology of L= = (L ')*. Let W be the weak*-closed sub-
space of L= (R,dg) spanned by g and its translates. Then
W #{0}; hence W contains a character ¥ (x) = exp(ifx)
of R, by Theorem 9 of Dunford and Schwartz.!! By Theorem
16 of the same reference, W must contain a Vg with 8 #0; in
fact, if ¥,=1is the only character in W then g = const- ¥,
i.e., g is constant. Since W C G, we have V€6, and hence

SFNVF ()] =F VT (fB];
that is, f¢p =/fpds, for all geL’*(Rdg), where
hg(x) = h(x — B) for functions 4. It follows that f = f; a.e.;
i.e., Bis anonzero period of f. Conversely, if Bis a period of /,
then V;€G,. Since fis measurable and nonconstant, / has a
minimum period B, > 0. We can now reverse the roles of f
and g; taking the Fourier transform of both sides of (*) we
see (*) is equivalent to

g7 L fF P =F 1 fF ' ed)],
where ¢ = ¥ ¢ is again a general element of L 2(R,dg). We
conclude that g must be periodic with minimum period

ay>0. We may set f= Zc, V,, where a = 27/f,. This im-
plies

S a8 e Vb)) = [e7[ S eVt
or, taking #,

S €8T Vo) =8 3 6,7 Vo), VoeL?,
or

S € (8ra —8)F (Vu$) =0, VoeL?

or

zcn (gna _g) [‘7(¢)]na =O) V¢€L 2.

Pick meZ. For each NeZ, define ¢ €L % by

1, — (N — )
(F N)(x)=[ xe[(N. m)a,(N—m+ 1)a)

0, otherwise.
Pick yeR. Then there is a unique N such that
ye[Na,(N+ 1)a). Thus [F(dp)].e () =0 unless
m = n. Hence

Cm (8ma —8)(¥) =0, ye[Na,(N+ 1)a), ae.

Since the choice NV was arbitrary,
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Cm (8me —8)(¥) =0 ae.

Henceifc,, #0, theng,,, =ga.e.;i.e., mais a period for g.
Since g has minimal period «, we must have the following.

If (g, f) is a solution pair for (*) with minimal periods
&g, By, and for f written in the form

f= z cn Vn21r/ﬁo’

then
¢, #0= 3 integer z(n) such that

n2w/B, = z(n)a,.

Let K = {neZ|c, #0}.

Let M be the subset of Z generated from the finite linear
combinations of elements of K using integer coefficients.
Here M is a closed subgroup of Z, so there is an n,cZ/{0}
with M = nyZ. Thus every element n of k can be written
n = nyr, some integer . Then

f= 2 cnor Vn,,err/ﬁ'o’
which has 8,/n, as a period. Since 3, is the minimal period,
we must have n, = 1. Now the equation

n2nw /B, = z(n)ay,,

z(n) some integer, holds for all neK and therefore for all
neM. Thus there is an integer 270 such that

2r/ay By = 2.
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Now we prove sufficiency. If either for g is constant, (*)
holds trivially. Thus suppose f, g are periodic L= functions
with minimal periods f,,a,, respectively. Then one has for
a=2u/B,

Ve 'gF ()] = F " [8aF (V,u8)]
=F " gF (V)]

whenever na is a period of g. Multiplying by the ¢, such that
f=Z2¢,V,, weobtain (*) after invoking generalized a-peri-
odicity.
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The problem of moments in the phase-space formulation of quantum
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Long ago, Moyal [Proc. Cambridge Philos. Soc. 45, 99 (1949) ] formulated a moment
problem in the context of the Wigner—Weyl phase-space formulation of quantum mechanics.
The problem amounts to giving necessary and sufficient conditions for a sequence of numbers
to be moments of a Wigner function. In this paper, that problem is solved, and so is a truncated

version of it.

1. INTRODUCTION

My purpose in writing this paper is to give necessary and
sufficient conditions for the solution of a quantum mechani-
cal moment problem first mentioned by Moyal in his seminal
1949 paper': Given a sequence of numbers m;,,, where j,k
are the multi-indices

J=Cpesdn) s k= (kpk,), (1.1)
and # is some fixed positive integer, find necessary and suffi-
cient conditions for there to be a Wigner distribution func-
tion p(q,p); = (g1>-sgn )s P = { P1se-s P )» SUCh that

m, =ffpqup(q,p)d"qd"p. (1.2)
Here p/ and q" stand for these quantities,
p/=pips - ph, d=g" gy (1.3)

In a recent paper,? O’Connell and I gave a set of neces-
sary conditions for there to be a solution to this problem.
While I will postpone any detailed discussion of that set, I do
wish to make a few remarks about it.

The conditions in it amount to the non-negativity of a
hierarchy of quadratic forms, where a given quadratic form
has moments up to some fixed, even order for its coefficients.
The simplest of these involves moments of order 2 or less,
and its non-negativity is equivalent>® to the position-mo-
mentum uncertainty relation. The conditions guaranteeing
the non-negativity of other quadratic forms in the set place
restrictions on the higher order moments analogous to those
for the simplest case; these restrictions may thus be thought
of as generalized uncertainty relations.

The set of necessary and sufficient conditions that I will
give here includes the set that O’Connell and I derived in
Ref. 2; the relationship between the two sets will be discussed
in the last section of the paper. For now, I will simply de-
scribe the set that I will later show to be necessary and suffi-
cient. This requires some notation and a word or two about
the Wigner-Weyl phase-space formulation of quantum me-
chanics.

Let z=(q,p) denote a point in phase space I', which is
R” X R" equipped with the symplectic form

0(z2)=(2/f)(p-q —q*p’)
and the measure

(1.4)
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dz=dq, ---dq, dp, - dp, . (1.5)
Here A(z), B(z), C(z), etc., will denote functions or tem-
pered (Schwartz) distributions defined on phase space, and

A ,ﬁ,é’,... will denote the operators associated with 4,B,C....
via the Weyl transform.* The twisted product of 4 with B is

A°B(z) = ()~ UA(z +2)B(z+2)

Xe =) dy dz, (L.6)
and is the Wigner transform* of 4B. Finally, let
(A,B)EJ-A(Z) B(z) dz. (1.7)

I will bring in other notation as needed. For the most part I
will use the same notation that I used in Ref. 4. (I also re-
mark that Secs. I and II of Ref. 4 contain a brief review of the
phase-space formulation of quantum mechanics. )

One can easily show’ that if 4 and B are Schwartz func-
tions—i.e., A,B are in . (R>"), then A°B is too. This allows
us to define a notion of positivity on ', the set of tempered
distributions. A tempered distribution F will be said to be #
positive if

(F, 4°4)>0

for every Ae.# (R*"). When this happens, I will write

(1.8)

#
F>»0. (1.9)
In terms of operators, F being # positive means that
(F, 4°4 ) = Q2r#i)" Tr[FA4 *150. (1.10)

From this it follows that 7 is a positive operator, and
conversely.
Let P(z) be any polynomial in q,p, that is, let

P2)=3 ¢, p'd"
,}; /
Next, define the “moment functional” x via
‘Lt(P) = c'_km-,k .
j,; A )

Ifthe m;, areofthe form (1.1), then it is easy to see that

(1.11)
(1.12)

u(P) =J‘P(z)p(z) dz=(Pp) . (1.13)
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Since p is a Wigner function, it is the Wigner transform of a
non-negative trace class operator; it thus has the form
p = GoG. [Take G = (p)'/%] From (1.13), one gets

w(P) =(P,GoG), G=G. (1.14)

If Ge.# (R*"), all of the manipulations I have made are cor-
rect. Examining (1.14), I find that u(P)>0 when P is #i
positive.

To anyone with experience in classical moment prob-
lems, it should not come as a surprise that 1 being positive
for #i-positive P is also a sufficient condition for a solution to
the moment problem to exist. There is, however, a surprise in
the kind of solution one gets. The main result of this paper is
the following theorem.

Theorem 1.1: A necessary and sufficient condition for
there to exist an (unnormalized) Wigner functionp = GoG,
with G real valued and in %, for which (1.2) holds is that
1 (P)>0 whenever P is an #-positive polynomial in g,p.

The surprise is, of course, that the Wigner function one
gets to solve the moment problem (1.2) not only decays fast
enough to support integrals of all powers of p and q, but it is
also infinitely smooth, a Schwartz function in fact. No such
regularity arises in solutions to classical moment problems.

I will prove Theorem 1.1 in two major steps. The first
step is to extend the moment functional x4 to certain spaces
that contain the polynomials and that consist of smooth
functions which are themselves sufficiently nice that one
may use them as symbols in the Weyl calculus; the exten-
sions that I get will be positive on the #-positive elements of
these spaces. The next step, which is the harder of the two, is
to come up with a representation for certain elements in the
dual of the extension spaces; these elements are just the con-
tinuous linear functionals that are positive on the #i-positive
functions in the extension spaces. Putting the two steps to-
gether gives the theorem.

The remainder of the paper is organized this way. In
Sec. II, I will carry out the first step of the proof. That is, I
will prove the existence of a continuous linear functional
that is positive on the #-positive elements of the extension
spaces and that agrees with the moment functional 4 when
restricted to the polynomials. In Sec. III, I will carry out the
second step in the proof. In addition, I will also solve a trun-
cated version of the moment problem (1.2). Finally, in Sec.
IV, I will discuss the connection between the set of necessary
conditions that O’Connell and I gave in Ref. 2, and I will
make a few concluding remarks.

Il. EXTENSIONS OF THE MOMENT FUNCTIONAL

To carry out the “extension” step in the proof of the
main result, I need an appropriate set of spaces to work with.
It turns out that for the purposes I have in mind the symbol
classes S, introduced by Voros® will do nicely. These are
defined this way: Let  be a fixed real number. The space S, is
defined as the set of all C  functions 4: I - C that satisfy

4 lla,,Esup{la"A (1 + [z =P o . (2.1)

Here, |z|> =q*q+ p*p, @ is a multi-index, and d“ is the
partial derivative corresponding to a. The || |, ’s are
seminorms on S,, and they can be used in the usual way to
construct a topology on S,.
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There are several reasons for using the S,’s. First, every
polynomial of degree less than or, possibly, equal to ris con-
tained in S,. Second, the twisted product is defined for func-
tions in these spaces. Indeed, if A€S, and BeS,, then®
A°BeS, , .. Third, functions in S, are tempered distribu-
tions, for, when |z| is large, they behave like polynomials.
The set of functions in S, that are also #i-positive tempered
distributions is clearly a cone, which I will denote by S *.
Finally, the relationship between these spaces and the Weyl
calculus is well understood.>®

The space.S, plays an important role here. One can show
that there is a linear topological isomorphism between S,
and S,, and that this isomorphism associates the positive
cones S,;” and S, with one another. In a bit, I will discuss
this isomorphism. For now, I want to take a close look at the
properties of S, itself. T will begin with this proposition.

Proposition 2.1: Let AcS, and let 4 be real valued. There
exists a continuous seminorm | - [|,,, defined on .S, such
that

4., +£4Ss . (2.2)

Proof: Tt is tedious, but quite straightforward, to show
that the function

g =t|>/a(1 + |z)®) (2.3)
defines what Hormander terms a “slowly varying” metric on
phase space (Ref. 6, Definition 18.4.1), and that the func-
tion

m,(2)=(1+ |z|*)”? (2.4)

is “g continuous” for g defined by (2.3). Thus Hérmander’s
symbol class (Ref. 6, Definition 18.4.2) S(m,.g,) is well
defined. Inspection of its definition shows that it is a Fréchet
space identical with Voros’s S,. In particular, S, coincides
with S(1,g,).

On the other hand, S(1,g, ) satisfies the conditions nec-
essary and sufficient for the L *-operator norm of the Weyl
transform of a symbol in S(1,g,) to provide a continuous
seminorm on S(1,g.). [See Theorem 18.6.3, Ref. 6. Check-
ing that this is the case is again tedious. The reader should
also be aware of notational differences between Ref. 6 and
this paper. To compare the two notational systems, set 4 = 1
here, and note that o defined in (1.4) here is two times the o
Hormander uses in Ref, 6.] Specifically, if u(q)eL 2(R"),
and if 4eS(1,g,), then

(Au) (q) = 2mhi) ~" f e a7y (~;— (q+ Q'),p)

Xu(q')d"q' d"p 2.5)

is the Weyl transform of 4. The norm ||2 |lop is a continuous
seminorm on the symbol space S(1,g,). I will denote this
seminorm by

4 1l =114 flop - (2.6)

Let F(z)e.” A(I‘), and recall that>’ the corresponding
Weyl transform Fis a trace-class operator. Moreover,’

fA(z)(Fo‘F) (2) dz = Q2mh)" tr(AFF*) . 2.7
If A4 is real, then Ais self-adjoint and satisfies
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~ 14 llp - T<A<|A flop - - (2.8)
This operator inequality is preserved if one premultiplies and
postmultiplies by F*and ?’, respectively. Hence, one has that

— |4 ||, F*F<F*AF<||4 ||, F*F . (2.9)
Using the fact that taking the trace in (2.9) will leave the

sense of the inequalities unchanged and rewriting (2.9) inan
obvious way, one gets

te(F*[ |4 |l., - 1 +415)>0. (2.10)

From (2.6), (2.7), (2.10), and tr(RS) = tr(SR), one final-
ly arrives at this:

f (|4, +A4)FoFdz>0. (2.11)

Since S(1,g,) and S, are the same Fréchet space, (2.11)
holds for all real AS,,. From the definition of S 3", one sees
that (2.11) implies (2.2).

For possible future reference, I want to draw off a corol-
lary to the proof of Proposition 2.1.

Corollary 2.2: With g, defined by (2.3) and m, (z) given
by (2.4), Hérmander’s symbol class S(m,,g,) is the same
Fréchet space as Voros’s symbol class S,.

What needs to be done next is to construct a mapping
that makes .S, and S, topologically isomorphic and that asso-
ciates S ;- with .S *. To do this, first let

H(z)=4(q q+p°p); (2.12)

this is, of course, the classical Hamiltonian for #» harmonic
oscillators with all of the masses and frequencies taken to be
1. Next, define

H, (z)=Wigner transform of (fl . (2.13)

(I will use a subscript and not a superscript because I want to
avoid confusing powers relative to the twisted product with
powers relative to ordinary multiplication. ) These functions
have the properties listed in the following.

Lemma 2.4: If r and ¢ are real, and if H, is given by
(2.13), then H, is real valued, belongs to .S,,, and satisfies

HoH, =H,,,. (2.14)
Proof: Let B> 0; define the operator
ﬁﬁ =exp( —,61?) . (2.15)

Using standard functional analytic techniques, one can write
~ 1

— * r—lﬁ
T'(r) L BTy dp

for all > 0. Taking the Wigner transform of both sides and
using the fact that the Wigner transform commutes with the
integral in (2.16), one gets

i 1
=1Q,(z) dp,
L Jo b g f
where £, (2), the Wigner transform of Q, is given by
Qg (z) =sech®(AB /2)
Xexp( — [2H(z)/h Jtanh(#B/2)). (2.18)

The one-dimensional version of (2.18) is derived in Ref.
8. To get (2.18), one need only take products of the one-
dimensional Wigner functions.

r__

(2.16)

H_,(z)=

(2.17)
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I now want to show that H _ .S _ ,,. First, observe that

3"H_,(z)= z z}'gf Br—l
{7i<ial 0

% [tanh(%ﬁ—)] (rl + le)d/2 QB ) dB;

(2.19)

here, ¢, depends on the multi-indices, a,, on #, and nothing
else.

The integral in (2.19) is easy to estimate for large values
of |z|. Just break the interval of integration into [0,1] and
[1,00). The part of the integral from [1,0) decays like
exp( — const|z|?). On the other hand, the part from [0,1]
satisfies

1 a
f B~ ‘[tanh(ﬁ)] T 0 (2) dB
0 2

<CJ°° ﬂ(2r+ ¥l + la)/2 =1 exp( —BH) dﬂ,
0

and so it decays like C |z| ~2?"+ |7+ leD_The whole integral
thus decays like the power estimate for the [0,1] interval.

By what I have just found concerning the integral in
(2.19), I get that for |z| -

|0°H _,(2)|<C |z]| ~@r+lab

from which it immediately follows that H _,eS _,,. To see
that H,€S,, for r>0, write 7 this way

r=k—(k-r),

where k is any integer strictly larger than r. Because of the
operator identity

ﬁr=ﬁr,ﬁ—(k—r)’
one has that
H’ =Hk0H—(k—r) .

Since H = H, is in S,, because it is a polynomial of degree 2,
H, = HoHo---oH (k times) is in S,,. The function
H_ ; _, is, by the analysis above, in S,, _,;. The twisted
product of H, and H _ ; _,, is’ thenin Sy, 5, _ 5 = S5,

The formula (2.14) is the phase-space version of the
corresponding operator identity. That H, (2) is real'is ob-
vious.

Lemma 2.4 is the key to constructing the isomorphism
between S, and S, that I mentioned earlier. To construct
this, first observe® that the mapping 4 ~A4°H _, takes S,
continuously into S,_,,, and that B—~H_,  oB takes
S, _,,, continuously into S, _,. Thus

T,(4) = H—r/4 °A°H _,,, (2.20)

defines a continuous, linear map from S, to S, _, for every
r,teR. Moreover, T _, inverts T, for

T_,(T,(4))=H,,°H_,,°4°H _,,°H,,

= H,0A°H,

=lodol =4.
Similarly, 7,(T _,(4)) = A. Since T _, is a continuous lin-
ear map too, the mapping 7, sets up a topological isomor-
phism between the two Fréchet spaces S, and S, _,.

Francis J. Narcowich 2875



It is obvious that this isomorphism satisfies
T,(4) =T,(4), (2.21)

so that real-valued functions are associated with real-valued
functions. What requires a little more work, but is more im-
portant here, is that $,* and S',* , are associated via this
isomorphism. To see that is so, one must show that 4€S, is i
positive if and only if T, (4) is, too.

#%
Let A>0. For every Be ¥ (I"), one has that H _,,,°B is
also in .#(T"), and that

fA(Z)(H_,/4°B)° (H_,/4°B) dz>0. (2.22)

Using the associativity of the twisted product and the identi-
ty
fCOD dz=fC(z)D(z) dz, (2.23)

which applies under fairly general conditions, among which
are included one of C,D being in . (") while the other is in
some S,, one may justify these manipulations done on the
right-hand side of (2.22),

rhs of (2.22) = f A°H _,,,0oBoBoH , dz

- f H_,.odoH _,0BoBdz

= j T.(A)°BoB dz
=(T.(A), BoB) . (2.24)
Hence, for all Be.# ("), (2.22) implies that
(T.(4),B°B)>0, (2.25)

#i
andso T, (A4) »0. A similar manipulation justifies the reverse

implication, and proves the following theorem.

Theorem 2.5: The mapping T,: S,—S,_, defined in
(2.20) is a continuous linear bijection for every r,t€R. The
inverse of T, is T _,. Under T,, #-positive functions in .S,
correspond to #-positive functions in S,_,, and real func-
tions correspond to real functions.

To complete the “extension step,” I need one last result.

Theorem 2.6: Let E be a self-adjoint subspace of S, and
suppose that H, , (z)eE. If ¢, is a linear functional that is
defined on E, real on the real functions in E, and positive on
ENS ", then there exists a continuous linear functional ¢
that is defined on §,, that is non-negative on S+, and that
agrees with ¢, on E.

Proof’ I begin by noting that #-positive tempered distri-
butions are real valued. The easiest way to see this is to ob-
serve that the symplectic Fourier transform of one is a tem-
pered distribution of #-positive type,” and that such a
distribution satisfies a symmetry condition [Ref. 9, Proposi-
tion 3.1, (iii) ] equivalent to the original distribution being
real.

The point is that I may work entirely with the spaces
Re(E) and Re(S,), which compromise, respectively, the
real-valued functions in £ and S, . Doing so allows me to use
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Krein’s version'® of the Hahn-Banach theorem to produce
the extension ¢.

Let AeRe(S, ), and let

D=H,, —A4. (2.26)
Note that for 7, defined by (2.20)

T,(D)=1—T,(4), (2.27)
and that
T,(D) =1~ T, ()], + T, (D]}, —T,(4); (2.28)

here, ||-||,, is the continuous seminorm that was mentioned
in Proposition 2.1. Composing || ||, with 7, produces a con-
tinuous seminorm on S, and, hence, on Re(S,). The 4’s in
Re(S,) for which || Tr(4)|j,, < 1 clearly form a (real) neigh-
bor of 0 in Re S,; call this neighborhood U. From Proposi-
tion 2.1, (2.28), and from the fact that positive constants
belong to .S 5", one sees that if 4cU, then 7, (D) isin S ;. By
Theorem 2.5, T, (D)eS " if and only if DeS .

Sincethe D ’sinS " correspondingtothe4 ’sin U forma
neighborhood of H,,,, the conditions of Krein’s theorem
(Ref. 10, Theorem 2.6.3, p. 136) are fulfilled. Hence there
exists a continuous, positive linear functional ¢ that extends
&, from Re(E) to Re(S,). Simply by setting ¢( f-+ ig)
=¢(f) +id(g), for figeRe(S,), one gets the extension
whose existence is asserted in the statement of the theorem.

I can now finish the extension step. In Theorem 2.6, let
E be the space of polynomials in q,p of degree 2k or less. The
functional ¢ is replaced by the moment functional 1 defined
by (1.12). The conclusion of the theorem then gives the fol-
lowing corollary.

Corollary 2.7: For every integer k>0, there exists a func-
tional i, that is defined and continuous on S,,, that is non-
negative on S ;% , and that agrees with ¢ when restricted to
the polynomials of degree 2% or less.

I close by remarking that i, will not usually be unique.

Ill. REPRESENTATIONS OF #-POSITIVE LINEAR
FUNCTIONALS

The next step in showing that the condition given in
Theorem 1.1 is sufficient for there to be a solution of the
moment problem that I discussed in the Introduction is to
get representations for the functionals arising in Corollary
2.7. These functionals have two properties that enable me to
get representations for them. First, they are in the topologi-
cal dual of S,, >0, and, second, they are non-negative when
applied to #i-positive functions in S, . I will call any functional
that satisfies these two conditions an #i-positive S functional.

One can always restrict an #-positive S functional ¢ to
functions in Schwartz space, for #(T") is included in S, for
all real t. Moreover, because this inclusion is continuous,’
#) - is a continuous linear functional on %; that is, ¢| . is a
tempered distribution. Finally, ¢| . is an #i-positive tempered
distribution because it is non-negative on S ,* and, for every
Fe#, FoFe NS . In summary, I have obtained the fol-
lowing lemma.

Lemma 3.1: Every fi-positive S functional ¢, when re-
stricted to ., is an #i-positive tempered distribution.
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The restricted #i-positive S functional ¢ being a tem-
pered distribution implies that its symplectic Fourier trans-
form ¢ is, too. Here @ is defined in the usual way,!"'? via
transpose. The version of the symplectic Fourier transform
used here is the same as the one in Ref. 4,

A(a) = (7h) —"fA(z)e"”W’ dz, (3.1)

wherea=(u,v) = (uy,...,%,,,Uy5--.,U,, ). As is the case with the
ordinary Fourier transform, the symplectic Fourier trans-
form takes Schwartz functions to Schwartz functions, and
tempered distributions to tempered distributions.

The #i positivity of ¢ is reflected in ¢’s being of #-positive
type.® This is easy to show. First, recall that'?

AB =4 xB, (3.2)
where 4 X B is the twisted convolution of 4 with B and is
given by

4 XB(a) = (mh) —"fZ(b)E(a —b)e PO dp . (3.3)

Second, note that

Fra)=F(—a) = F(a) . (3.4)
Finally, observe that
¢ (F XF') = §(FoF) = ¢(FoF)>0, (3.5)

the last inequality on the right-hand side being a conse-
quence of ¢’s i positivity.

So far, everything I have said would be true if ¢ were
merely an #-positive distribution rather than an #-positive §
functional. The main consequence of ¢’s being an #i-positive
S functional is that, for 4€S,,

¢4, +4)>0, (3.6)
because, by Proposition 2.1, ||4 ||, + AeS ;" . Clearly, (3.6)
implies that if also 4. (I"),

[8(A)| = [$)|<p (D)4 ., - (3.7

Using a proof somewhat similar to that of Proposition 2.1,
one may show that

and so
1$(A)|<2"() |4 ||, - (3.9)

Finally, one may take limits in (3.9) to get that 5 is a contin-
uous, linear functional on L !. Because L = is the dual of L *,
there is some function ®eL = for which

(A) =f<’f>(a)2(a) da. (3.10)
Since & is an #-positive type tempered distribution that is
given by an L = function, one has, by Theorem 3.1 and
Theorem 5.2 of Ref. 9, that there exists a function G such
that GeL?, G = G, and

®(a) =G xGl(a). (3.11)
Unwinding the symplectic Fourier transforms then proves
the following theorem.

Theorem 3.2: If ¢ is an #-positive S functional, then
there exists a real GeL ? such that
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é(A4) =JA(z)G°G(z) dz (3.12)

for all Ac ¥ (T").

I remark that examination of the proof of Theorem 3.2
shows that one also has the following resuit.

Corollary 3.3: If ¢ is an #i-positive tempered distribution
that satisfies

[()|<cld |l
then, for all 4% (I"), ¢ has the form (3.12).

In a certain sense, Theorem 3.2 gives the representation
that I need. The difficulty is that it does not contain enough
information about G to be useful in getting sufficiency in
Theorem 1.1. To overcome this difficulty, I will take a close
look at the properties of G when the ¢ that gives rise to it is in
S *, the topological dual of S, . Doing this requires looking at
the H,’s introduced in Sec. IL

The operator H corresponding to H(z), which is given
by (2.12), is the Hamiltoniar}\ for a system of » harmonic
oscillators. The spectrum of H consists of discrete positive
eigenvalues, each being of finite multiplicity; « is the only
limit point. The eigenvectors ¥, k = 0,1,2,..., may be cho-
sen to be real-valued functions. Of course, they are Schwartz
functions that comprise an orthonormal basis for L 2(R"). I
will label the eigenvalue corresponding to ¥, by A, .(Since
some eigenvalues are degenerate, one can have 4, =1 ;. for
k #k'. This can happen for only a finite number of indices,
however.)

Using the ¥, ’s, one may form Schwartz functions that
comprise an orthonormal basis for L 2(T"). To do this, de-
fine'

Bi=y; 89 ; (3.14)
these form an orthonormal basis for the space of Hilbert—
Schmidt operators. By virtue of the unitary equivalence'®
between the space of Hilbert—Schmidt operators and LAZ( ),
the set {B,, }, where B, is the Wigner transform of B;,, is
an orthogonal basis for L 2(I"). One may make it orthonor-
mal by dividing each B;, by (27#)"?. That each B, is a
Schwartz function follows from the ¢;’s being products of
Gaussians and Hermite polynomials, together with a stan-
dard argument from harmonic analysis.

My reason for introducing the B; . ’s is that they diagon-
alize three different operators. First, define, for Ac.¥ (T"),

K, (A) =H°A,
K_(A) =A°H7
Ko(A4) = }(Hod + A°H) = }(K, + K_)(4) .

Each of these operators has B;, as an eigenvector; indeed,
this is obvious from the following lemma.

Lemma 3.4: Let K ., K_, and K, be defined by (3.15).
Each operator is essentially self-adjoint on . (I"), non-neg-
ative, and satisfies the following:

K+ (Bj,k) =A_1Bk > K_ (‘B],k) =1kBj,k .

Jr
KO(Bj,k ) = [ (/11 + A’k )/2]Bj,k
Proof: All three cases are so similar that only one of

them needs doing. I will work with the statements involving
K, and I will begin by getting (3.16).

(3.13)

(3.15)

(3.16)
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Using the definition of B, ,, note that these hold:
K,(B,) =HB,
=Hw, e 4)
= Hy) o9,
=AY@Y = ’{kﬁj,k
Taking Wigner transforms gives (3.16) for K, .

Next I will show that K is Hermitian on ¥ (T"). If 4
and B are Schwartz functions, then one has the following:

(K. (4),B) =fH°A Bdz
=on§oHdz

= fAO (H°B) dz

= <A»K+(B)) .

I remark that if one sets 4 = B in the equations above, one
also has that

(KJA),A)-—-IHAOZdz,

which is non-negative because H is # positive. Thus K| is
non-negative.

All that remains is essential self-adjointness. This
amounts to showing that -+ i are not eigenvalues of K *
(Ref. 16, pp. 98 and 99). If they were, one would have
AeL*(T") for which (K* +i)A, =0. Thus

O = (Bj,ky(K‘:. i I)A + ) ]
and so

0= ((K.+0)B;.4,).

Since K, (B;,) = 4,B,,, and since A, is real, this equation
implies that (B;,,4 , ) =0. Thus {B,, } being an orthogo-
nal basis then implies that 4 , = 0. Consequently, K, is
essentially self-adjoint.

The essential self-adjointness of these operators is im-
portant, for coupling it with (3.16) and the orthogonality of
the basis {B;,} yields the spectral resolution for all three
operators. One may then use that spectral resolution to
prove the next lemma.

Lemma3.5: Let K | and K _ be defined by (3.15), let H,
be given by (3.13), and let 2; be given by (2.18). If 4 is a
Schwartz function, then these hold for any real ¢ and all
B>0:

K' (A)=H,cd, K'_(4)=A4°H,,

exp( — 8K )4 = Qz°4,

exp( — BK_)A = A°Q, .

Proof: For each equation, simply compute the inner
product of both sides with each of the B, , and observe that
the results from the two sides are equal. This is sufficient to
establish the equations in an L 2 sense, which is all I really
need.

The operators K, , K_, and K|, all have fairly simple
expressions in terms of partial differential operators. For ex-

(3.17)
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ample, if 4.7 (T"), then K (4) = HoA. But Ho4 may be
directly computed using Voros’s Theorem 2.4.1,%

| ifif oA oA
Hod= % {—(p; + ?)A+—( = —)
jgl[z P +4; 2 9 ap, P; ap;
2 ZA 2
—-ﬁ—(a 149 ‘24)] (3.18)
8\ dp; aq;
Using 4°H = pgo[ , one also has
(1 ifif JA A
AoH = —(p*+ ?)A——( = __)
,-; [ S(Pi+4g AL, %, p; %4,

(3.19)

_ﬁ_Z(aZA+aZA)]
8 \dpr ¢/

Putting these in vector notation and using them to compute
1(A°oH + HoA), one easily gets these expressions for K,
K_,and K,

— (#/8)(A, +4,), (3.20)

Ko=1lz]*— (#/8)(A, + A,) .

Observe that K, is the quantum mechanical Hamilto-
nian for 2n decoupled harmonic oscillators. Here K | are
both perturbations of K, by an angular momentum term.
While points in the spectrum of K , have infinite multiplic-
ity, points in the spectrum of K, have only finite multiplicity.
Also, for every ¢ > 0, the domain of K § is a compact subset of
LXT).

With these comments about K, in mind, the significance
of my characterization of the G that appearsin (3.12) will be
apparent.

Theorem 3.6: Let ¢ be an #i-positive S functional in the
topological dual of S,,, £>0. If G is as in (3.12), then G
belongs to the domain of K /.

Proof: Since H,€S,,, and 5, which is given in (2.18),
belongs to #(T'), H,0Q, also belongs to #(T).> By
Theorem 3.2, one has

$(H,00,) = f (H,90,)(2)6G°G(z) dz.  (321)

Using the associativity of the twisted product and (2.23),
one may put (3.21) in this form,

¢ (H,°Qp) = (H,°03°G,G ) . (3.22)

I want to get a bound for ¢(H,°Q,), a bound that is
independent of 8. To do this, first note that one has the
operator inequality

fi’—[/}’e—‘”})O.

In terms of phase-space functions, this inequality becomes

A
H, — H,00,30. (3.23)

Hence H, — H,0Q,¢€S ;7. The 7 positivity of ¢ then implies
that

$(H, o) <P(H,) , (3.24)
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which is the bound I was looking for.
By approximating G with Schwartz functions, one may
use Lemma 3.5 to show that

H,OQB°G=K’+6’_K*B(G) , (3.25)
which holds in an L ? sense. Expand G in the basis {B,, },

G = 2 yj,k Bj,k ’
ik

(3.26)
Ve = Rur#) ~"(G,B;,) .
Using (3.25), (3.26), and (3.16), one sees that
(H,00,°G,G ) = (2&)"(2 At e‘%mkﬁ) : (3.27)
Jk

Putting (3.27) together with (3.22) and (3.24), one arrives
at the inequality

S Afe My P2ty Tmg(H,) (3.28)
Jk
from which it immediately follows that
(3.29)

S Ay P<Qah) " (H,) .
ik

The inequality in (3.29) is precisely the condition re-
quired for G to be in the domain of K ‘/%; indeed,

K 2G| = (zfrﬁ)"(zi ; In,k|2)<¢(H,) . (3.30)
Jk
So far, I have not used the fact the G is a real-valued
function. This reality is reflected in the ;s obeying
Vik = Vij - (3.31)

To see this, first take the complex conjugate of both sides in
the equation for y;,,

Vix = Q) ~"(GBji) . (3.32)
Since G is real, G = G. On the other hand,

B =B} = ep0*, (3.33)
from (3.14). But (x®y)* =y ex,'" so

ﬁfk = ®Y; =§k,j . (3.34)
From (3.33) and (3.34), one gets that

B, =B, ;. (3.35)
Hence (3.32) may be written

Vi = (2m#) ~"(G,B, ;) , (3.36)

from which (3.31) follows directly. _
In the sum in (3.30), use |¥;x| = |¥x| = |¥4,,|, and
then interchange summation indices; this yields

IK 2G> = (M)"()j/lzln,klz)@w,) . (337
Jk
As before, this implies that G is in the domain of K */?, and
that
IK 2G| = [K“*G|’<é(H,) . (3.38)

The final step in the proof begins with the observation
thatifa>0, 6>0, and ¢ > 0, then

27" Ha'+b)<((a +b)/2f<a" + b". (3.39)
Using (3.30), (3.37), and the right half of (3.39), one gets
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A+ Y

(Zvﬁ)"(z(’—z——") ¥k |2)<2¢(H,) : (3.40)
gk

From (3.40), (3.16), and the argument that I just used, one

again sees that G belongs to the domain of K /% Indeed,

putting together the various inequalities that one can arrive

at from (3.30) and (3.38)-(3.40), I find that
27K EGI<IK G |*2UK G |P<2¢(H,) .
(3.41)

In the course of proving the theorem, I have actually
proved somewhat more than what was stated. I shall sum-
marize these additional results below.

Corollary 3.7: With the notation and assumptions of
Theorem 3.6, one has that G belongs to the domains of both
K'[?and K72

This corollary will be a help in answering the following
natural and important question: To what extent does G de-
termine the functional ¢? Although I did not mention it in
Theorem 3.2, G is unique if one also requires that it be #
positive, so, in a sense, ¢ uniquely determines G. The con-
verse is almost true. It will turn out that if $€S }*, then for all
A€S,, r<t,¢(A) is uniquely determined by G. To prove this,
I need this lemma.

Lemma 3.8: If A€S,, then for every £>0, both Ao},
and {);°4 belong to & (I'). Moreover, for every € > 0, both
Aoz and Q4z°4 converge, in the topology of S, , ., to 4 as
B-0%.

Proof: The first statement follows from Voros’s theorem
2.4.1.% To get the rest of the lemma, all I really need to show
isthat, inS,, 5 — 1 as S—07; the statement about the con-
vergence of 4°Q); and Q;°4 is simply a consequence of
Qg — 1 and the continuity of the twisted product for Voros’s
symbols.’

To show that Q; — 1 in S, note that

Qg — 1)(2)

M+ |e|
-3 c,zr[tanh(%)](” 0, (342)

[7I<]el
where ¢, depends on a, 7, %, but not on z or . (Here, yis a
multi-index; it is not related to the y;,’s used earlier.) For
R > 0, one may use (3.42) together with a little calculus to
show that

sup |d%(Qg — D(2)(1 + |z|2) (el — 72|

|z| >R

<C(1+R?*» ™, (3.43)
where Cis independent of R, . Since, on compact subsets of
I', d%(Qz — 1) converges uniformly to 0 as -0, one has,
from (3.43) and (2.1), that

lim-sup || — 1o <C(1+R*) =2, (3.44)
Letting R — oo then yields that ||Q; — 1||, . —O for all multi-
indices @, and so Qz—1in S,.

I can now prove the assertion that I made just prior to
Lemma 3.8.

Proposition 3.9: Let t>0, r < 2t, and suppose that the #-
positive S functional ¢ is in S'%. If AcS,, then
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é(4) =Blim (J.AOQBGOG dz) . (3.45)
-0+
Proof: By Lemma 3.8, 40Qze#(I"), and so (3.12)
holds:

$(40Q,) = f (4°0,) (2)GoG(2) dz . (3.46)

Again by Lemma 3.8, 4°Q0; 4 in §, , . for all € >0. With
€ = 2t — r, one sees that 4°Q; -4 inS,,:

lim §(400;) = $(4) . (3.47)
0+

Combining (3.46) and (3.47) yields (3.45).

Thus G uniquely determines ¢ on all of the S,’s with
r < 2t. Sad to say, G does not always determine ¢ on S,,. The
reason for this is related to the existence of certain function-
als in the dual of the space of bounded operators on a Hilbert
space. These functionals have the property that they are non-
negative, and they annihilate every compact operator; that
is, they “live” on the Calkin algebra.!” Although I do not
need to deal with them here, I will say a bit more about their
effects later.

What I do need is to get an explicit formula for ¢ in
terms of G when ¢ is restricted to S,. Let 4€.# (I"). For the
present, also suppose that Ge.¥ (I'). Under these assump-
tions, one has that

jA(z)GOG(z)dz
=fH,/on_,/zvoH_,,on,,zoGoGdz
- f H,,°T _,,(4)°H, ,5GoG dz
=fT_2,(A)0H,/2°G°Wdz

= f T_,,(4)°K'*G(z) K'[*G(2) dz

=(T_,,(4)°K'[*GK'/*G ) .

Here T_,,(A) is defined by (2.20).

If G is merely in the domain of K ‘/?, one can show that
(3.48) still holds. To do this, approximate G by a truncated
version of (3.26),

(3.48)

Gy= VB (3.49)
J&N, k<N

Here G, is a finite sum of functions in %, so it itselfis in %,

Note that both G, and K '{*G,, converge in L? to G and

K '72G, respectively. Since the twisted product is L ? contin-

uous,'® taking limits in

fAGNOGN dz = (T_,, (4)°K'*(Gy), K'*(Gy))

then yields (3.48) for any real G in the domain of K */?, and
for any 4 in ..

To get a formula for any 4 in S, r < 2¢, just write (3.48)
in terms of a trace; that is, recast (3.48) as

fA(z)GOG dz
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=¢(4) = 2rA)" Tr[T_,, (4) K'2(G) K'[2(6)*].
(3.50)

In (3.50), replace A by 4, and use (3.45), Lemma 3.8,
Theorem 2.5, and (1.7) to get the following proposition.

Proposition 3.10: Let ¢, r, t, be as in Proposition 3.9. If
AeS, and G is as in (3.12), then

$(4) = Q)" T[T, (D) K246 K 2(0)*] .
(3.51)

One should note that the right-hand side of (3.51) de-
fines an #-positive S functional on S,,; I will denote this func-
tional by ¢. Equation (3.51) shows that ¢ = ¢, on all of
the S,’s, # <2¢t. On the other hand, it is quite possible for
¢#¢d on S,,. For example, if ¢, is a positive, continuous
linear functional on the bounded operators on L 2(R"), and
if ¢, annihilates the compact operators, then

T
$(A4) =T _5(4)) + d5(4) (3.52)

defines an #i-positive S functional that differs from ¢ only
for/f@ions in S,,;; on §,, r<2t, they agree because
T _,,(A) turns out to be compact for 4¢€S,.’

Suppose that one has another #-positive S functional ¢’
and that it satisfies the same conditions that I imposed on ¢
in Proposition 3.9. In addition, let G’ be the functional that
corresponds to ¢’ via (3.12). Using (3.51) and few facts'
concerning the relationships among ||-||,,, Tr(-), and Hil-
bert-Schmidt norm ||*||ys, one can show that for all 4€S,,
7 < 2t, one has this inequality,

|¢(A4) — &' (4)|
n TIENT
<(2ﬂ-ﬁ) "T—Zt(A)"op[”K -I/- G”HS
B2 /2 7
+K 26 s H{IK (G =G lus} - (3.53)

Putting this in terms of phase-space quantities, i.e.,
“llop = II*llus (277%)™2||"||lus = ||"||>, one has the follow-
ing result.

Corollary 3.11: Let t>0, r < 2t, and suppose that both ¢
and ¢’ are fi-positive S functionals in $ ¥, and that Gand G’
are the corresponding functions given in (3.12). If 4€S,,
then

, /\ /\
|6C4) — " (DI<NT _ o () ||w [IIK G-
T
+ B 267 JNEZ(G =GN -

(3.54)

What about the moment problem itself? I am now
ready to finish proving that the conditions given in Sec. I are
sufficient.

Proof of Theorem 1.1: In Sec. 1, I showed that a neces-
sary condition for the moment problem (1.2) to have a solu-
tion is that the moment functional be non-negative on every
#i-positive polynomial P. If 1 assume, on the other hand, that
p(P) >0 for each #i-positive P, then by Corollary 2.7 there
exists an #i-positive § functional u,eS%, such that
By (P) = u(P), when the degree of Pis 2k or less. Theorems
3.2 and 3.6 imply that for each i, there exists a function G,
such that G, belongs to the domain of K %72 Since, for
Jj=0,..,[k/2], 8% DS%, G, belongs to the domain of K4
(which is obvious anyway ), and, from (3.41), satisfies
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"K{)Gk “22 <2/‘k (sz) .
Because H, is a polynomial of degree 4j<2k, this inequality
may be rewritten as

IK4G, 3 <2u(Hy) , (3.55)

which shows that the bound on the right-hand side above is
independent of k as long as k>2j.

Recall that the operator K, is the Hamiltonian for a
system of 2z harmonic oscillators, and that K ;' is a com-
pact operator. Since, for j = 0,1, (3.55) may be written as

1K ¢ " (KGOl <2u(1),  ||KoGrllr:<2u(Hy) ,
(3.56)

and since an L 2 ball of fixed radius is weakly compact, one
may extract from the sequence {K,G, } a weakly convergent
sequence. Finally, since compact operators map weakly con-
vergent sequences to strongly convergent ones, the subse-
quence selected has the property that X i 'K,G, converges
strongly in L 2 to some real-valued function G. The inequal-
ities in (3.56) imply

1G |- <2(1) . (3.57)
Repeat the process for the subsequence {G,,}, only now use
IK o 'K3Geli<2u(Hy) , |[K5Gell<2u(H) . (3.58)
(It may be necessary to discard the first term of the subse-
quence. This will not affect the argument at all.) One may
again extract a subsequence for which {K 3G, -} is weakly

convergent, and so {G, - } and {K,G, - } are strongly conver-
gent. A moment’s reflection shows that again

Gk" —’G, Kon~ —"KOG,
and
1KoG (|2 <2u(H,) -

This process may be repeated indefinitely. Doing so
shows that G is in the domain of K/, for all j>0, and that

KLHG || <2u(H,) . (3.59)

It is well known that this implies that G must belong to
S8

I now want to show that p = G°G solves the moment
problem. Define the functional

pe(d) = fA(z)GoG(z) dz . (3.60)

Since G is a real-valued Schwartz function, 4 is an #-posi-
tive S functional, and it belongs to § ¥ for all . From the way
I constructed G, I can pick a subsequence {G, .} that has the
property that {G,.}, {K,G;.},....{K%G,.} all converge in
L2 to G, K,G,...K%" 'G,., respectively. One may also re-
quire that 2k '>j + 1, for doing so merely discards a finite
number of terms in the sequence.

Let Pbe any polynomial of degree less than 2j + 2; obvi-
ously, P belongs to S, ;. In Corollary 3.11, put ¢’ = u,.
and ¢ = ug, note that &, . (P) = u(P), and use the bounds
(3.55) and (3.59) in (3.54). The inequality (3.54) then be-
comes

e (P) — pg(P)|
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2Ty s (P)WuH; , DK (G = Gi)l.- -
(3.61)

Ask’'— oo theright-hand side vanishes. The left-hand sideis,
however, independent of k' and so is 0 to begin with. Thus

p(P) = g (P) (3.62)

for all polynomials of degree 2j + 1 or less. Finally, since the
construction may be carried out for any j, one sees that
(3.62) holds for all polynomials. If one sets p = G°G and
takes P tobe any of the monomials in (1.3), then one see that
(1.2) holds. [I remark that jabove, unlike the jin (1.3), is
just an integer; jin (1.3) is a multi-index.] This completes
the proof.

The methods used above also yield sufficient conditions
for the solution of a truncated moment problem in which one
knows moments up to some fixed order.

Corollary 3.12: Suppose that one is given a set of
numbers m,,, with | j| + |k |<2v + 2, v being a non-nega-
tive integer. A sufficient condition for the m,,’s to be of the
form (1.2) for | j| + |k |<2v + 1 is that the moment func-
tional £ (P) be non-negative for every #-positive polynomial
P having degree 2v + 2 or less.

Proof: Just apply Corollary 2.7, Theorem 3.2, and Prop-
osition 3.10 to get a G for which (1.2) holds, at least in the
sense of (3.51), for all polynomials of degree 2v + 1 or less.
One runs into difficulty with reproducing the highest order
moments because the functional involved may have a term
like ¢, in (3.52).

IV. CONCLUDING REMARKS

As I mentioned in Sec. I, O’Connell and I gave a set of
necessary conditions for a sequence {m,, } to be of the form
(1.2).2 If one examines that set, one easily sees that it is
precisely the set of conditions obtained by requiring that the
moment functional ¢z be non-negative on all #-positive poly-
nomials of the form PoP. Whether this set is sufficient as well
as necessary obviously hinges on whether every #i-positive
polynomial may be written as a sum of polynomials of the
form PoP. In the classical, one-dimensional Hamburger mo-
ment problem, the analogous question would be whether ev-
ery non-negative polynomial in one variable can be written
as the sum of squares of polynomials. The answer is, of
course, yes, and the set of conditions analogous to those of
Ref. 2 are indeed sufficient.'® For the classical, multidimen-
sional problem, the answer is no,>?! and the corresponding
set of conditions is not sufficient.?? On the basis of the answer
in the classical, multidimensional case, I conjecture that the
conditions given in Ref. 2 are not sufficient. I do so with some
hesitation, for there are many differences between the quan-
tum mechanical moment problem treated here and the clas-
sical, multidimensional moment problem.

The set of restrictions imposed on the moments by re-
quiring that the moment functional # be non-negative for #-
positive polynomials has an interesting physical interpreta-
tion. If one sets

P=CO+cl'p+cZ‘q, (4-1)

where ¢, is a complex number, and ¢,, ¢, are in C", then
p(PoP) >0 gives rise to a quadratic form. Applying the stan-
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dard conditions for this form to be non-negative results in
the position-momentum uncertainty relations.? If one re-
places P in (4.1) by an arbitrary polynomial, then
(1 (PoP)>0 is a non-negative quadratic form in the coeffi-
cients of P. The restrictions imposed on the moments in this
case form a set of generalized uncertainty relations. Should
the conjecture I made above prove true, then there will be #
polynomials that are not sums of polynomials of the form
PoP. The moment functional y applied to such polynomials
will give rise to additional restrictions on the moments, and
so will augment that set of generalized uncertainty relations.
In any case, one will arrive at a “‘complete set” of uncertainty
relations for the moments. [By this I mean a set of restric-
tions satisfied if and only if the m;’s are of the form (1.2).
There are, of course, other uncertainty relations; see Breiten-
berger’s paper?? for a discussion. ]

There are several interesting, unanswered questions
concerning the quantum mechanical moment problem dis-
cussed here. The first is related to what polynomials are ac-
tually # positive. Voros® points out that every semibounded
function in S, gives rise to a semibounded operator on
L %(R"). In particular, every non-negative polynomial in q
and p can be made into an # positive one just by adding a
positive constant to it. Is the converse also true? Put another
way, does every #-positive polynomial differ from a non-
negative polynomial by a constant? If the answer is yes, then
the difference between the quantum mechanical moment
problem and the classical one is small indeed. The answer to
this question might also shed light on the difference between
states in quantum mechanics and in classical mechanics.

In proving sufficiency in Theorem 1.1, I merely showed
that an appropriate Wigner function p existed. Is this func-
tion unique? If it is, the moments would serve as a kind of
“minimal set” of expectation values required to determine p.
Also, whether the solution is or is not unique, is there any
method—say, some kind of variational procedure—for con-
structing p? Finally, is there a way of constructing solutions
to the truncated moment problem mentioned in Corollary
3.127
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The natural composition of systems in quaternionic quantum mechanics is examined via their
lattices of propositions and it is shown that the criticisms that have been made of such a

composition are unconvincing.

I. INTRODUCTION

Complex quantum mechanics is at the center of much of
modern physics but in spite of this there remain unanswered
fundamental questions about why it is preferred above alter-
native quantum theories. The need for an understanding of
this preference is made more pertinent because of the impor-
tant place phase invariance has taken in particle physics.
Quaternionic quantum mechanics, the most prominent al-
ternative, is considered here.

To quote Finkelstein e al. on quaternionic quantum
mechanics, “The principal conceptual difficulty concerns
the theory of composite systems where the ordinary tensor
product fails due to noncommutativity.”' Many authors
working in the field since have agreed.>> However, it is in
response to this difficulty that Finkelstein ef al. and the sub-
sequent literature have diverged. While Finkelstein ez al.
considered that a sensible theory could be arrived at despite
the requirement that the composite Hilbert space be quater-
nionic, the rest of the literature has asserted either that one
must give up quaternionic quantum mechanics’ or give up a
quaternionic composite Hilbert space.”*

What we hope to do here is to put forward a theory of
composition in quaternionic quantum mechanics following
Finkelstein et al. and then to show that the criticisms of such
a program that are found in the literature are unconvincing.

The notions of quaternionic Hilbert space used here will
be those of Horwitz and Biedenharn.*

Il. QUATERNIONIC COMPOSITION

Following Aerts,® Zecca,” and Finkelstein ez al.,® the
composition of distinguishable quantum systems should be
viewed as a lattice theoretic problem. Then we ask: given two
quantum systems S, and S, and their corresponding lattices
of propositions and sets of states (.}, /) and (.£,, .&,),
what quantum systems S, (., ) may be considered as
containing both S, and S,? That is, what does it mean for one
quantum system to contain two others? In line with the
above three authors we are going to say it means that if you
could ask a question of system 1 (e.g., the particle, that sys-
tem 1 is, has a momentum p) as a system by itself then you
can ask the same question of the composite system (e.g., that
particle 1 has momentum p) and similarly for system 2.
Mathematically this may be interpreted as the assertion that
there exist mappings #,: ., - .%, for i = 1, 2, sending prop-
ositions of the subsystems to the corresponding, “the same,”
propositions in the composite system. This sameness of the
elements in &, (.¢;) and the elements in .Z; implies also
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that h; preserves the structure of . ;. We will call the exis-
tence of 4, and the preservation of the structure of .%; by A,
Axiom 1.

One might describe what has been done as finding a
natural and directly interpretable axiom deductable from
physically plausable assumptions, which is something that is
always useful to do.®

It may be that this axiom is too strong to include all
systems that we might like to call composite. Composition
could possibly be better, or more generally, described via
states or via maps from . to .¢°;. However, what we are
trying to do here is develop a definitive notion of composi-
tion. Axiom 1 will suffice.

Having asserted Axiom 1 we need to consider the rela-
tionship between 4, and A, that is the relationship between
the two components inside the composite. If we were to de-
scribe two completely independent subsystems then we
would be able to give very strong requirements governing the
relationship between 4, and 4, as do Aerts® and Aerts and
Daubechies.'® However, we have traditionally considered a
wide range of systems as composite. Systems such as two
balls on a string, the hydrogen atom, and three quarks bound
by gluons are all different from the sum of the components
acting independently.

If we follow wave mechanics where the position obser-
vables Q, and Q, are singled out as multiplication by x, and
X,, respectively, then there is a natural composite Hilbert
space and a natural relationship between 4, and A,. For the
case of one-dimensional particles the component Hilbert
spaces are L } (R), and L }, (R),, the Lebesgue square inte-
grable functions from R to @, and the natural Hilbert space
for the composite system, a system with two degrees of free-
dom, is L 3 (R?). The lattice mappings 4, and 4, that Axiom
1 requires become mappings of closed subspaces of L , (R),
to closed subspaces of L 3 (R?) for i = 1,2. Though it is not
necessary it is both convenient and natural for these to take
the form

h;: S,CL é (R),~{¥, X2 (%1,X5)

=1 (x)x2(x,) |¥,€S,, XzeLé(R)z},
hy: SszZQ(R)g"’{Ql’z',Yﬁ (x1,%5)
~ (%) ¥ (%) |¥,€5,, x,€L 2Q (R),}.
(1)
Observables, as lattice-valued measures, of the component

systems may be associated with observables of the composite
system via &, and 4,. If O an observable of system i maps E, a
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Borel subset of R, to O(E) an element of .Z ;, then the corre-
sponding composite observable maps E to #,(O(E)). Now as
the spectral theorem applies unchanged to quaternionic Hil-
bert spaces we may express this association in terms of Her-
mitian operators. To do this we must first note that for all
an element of L}, (R?), ®(x,,x,), may be written as a sum,

Z 'ﬁ,!(x])%(xz),

where ¢ /€L 7, (R), just as with the complex case. With this
expression of elements of L 7, (R)? an operator 4, of subsys-
tem 1 can be associated with an operator 4 of the composite
system via

(AD) (x;,x,) =Z (A1¢})(xl)¢§(x2)' (2)

This operator association sends projections onto S, a sub-
space of L 7, (R), to projections onto 4, (S,) so that it corre-
sponds to the association of lattice-valued measures given in
Eq. (1). A similar association may be made between an op-
erator A, of L} (R), and a composite operator A4,

(AD) (x,%2) = T (4] (x2)8! (x,), (3)

which agrees with A,, where

Z¢%(x2)¢3(xl)

is an expansion of ®(x,,x,) with elements of L  (R), lead-
ing. In the composition given in Eq. (1) @, commutes with
all the observables of system 2 and similarly Q, with those of
system 1. This is because both Q, and @, send real functions
to real functions: For i = 1,2 (Q,¥) (x,,X;) = x;¥(x,,X;).
On the other hand, the momentum observables P, and P, do
not in general commute with the observables of system 2 or
system 1, respectively, in the way that Q, and Q, do. This is
because P, is of the form J, (d /dx,) withJ, an anti-Hermi-
tian unitary operator which commutes with (d /dx;) and J,
defined from the time translation operator in system 1. And
J, is similarly related to P, (Refs. 11 and 12). Here J, does
not in general send real functions to real functions. This qua-
ternionic nature of J, will neither allow it nor P, to commute
with all the observables of system 2.

This whole discussion could have been carried out just
as well with the component systems displayed in momentum
space.!' The Hilbert spaces would be the same function
spaces but the association between Hermitian operators and
physical observables would be different and 4, and 4, would
not be given by Eq. (1). Here momentum observables P, and
P, would have the form (P,¥) (p,, p,) =p;¥(p,, p,) in the
composite system. So P; would commute with all the obser-
vables of system 2 and similarly for P,. The two composi-
tions, one based on position and the other on momentum, are
not equivalent. Finkelstein ef al.>® have indicated that each
such representation of the component systems in terms of
function spaces is a definition of what observables are real.
So the choice of representation determines which observ-
ables of system 1 commute with which observables of system
2. So the choice determines the composite system. Which
observables commute has direct physical consequences
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when observables are measured simultaneously. So in situa-
tions without superselection rules the choice of composition
is determined by experiment.

We have shown in Ref. 11 that for quanternionic quan-
tum mechanics (QQM) to be consistent with the remark-
ably successful description of the world provided by com-
plex quantum mechanics (CQM) it must be that CQM is
embedded in QQM. This has the effect that in the wave me-
chanics representation of system 1 (J,¢,) (x,) = ¢,4,(x,)
for all ¢,€L % (R), for some fixed ¢, a pure imaginary qua-
ternion of unit length. Similarly J,¢,(x,) = ¢,¢,(x,) for all
el 2Q (R), for some fixed g, a pure imaginary quaternion of
unit length. With this restriction of the J’s a complex quan-
tum mechanics can be seen to be contained in each of the
component systems.'' Complex is defined for observables,
states, and scalars via commutation with ¢, and ¢, in system
1 and system 2, respectively. Similarly we expect that “com-
plex” may be defined for the composite system or may be
induced from the components. The success of complex
quantum mechanics, especially in its use of isolated systems,
is strong evidence for the complex observables of system 1 to
commute with the complex observables of system 2 at least
when operating on complex composite states, which is suffi-
cient to ensure that they do commute. It might be, however,
that the commutator of complex observables from different
systems is not zero but just small when acting on complex
states of the composite system. We believe it would need to
be vanishingly small and will not consider the possibility
here.

The above requirement that the complex observables of
different systems commute restricts the possible representa-
tions of the component systems. The wave mechanic repre-
sentations of systems 1 and 2 must be such that¢, =g, =g¢.
Otherwise, in particular, [P, P,] #0. Similarly for the mo-
mentum representations where @, =gq,(d/dp,) and
Q, = ¢,(d/dp,) it must be that ¢, = ¢, = ¢.

What is still left ill defined is the relationship between
observables of the two systems when one of the observables is
not complex. In particular, which if any complex observable
of system 1 commutes with all observables of system 2. That
this ambiguity remains is not so much the result of an ill
defined composition procedure but the result of the hidden-
ness of quaternion quantum mechanics, since as we have said
the choice of composition should be able to be determined by
experiment. No measurement has ever been identified as be-
ing of a noncomplex observable nor of a noncomplex state. It
is with such measurements that the precise nature of compo-
sition in quaternionic quantum mechanics must be deter-
mined. It also behooves quaternionic quantum mechanics to
explain the lack of such experimental evidence, but we will
avoid this issue here.

lll. ARGUMENTS AGAINST QUATERNIONIC
COMPOSITION

To our knowledge there have been two arguments given
in the literature purporting to show that the composition of
two subsystems described by quaternionic Hilbert spaces
cannot in turn be described by a quaternionic Hilbert space.
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One based upon lattice theoretic considerations is given by
Aerts*® and the other, based on Hilbert space ideas which
mirror Aerts’s work somewhat, is put forward by Rembie-
linski.?

Aerts describes a system S as composed of systems S
and S, if the three following conditions are satisfied.

(1) The structure of S, and S, is preserved when consid-
ered as parts of S.

(2) A measurement on one of the systems S, or .S, does
not disturb the other one.

(3) When we know the state of S, and of S, then we
know also the state of S.

He then interprets these as the following lattice theore-
tic conditions.

(1') There must exist maps h;: £ ,—».% and hy
&, .%, where h, and A, conserve the structure of .Z", and
L,

(2" If g,e.¥, and a,€.7,, then h,(a,) is compatible
with A,(a,).

(3') Ifa, is an atom of .Z", and a, is an atom of .Z, then
hi(a,) Ah,(a,) is an atom of ..

Then in the language of generalized Hilbert spaces
which represent .¥,, .%,, and .¥ Aerts proves some very
general theorems asserting the existence of a bilinear (o,,0,)
isometry from the component vector spaces to the composite
vector space which preserves the composition provided by 4,
and A,. These theorems have as their corollary that the Hil-
bert spaces representing each of the lattices may not all be
over the quaternions.

That Aerts should come to such a conclusion is clear
from the assumptions he makes. To show this we follow Fin-
kltltlstein et al® and note for ¢,eL , (R), and ¥,€L ; (R),
that

h({a: ac@}) Ah,({9,8: Be@})
={ -y (epx2) ¥ (x)x2(x2) [x-€L 2Q(]R)z}

A {¢2'X13 (x1%2) > (X)) x 1 (%)) |,1’1€L ZQ (R)l}
4)

is nonempty if and only if there exist quaternions @ and b
such that [¢, (x,)a, ¥,(x,)b] = Ofor all x, and x,. As {¢,a:
ac@} and {¢,B: BeQ} are atoms of their respective lattices
then the possibility of the above meet being null is in contra-
diction with 3’.

The assumptions 1,2,3 and their lattice theoretic inter-
pretations 1, 2’, 3’ are not only inconsistent with quater-
nionic composites but are similarly inconsistent with some
simple complex compositions, in particular the complex
quantum mechanics of two hard spheres and the quantum
mechanics of two positively charged particles. Just as in qua-
ternionic composition in the complex composition there are
pairs of atomic propositions, namely, one from the quantum
mechanics of one hard sphere (considered as a separate sys-
tem) and the other from the quantum mechanics of the other
hard sphere, for which the meet of the images of these propo-
sitions in the composite system is null. These are those pairs
in which the two spheres are required to occupy some vol-
ume in common. The quaternionic and the hard sphere com-
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positions are similar in that they both satisfy 1, 1’, and 3 for
pure states but do not satisfy 2, 2, and 3'. That they satisfy 1
and 1’ is clear. For 2 we note that most composite systems do
not satisfy 2 in an unqualified way because there are always
states of the composite system in which the component sys-
tems are correlated. The more specific and much less strin-
gent requirement 2’ falls foul of both compositions because
in each case there exist these propositions of each of the com-
ponent systems whose meet in the composite system is null
and such pairs can be found whose images in the composite
system are not orthogonal. This is sufficient to prevent com-
patibility. For 3 and 3’ we see that when the meet of the
images, in the composite system, of two atoms, one from
each of the component systems, is not null then the meet is a
uniquely determined atom of the composite system. So
whenever we know what pure states S, and S, are in, and this
is consistent with the two systems being composed together,
then we know the state of S. In this way both compositions
satisfy 3 but not 3'.

Rembielinski requires that composition be described by
a vector product £ Xf2X -+ - X f” with f* an element of the
k th Hilbert space. This vector product is required to obey the
distributivity condition f'Xf2X - X (g + h*) X - Xf"
=f1><f2><...ngx...Xfr+fle2x...xhk><...
X f"for every k = 1 to r. He notes that states are determined
by rays and so requires f1Xf2X - frax X f = (f!
XF2X X fEX X fNya™ for all k, where a is any ele-
ment of the field of scalars of the component space and a* is
some element of the field of scalars of the product space. He
is then able to show that the scalars of the component spaces
commute, thus discounting Q. His argument depends cru-
cially upon this relationship between rays of the component
Hilbert spaces and those of the composite Hilbert space. In
particular, the fact that the mapping 7, is independent of f!
to f".What we have considered in Sec. II is an alternative
relationship, one not essentially based on Hilbert spaces but
on lattices, so we have sidestepped his objection by never
requiring the composition to be put in terms of individual
vectors. It is interesting to note that the implementation of
composition by a vector product is precisely what Aerts’s
theorems assure, so Rembielinski and Aerts have come to
the same conclusions somewhat from the same direction.
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The problem of finding component states given a composite state is examined for quaternionic
quantum mechanics. It is shown that under very loose conditions the component state is forced

to be complex.

I. INTRODUCTION

The problem of composing systems in quaternionic
quantum mechanics (QQM) is one with many suggested
solutions. Elsewhere' we have shown that the criticisms le-
veled against the natural solution that was first mooted by
Finkelstein et al.? are insufficient to dismiss it and prompt a
search for alternative and more elaborate solutions. It has
become apparent> that the way to approach the problem is
via the propositional lattices of the component systems and
their embedding within that of the composite system. How-
ever, previous work"? has only gone so far as to establish this
embedding; what has not been discussed is the relationship
between the states of the composite system and those of the
component subsystems. This is what we propose to do here.
In order to make the embedding and subsequent analysis
more concrete we will discuss the composition of two one-
dimensional quantum wave mechanical systems. That is,
L% (R), and L} (R), will describe the component systems
and L% (R?) will describe the composite system. We will
refer to these Hilbert spaces as H,, H,, and H, respectively,
throughout this paper. These are of course sets of Lebegue
square integrable functions from variously R and R* to Q
with the usual integral inner product. There is no preference
for system 1 over system 2 as a component system of the
composite system, so to avoid tiresome rewriting of results
which focus upon one component system or upon the com-
ponent systems differently, we note that in all that follows
the subscripts or superscripts 1 and 2 may be interchanged.

Fortunately a number of useful structures carry over
from complex quantum mechanics (CQM). We know that
the states of these systems correspond to density operators
acting on the corresponding Hilbert spaces just as in CQM
because Gleason’s theorem applies unchanged to quater-
nionic Hilbert spaces.>¢ Also the spectral theorem remains
unchanged® so observables are self-adjoint operators and
may be expanded in terms of projection operators. Similarly
the relationship between pure and mixed states is preserved,
the latter as convex combinations of the former. Finally as an
upshot of all this the probability that a proposition P,,, a
projection onto the subspace M, is true when the system is in
the state D, a density operator, is tr (DP,,).

The superscripts and subscripts 1,2, or nothing will de-
note things pertaining to system 1, system 2, or the compos-
ite system, respectively, in the following way: functions will
be superscripted and inner products will be subscripted.

Il. TWO QUESTIONS

There are two questions one can ask of the relationship
between composite and component states. First, if the com-
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posite system is in a specified state D, what states if any can
the component systems be in? Second, if we specify the states
of the component systems what states if any can the compos-
ite system be in? To answer these questions we must form a
criterion with which to say it is consistent for a component
system (call it 1) to be in a state D, while the composite
system is in a state D. Such a criterion is as follows: for any
proposition of subsystem 1 the probability of that proposi-
tion being true, when subsystem 1 is in state D, is equal to
the probability that the “same” proposition, as a proposition
of the composite system, is true when the composite system
is in state D.

Now the association between a proposition of the com-
ponent system and the same proposition of the composite
system is given by the embedding of the propositional lattice
of the component system into that of the composite system
as we discussed earlier. In Ref. 1 we argue that this embed-
ding depends upon the choice of representation of the lattice
of propositions of the two component systems within their
Hilbert spaces. That is, it depends upon which subspaces
represent which propositions or equivalently which Hermi-
tian operators represent which physical observables. How-
ever, whichever representations are chosen the Hilbert
spaces are still the same function spaces and, considered on
these function spaces independent of interpretation, the em-
bedding is fixed. So by putting off the discussion of observa-
bles for a moment we are free to discuss the embedding and
its consequences for the relationship between the states, but
without physical interpretation of the states. The embedding
is as follows: if P,, is a proposition of the composite system
1, M, a subspace of H,, then P,, is the same proposition in
the composite system when M = {¢' - ¥*: ¢'eM,, *eH,},
where ¢! * ¥ (x,,X,) > (x;)¢¥*(x,).

So for D, and D states of the component and composite
systems, respectively, to be consistent with each other we
require that

for all M, a subspace of H, [call this requirement (A)].
For further work we need the explicit form of P,, for a
given M,. Let {y;} be an orthonormal basis of M, and let
{£?} be a real orthonormal basis of H, then {y; - £?}is an
orthonormal basis of M. So for YeH,
PM‘I’=}};X}< Ei £ W)
J

We always can write ¥ as
Z é; - Yla,,
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where ¢}eH,, y?eH,, and a,€Q for alli. Thus using the prop-
erties of the inner products,

PMW=Z(PM,¢1'1)'¢1'201" (D

Hl. FIRST QUESTION

To answer the first question mentioned above we need to
start with a state of the composite system D. Then given D,
requirement (A) amounts to specifying a probability mea-
sure on the propositions of H,, namely, Py, —tr(DP,,). So
Gleason’s theorem asserts that some D, exists such that
tr(D,Py,, ) = tr(DP,,) for all M, and its corresponding M.
We may also show that such a D, is unique. Suppose D | also
satisfies tr(D (P, ) =tr(DPy,) for all M, then
tr(D 1 M,) = tr(D,M,) for all M,. Now for M, one-dimen-
sional, M, = (v), this becomes (v,D,v) = (v,D{v) for all
veH,. So writing 4 = D, — D | we note that 4 is Hermitian
and (v,4v) = O for all v. Take ueH, then

0= (4u + u,A(Au + u))

= (Au,A’u) + (u,A°u) + (Au,Au) + (u,Au)

= 2||4u|. (2)
Thus, Au = 0 for any ueH, implying D { = D,. Note that
tr(D, Py, ) for one-dimensional propositions was sufficient
to determine D, uniquely.

Having now shown the existence and uniqueness of D,
one may reduce the problem. Any D a state of the composite
system can be written as Z,a,D’, where the D' are pure
states of the composite system. For each of these D * we have
D/ the unique solution to tr(D} Py, ) = tr(D Py, ) for all
M,. It is easily shown that D, = 3,a,D satisfies condition
(A) uniquely. Thus the problem is reduced to finding the
component states corresponding to a pure composite state.
We can solve this reduced problem. For D pure then
D = P4, the projection onto the one-dimensional subspace
of H. Here (®) = {®a: acQ}, where P is a unit element of
H. Now ® can always be written as =,¢] - ¥?4,, where {47}
is a real orthonormal set in H,, ¢}cH,, and 1,eQ for alli. As
we have shown above to uniquely determine D, it is suffi-
cient to consider one-dimensional subspaces M, = {y'a:
aeQ} = {y') for y'eH, of unit length. Then for the corre-
sponding M using Eq. (1) and the fact that the ¢7 are real,

tr(DPM) = E'{ ?(lﬁ?,(#d’l)1(X1’¢})1¢'f)z/1,- ’

=
=Z/1?/1i'(¢;»1’1)1|2- (3)
Then it is easily shown that

D, = Z’i YL g,

satisfies condition (A) uniquely.

IV. SECOND QUESTION

Given states of the component systems D, and D, then
D, a consistent state of the composite system, is neither guar-
anteed to be unique nor guaranteed to exist. The lack of
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uniqueness comes about just as it does in complex theories. %’
The possible nonexistence of a consistent D is new. This can
be traced directly to the correspondence between proposi-
tions in the component systems and those in the composite
system. The pertinent property is that via this correspon-
dence the meet of some propositions of system 1 with some
propositions of system 2 is null.

We can give an account of what happens in the restrict-
ed case where D, and D, are pure. If D exists and is mixed
then from what has been said above D, and D, would have to
be mixed. So we know that when it exists D is pure. Suppose
Dexistsandlet D, = P4, D, = P2y, and D = P 4, , where
#', ¢, and ® are elements of H,, H,, and H, respectively, and
are all of unit norm. Here ® can always be written as
3.4} - ?A,, where ¢! is a unit element of H, and A,eQ for all
i and where {17} is a real orthonormal set in H,. Thus from
Sec. H1

Py =Dy=F %P, . 4)
Further if ve({¢!}) and (v,4') = 0 then
(0,P gy 0) = O;é(v, 2/1 ;"/l,-P('h,) v) .

This is a contradiction, so ({¢!}) = (#') and therefore
#! = @' u; for some pu,€Q and for all i. Therefore

¢=z¢lyi'¢?ﬂ'i=¢l'z¢%ﬂi'{i . (5)

Similarly ® = ¢*-y' for some y'eH,.

Finkelstein ef a/. have shown that ® can be expressed in
these two ways only if for some a,8eQ [¢'(x))e,
¥#(x,)81 =0 for all x, and x, (Ref. 2). And in that case
® = ¢'y-¢*6 for some y,6€Q. So these conditions are neces-
sary conditions for D to exist. When these conditions are
satisfied D = Py, . ,», for some yeQ, so from the discussion
in Sec. I1I they are sufficient conditions for D to exist. The
above necessary and sufficient conditions are precisely the
conditions for the propositions corresponding to P, and
P, in the composite system to have a non-null meet.? So D
exists when the atomic propositions that correspond to the
pure states of the components have a non-null meet.

V. HIDDEN QQM

The thrust of this work is to show that QQM is hidden.
To do this we must take a specific orientation of the physical
observables within the component Hilbert spaces. We re-
quire in particular that the position observables Q; have the
form

(Q:8")(x;) =x,8'(x;), i=12,

and that the momentum observables P; have the form
(P (x;) =e, i¢"(J|ci), i=12,.
9x;

That these observables can be written like this is shown in
Ref. 8. The complex numbers are then defined as
({1,e,}) = {al + Be,: @,fcR} and the complex vectors in
the function spaces H, and H, are those functions that map
onto the complex subset of Q. We further show in Ref. 8 that
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we can associate those states of QQM that leave the subset
containing the complex vectors of the Hilbert space invar-
iant with states of a CQM.

A. An illustration

We will now iilustrate how it comes about that QQM
might be hidden. Consider D = P4, astate of the composite
system ®eH with ®(x,,x,) = ¢'(x,)¥?(x,), ¥* a unit ele-
ment of H, and ¢' = (1/42) (¢} + ;4! ) for ¢} and #} real
and unit elements of H,, (¢} ,42 ), = 0. So we may write P as
¥ - ¢ (1/32) + e? - #1(1/42) and then from our pre-
vious analysis

Dy = {Pypy + 3Py - (6)
We examine the action of D, on a complex element of H,,

Doy =W (") + de (e’ X,
=107 + el (P ) et
as  yi(x,) = ({l,e,}) forallx,,
=% + e fie¥, where ¥} =W (PP x7),. @)

Therefore D,y? is a complex element of H,. So D, leaves the
subset L 7, .3, (R), of H, invariant. Thus D, may be writ-
tenas 2;a,P, £2xyyy » WhETE the £ 2(x,) are complex functions

in H, (Ref. 8). Thus for composite states of the form of D the
component states of particle 2 are always complex, indepen-
dent of the form of ¥”(x,). So for such states their quater-
nionic nature is somewhat hidden.

Pursuing the illustration further we note that the power
of the result we have obtained depends very much upon how
many and which composite states are of the appropriate
form. Apart from the fact that it is not normalizable the
momentum state® exp(e,px,) would have the appropriate
form for ¢'(x,). However, in the case where we consider
states normalized in a box of finite volume,
é'(x,) = (1/N)exp(px,) is a normalized vector for some
NeR. Hence

D(x,,x,) =¢1(x1)¢2(x2)
= (1/\2N)?(x,)V2 cos(px,)

+ (1/2N) e (x,)42 sin(px,) (®)
is of the appropriate form for any ¥* = L 7, (Box),. Itis clear
that as well as D, being complex D, is the momentum state
P (1/Nyexp(epxyy - This shows, for such a normalization, that a
large class of composite states are of the appropriate form,
including those in which D, is a momentum state. It is in-
structive for generalization to note that

$'(x)) = i(exp(e, px,) + exp( — e, px,)) = cos(px,)
does not leave ®(x,,x,) in the appropriate form, as
D(x1,x,) = ¢' (x,)PP(x;) = ¢7(x;)cos(px;,)
and so D, = P ;).

B. A generalization

With the above in mind we examine a composite state
D =D, where ®(x,,x,) ="' (x,)¢?(x,), ¢' a unit ele-
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ment of H, and ¢ a unit element of H,. We also require

1 172 © -

#'(x)) = (;) f exp(e, px,)9' (p,)dp,
withj&(p,) #0, implying ¢'( — p,) = 0 for which we will
say ¢' satisfies condition (B). We will say D satisfies (B’).
Then setting

. 1 \172 (= -
A =(E_-) f cos(px,)é (p,)dp,

and

. 1 172 * . ~1
B =(_2-1;) f sin(p,x,)¢'(p,)dp, ,

we may write
D(xy,x;) =4 1(x1)1//2(x2) + e, B ‘(x1)1//2(x2) . (9)

Notethat4 'and B ' are elements of H,,4 'iseven,and B ' is
odd. If we can write

B'(xy) = ZX}Bi(xl)bi

with {y};} an orthonormal set of real odd functions in H,
and b;eQ for all i and if we can also write

A'(x,) = Z_X,lu (x)a;

with {y%;} an orthonormal set of real even functions in H,
with a; = b, for all i then

b,
D(x1,x;) = 2 m PP (x5)x 1 (%) |5

b,
+Zexml’1‘9i(x1)|bi| . (10)
Thus as (yy,x5 ), =0 for all / and j we have, from our
previous discussion,

D, =3 15;*(Picoynness + Prescoipirn ) » (11

which as before means that D, is complex.

We now need to show that we can find such sets {y};}
and {y%}. Take any orthonormal set of real odd functions
{x5:} that span the subspace of odd functions of H ; then as
B'isodd

B'(x,) = Zx},,.(xl)b,- with b, = (y5.B"), .

We wish to find an orthonormal set of real even functions
{x:} such that

Al (x) = ZX,I«' (xy)a;

witha, = (4,4 ") and a, = b,.
We may write

. 2\V2 (=~ .
XBi (xl) = (‘;) J‘ X Bi (P)Sm(le)dP

with y5: (p) = Ofor p <0 as yb, is odd. Evaluating b, we find

that
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b= J'w}},.-(p)&‘(p)dp — r}}m @) é'(—p)dp, (12)
0 0

by expanding the integrals. Now let m, = {p|4"(p) #0,
p>0} and m, = {p|¢'( — p) #0, p>0} then by condition
(B) m,;Nm, = ¢. Further, take any M, 2D m, and M,Dm,
such that M,UM, = R * U{0} and M,;NM, = ¢, then

b, = I’lﬂi(P)‘zl(P)dP _f ;L:(P)&l( —pldp.
M, M,

Similarly we may write
. 2\1/2 (o ~
a0 =(2)" " Butwrcosiomdp

with y4; (p) =0 for p <0 as y); is even. And similarly we
may evaluate a;,

a, = M;?L.-(p)a‘(p)dp + M;?Li(m&'( —p)dp.
' ’ (13)

So to ensure g, = b, it is sufficient to demand that y, (x,)
satisfy % (p) =¥k (p) for peM,, ¥ (p) = — x5 (p) for
PeM,, and yi,; (p) = x5 (p) = O for p <O0.

We have left to show that {y}; } is an orthonormal set of
real even functions in H,. That y}; (x,) is even is obvious
since it has a cosine expansion. That y; (x,) is real is en-
sured by yX, (p) being real which in turn comes from y 5, (x,)
being real. Using the above relationship between v, (p) and
X5 (p) it is easy to show that

(X.lﬁ’XLj) = (XlBi’xlBj) . (14)
Thus y, (x,) is square integrable for all i and {y}, (x,)} is

an orthonormal set in H,. So D, is complex whenever D
satisfies (B’).

C. Superpositions

We will extend this result to superpositions, that is to
states D 4, with

D(x,,x;) = Z ¢11 (xl)'/’?(xz) ’

where

1 \2 (= -
$i(x)) = (;) J exp(e, pyx,)8} (p)dp

and where @} (p) #0 for some i implies &,‘( —p) =0for all

J. We will say {¢!} satisfies condition (C), and that D satis-

fies condition (C').

We may write ®(x,,x,),
1 172 «© -1
D (x),x,) = Z(E) f exp(ep:x,)¢; (p)dp ¥ (x,) ,
1 172 ® -1
-() z(f " Blpreos(pxdp i )

e f axp)sin(px,)dp:ﬁ,(xz))

= ZA }(xl)¢i (x2) + zelB,!(xl)!l'i(xz) . (15)
Then if we can write
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Bnl'(x) = zx}ij(xl)bij
J

with {y},} an orthonormal set of real odd functions in H,
and if we can also write

A}(x) = ZXLJ (xp)ay
with {y);} an orthonormal set of real even functions in H,
and a; = b; for all i and j we have

P (x,x;) = Z(M 1

J
+e (ziba%(xz))
]Vj
with
Nj = l lz_bij'/’i(xz) ‘ .

So as (yL; (x,),y5: (x,)) =0 for all / and j we have that

N XAj(xl)Nf

J

X5 (xz)N,), (16)

D,= ;(Pai(ai,w%/zv,)) + P(e.:;(bM/N,)) ) (17)

which, as before, is complex.

To show that we can find the required orthonormal sets
we note that {@!} satisfying condition (C) implies that the
non-negative real line may be split into two disjointed sets
M, and M, with

M, 2{p: !(p)#0, p>0} foralli

and
M,2{p: $!( —p)#0, p>0} foralli.

So given {y},} an orthonormal set of real odd functions we
may define {y};} as before via M, and M, which we note are
independent of i. So for each i the required conditions to
show a; = b, for all j are satisfied by this choice of {y},}
and {y};}.

D. Momentum conditions

We will now show that a pure composite state satisfying
condition (C’) is equivalent to the probability density Pd of
the momentum of particle 1 satisfying condition (B).

First take D = P, with

D(x,x;) =3 & (x) Y (x,)
and
Yi(x) =3 E7(x)4y,
J

where {£7} is an orthonormal set of real functions and a
basis for H, and 4;€Q for all { and j. Then

D(x,,x;) = z ¢l!(xl)/lji§j2(x2) .
T

Thus the component state
Dl = ;aij#H”) s
where
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Iz ¢.l (xl)/{'ji

The particle 1 momentum probability density function
Pd(p) is then

zj: ajz(zl_: ! (P)’lﬁ).(z éi (P)/iji) )

Suppose D satisfies (C'). So condition (C) holds for
{4!}. Take peR if Pd(p) %0, then $! (p) #O0 for some i; thus
we have that @L(—p) =0 for all k. It follows that
Pd( — p) = 0. Therefore Pd satisfies condition (B).

On the other hand suppose Pd satisfies (B), i.e.,
Pd(p)#0 implies Pd( — p) = 0. Then

> $1p)A; #0

a; =

for some j forces

S #l(—p)A; =0
for ali J- So letting

fix) =3 ¢'(x)4;

i

we have that
B(x,x5) = Y f; (%06 (x2)
with { f}} satisfyijng condition (C) as
Fi®0) =3 4@y

So D satisfies (C').

Finally consider a nonpure state D = 2,a,D;, D, pure,
with the particle 1 momentum probability density function
Pd(p) satisfying condition (B). As

Pd(p) =3 aPd(p) ,

Pd’ the particle 1 momentum probability density function
for state D' also satisfies condition (B) for all i. It follows
that D satisfies (C’') and therefore that D% is complex and,
as convex combinations of complex states are complex, that
D, is complex.

We have then that for any composite state D if the prob-
ability density function for the momentum of particle 1 satis-
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fies condition (B) then the component state of particle 2, D,,
is complex. Extending this result to three dimensions and to
many particles is just a matter of introducing new param-
eters and may be derived as a corollary to the two-particle,
one-dimensional case. The statement of the theorem then
becomes, that for any many particle three-dimensional state
D, if the probability density function for the component of
the momentum in any direction of any particle satisfies con-
dition (B) then the component system of the rest of the par-
ticles together is complex. That condition (B) is satisfied by
a momentum probability density is a common situation. For
instance, (B) is satisfied if any component of the momentum
of a particle is entirely positive. This occurs whenever the
momenta of all but one of the products of a decay are mea-
sured sufficiently accurately which, for the two-body decay,
amounts to observing one of the particles to be within any
hemisphere centered on the center of mass.

Vi. CONCLUSION

We have found that the description of the component
states for a given composite state follows along much the
same lines as in complex quantum mechanics. Using this
formalism we have shown that the component states are
complex under weak conditions, much weaker than requir-
ing one particle to be a momentum state. This means that if
one can only measure component systems then it is plausible
for the component system to be always in a complex state
while the total system is in a quaternionic state, thus shield-
ing quaternionic states from investigation.
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Absolutely continuous spectra of quasiperiodic Schrédinger operators

Luigi Chierchia®
Forschungsinstitut fur Mathematik, E. T. H. Zentrum, CH 8092 Ziirich, Switzerland

(Received 22 July 1986; accepted for publication 13 August 1987)

Several aspects of the general and constructive spectral theory of quasiperiodic Schrédinger
operators in one dimension are discussed. An explicit formula for the absolutely continuous
(a.c.) spectral densities that yields an immediate proof of the fact that the Kolmogorov—
Arnold-Moser (KAM) spectrum constructed by Dinaburg, Sinai, and Riissmann [ Funkt.
Anal. Prilozen. 9, 8 (1975); Ann. Acad. Sci. 357, 90 (1980)] is a subset of the a.c. spectrum is
provided. Some quasiperiodicity properties of the Deift-Simon a.c. eigenfunctions are proved,
namely, that the normalized phase of such eigenfunctions is a quasiperiodic distribution. In the

constructive part the Dinaburg—Sinai-Riissmann theory is extended to quasiperiodic
perturbations of periodic Schrédinger operators using a KAM Hamiltonian formalism based
on a new treatment of perturbations of harmonic oscillators. Particular attention is devoted to
the dependence upon the eigenvalue parameter and a complete control of KAM objects is

achieved using the notion of Whitney smoothness.

I. INTRODUCTION

Let L, be a quasiperiodic Schrodinger operator in one
dimension, !¢

d2
La EL(UG)E —d_x—2+ Vg (x),

UG(X)EV(Txe)’

where xeR, 8eT?=R"/27Z°?, weR? is a rationally indepen-
dent vector and ¥ is a real function defined on T? In this
paper we discuss, from two points of view, the absolutely
continuous (a.c.) spectrum of L. First, continuing the anal-
ysisin Refs. 2, 3, and 7, we study some general problems such
as characterization almost everywhere (with respect to
Lebesgue measure on R and/or Haar measure on T¢) of the
a.c. eigenfunctions and of spectral densities. Then we turn to
the explicit construction of many (in the sense of Lebesgue
measure) quasiperiodic a.c. eigenfunctions for a special class
of potentials ». This second part should be regarded as a
refinement of the theory in Refs. 8 and 9.

Our results in the general part are described by the fol-
lowing three theorems. Before describing them let us recall a
few definitions. The spectral class measure du® is given by
one of the following mutually equivalent measures:

T.60=0 + wx,

du®=> a,du, a,>0, ¢,eCg,
(ad n
1

where 2a, < «, {#,} is an L >-dense set of C * functions
with compact support and duj denotes the standard spec-
tral measure of L, based upon ¢,. Now let du’, be the a.c.
part of du? in the Jordan-Lebesgue decomposition. The es-
sential support S of duf . is uniquely determined (modulo
sets of zero Lebesgue measure) by the requirement that if
ACSis also a support for du? . then meas(S — 4) = 0. Fin-
ally, let £, (x,6,E) be the solution of

Lof=Ef (1.1)

®) Permanent address: Dipartimento di Matematica, Ila Universita di
Roma, 00173 Rome, Italy.
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with Im E #0, feL*(R, ), R, =(0,0), R_=( — «,0).
Denoting by d /dE the Radon-Nicodym derivative with re-
spect to Lebesgue measure, by [g,h] the Wronskian
gh' —g'h=g(dh /dx) — (dg/dx)h and by (¢, f) the L?
product fg ¢ (x)f(x)dx, we have the following theorem.
Theorem 1.1: For any ¢eC &, for a.e. (6,E)eT? XS,

oue. _ 1 (3 + (4, )]
dE  2mi 71
where f(x,0,E) =lim,,, f, (x,0,E + i€) and i[f, f] > 0.
Throughout this paper a fundamental role is played by
Bloch waves (or Floquet solutions). These are eigensolu-
tions of the form ¢ = ¢'#*y with SeR and y a quasiperiodic
function with basic frequencies w.
Theorem 1.2: Let JCR be a set of positive Lebesgue
measure and assume that for a.e. (6,E) in T X I there exists

a Bloch wave ¢. Then ICS, [¢,1] 0 and, for any ¢eC g,

Yhoe _ 1 |G+ |G
1271

14

dE 2r
(6,E) a.e. in T¢ X I.

In Ref. 3 Deift and Simon showed that, for a.e. (6,E) in
T4 XS there exist eigensolutions g = /1** +#™lp(x), with
[g.€] = — 2iand a being the Johnson~Moser rotation num-
ber,”! such that r is an L? quasiperiodic function, i.e.,
r(x,6,E) = R(T.0) with R(-,E)eL?(T). However, no
quasiperiodicity properties were proved for the phase S.

Now assume that o satisfies a Diophantine condition like

o=

2 1
Za)ivi ‘ P
=g clvl”

=3l (12)

(any ve€Z¢ — 0, some ¢,7>0),

and denote by

OE[CDGC“’(T”'): f‘b = 0}.
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Then Bis an (@) quasiperiodic distribution on 0in the sense
of the following theorem.

Theorem 1.3: There exists a distribution B on C * (T9)
such that for any $<0,

(B,®) =lim L f B(.6.EY®(T,0)dy,
0

xteo X

(6,E) a.e.in T? X S. (1.3)

Remark 1.4: Equation (1.3) determines B uniquely on
0. Taking ® = ¢™'%, (1.3) shows that all the quasiperiodic
Fourier coefﬁments Lw1th v£0) of S are well defined and
are equal to B, e” %, B, = (B¢ °).

Remark 1.5: Theorems 1.1 and 1.2 can be trivially ex-
tended to the case of almost periodic Schridinger operators.
Theorem 1.3 is false if @ fails to satisfy any Diophantine
condition, i.e., if w is a “Liouville vector”’; compare Ref. 1.

The problem of characterizing the a.c. spectrum in
terms of genuine Bloch waves remains open but we will see
that it is closely related to the analysis of regularity proper-
ties of a nonlinear partial differential equation (PDE) on T¢,
namely,

1

D? F=-}—7-3-+(V—E)F, F(@)>0 forae. 8, (1.4)

where

D, = Z(a

i=1

Equation (1.4) w111 be shown to be satisfied, for a.e. E in S,
by R(,E) in the sense of distributions.

We pass now to the constructive part of the theory. The
operators that we shall consider are of the form
LO=L(w+ew), v+ ew=V(oX)+ eW(wx,....0,X),
with ¥, W real analytic on, respectively, T, T ~ ' and € a posi-
tive number. The vector w is assumed to satisfy a generalized
Diophantine condition

@ v[>1/cQ(|v]), veZ?—0, c>0 (fixed), (1.5)

where Q(r)>#* ~! is a monotone function growing not too
fast as 7t o (see Ref. 9). Then, employing a Kolmogorov—
Armold-Moser (KAM) technique,’'~!* we will construct,
for small ce/«, a subset E© of o(L ©)YNg(L ) and for
each EcE © a Bloch wave ey (wx) with (a,) rationally
independent and y (8) analytic on T¢. The parameter k is a
function of E asymptotic toE and, for some a,b > 0 and for
any E, > 0, the set E'® satisfies

meas{{a(L @) — E®)N[Ey )}

<_a_( |v|log log Q.(|v|))
|v| > bE,

(1.6)
adv)

The connection with the general part is then given by
Theorem 1.2 which yields immediately E© Co, . (L ©).

Before constructing such Bloch waves we will explain
that the existence of quasiperiodic eigenfunctions corre-
sponds to quasiperiodic Hamiltonian flows on (d + 1)-di-
mensional tori; see, also, Refs. 14 and 15. In general, to any
operator L, (u), u(x)=U(T,6,), we can associate the
(d + 1)-dimensional Hamiltonian
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H,(p,B.q,0; E)Y=p*/2 + B+ (¢*°/2)[E — U(6)1],

where (p,B)eR?*! denote the generalized momenta and
(¢,8)€R X T denote the generalized coordinates. It is readi-
ly checked that the evolution equation for ¢ [ with initial data
g(0), p(0)=4'(0), 8(0)=4,] is nothing but the eigenvalue
equation L, g=Eq. What we will see is that, for
EcE'®, H,, , ., is canonically conjugate to a system of har-
monic oscillators with Hamiltonian a4, + w4, + -
+ wyA, in action-angle variables (4,0)eR, X RY X T¢+!,
This fact, from one side, clarifies the use of KAM techniques
in the theory of quasiperiodic Schrédinger operators and, on
the other side, gives a rather natural interpretation of spec-
tral quantities such as a.c. eigenfunctions and the rotation
number in terms of Hamiltonian objects. Actually we believe
that the Hamiltonian H, is integrable whenever
Eeo, . (L(u)).

In our treatment of these matters we refine some aspects
of the Dinaburg-Sinai-Riissmann theory. For example, we
will see that KAM objects, such as rotation number and
Bloch waves constructed on E‘© are C = functions of E€E‘®
in the sense of Whitney.!5"'® Exploiting this fact it will be
easy to give a self-contained and complete description of the
KAM spectrum E'© that was still missing in the literature.

Since the basic KAM techniques are by now weil known
(see, e.g., Ref. 19), most of the proofs in this second part will
be outlined without going into detail.

The content of the rest of the paper is the following: Sec.
I1, proof of Theorem 1.1; Sec. III, Bloch waves; Sec. IV,
weak Bloch waves; Sec. V, periodic Schridinger operators as
harmonic oscillators; Sec. VI, quasiperiodic perturbations;
Sec. VII, KAM Bloch waves; Sec. VIII, Whitney smooth-
ness; Sec. IX, structure of KAM spectra; Appendix A: on a
new condition in analytic KAM; Appendix B: Moser-Deift—
Simon inequality on KAM spectra.

Il. PROOF OF THEOREM 1.1
We need the following facts:

dlueﬁ,a.c.
dE

(a) =lig)1 Im(RE+ie¢’¢)’

Re=(L—-E)7,
for any ¢cC 7 and a.e. Ein S.
(b) Re (xp)=g(x3;E)
=fo X)W/ fe,f-], ImE #0,

for x>y and symmetrically forx <y (f, arethe eigenfunc-
tions introduced in Sec. I).

(c) f, (x,0,E) = const( f,(x,6,E)
+ (B.E)f,(x,6E)),
where f}, f, solve (1.1) with £,(0) =£}(0) = 1, £} (0)
=/,(0) =0and 4 _ are, for every 6, the Herglotz functions
defined by lim,_ Ff1/f>. We recall that a function 4 is

Herglotz if it maps holomorphically the open upper half
plane C__ into itself. We will denote the boundary value of 4,
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existing a.e.on R, by the same symbol. For more information
see, e.g., Ref. 20.
(d) Fora.e. EinR,

— lim Ref h, (6.E + ie)db
Td

€10
=y(E) =y, (E/0)
= (highest) Lyapunov exponent for L, — E
and
S={E:y(E)=0}C{E:h,= —h_,Imh, >0}

Equation (a) is a simple consequence of Stone’s formula
(see, e.g., Ref. 21). Equations (b) and (c) are the main
results of Weyl’s limit-point theory (see Ref. 22). Equation
(d) is proved in Ref. 2.

Notice that, fora.e. E, f, (x,6,E + i€) converge, as €10,
uniformly on compact x sets. Also, fora.e. Ein S, (d) shows
that /. =7F_with [ f,,f_1= — 2iIm k. These observa-
tions together with (a) and the evaluation

. - _—_]-.— — 2
Re ff¢<x>¢(y>¢(x>¢(y)dx »=Li@or

valid for any ¥eC(R) and ¢eC $ (R), make Theorem 1.1
plain.

ill. BLOCH WAVES

In this section we prove some elementary properties of
(genuine=smooth) Bloch waves and Theorem 1.2.

Lemma 3.1: (i) If ¢(x) = ¢y (wx) is a Bloch wave
for L, — E then ¢(x,0) =e'#y(T,0) is a Bloch wave for
L,—E.

(ii) Let I be as in Theorem 1.2. Then ¢ can be written
(a.e. on I) in the form ¢**y(7T,0) with (a,w) rationally
independent.

(iii) If ¥ = €**y(wx) is a Bloch wave (a,w) rationally
independent, then [1,1] 0 and min_, |#| > 0.

Proof: Since ¥ solves (1.1) with 8 = 0, y satisfies

D2y +2ipD y+(E—B*—WNy=0 (3.1

at @ = wx. But because {0 = wx: xeR} is dense in T%, (3.1)
holds identically on T. In particular, it holds at § + wx and
(i) is proved. _

Property (ii) follows easily from (i) and the fact that
EeR-a(E)eR,, is an increasing function, constant only on
spectral gaps where it takes value in {w*v/2,v€Z%}; see Ref.
7.

If [¢,%] =0 we would have y = ae™ 2**y, for some
aeC. But two quasiperiodic functions cannot be equal unless
they have the same basic frequencies; see, e.g., Ref. 23, Thus
[4,¥] #0. If || were not bounded away from 0, there would
exist x, t oo for which ¥(wx,)—0, but this would imply
[4,%] = 0, a contradiction. O

Proof of Theorem 1.2: From the above lemma [#,1] %0

(a.e.) on I. Thus the Lyapunov number vanishes a.e. on /
and IC S by Kotani’s results [see (d), Sec. II]. Now fix E
(a.e.) in 7 and let g be the Deift-Simon function described in
Sec. 1. Then, for a.e. 8 and all x,
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g(x,0) = ap(x,6) + byp(x,0)

for some complex numbers ,b depending on 6. Taking abso-
lute values one obtains

R*(T.0) + cly(T.0)?
— dGZiaxXZ( Tx 0) + 28 — 2iax/1—/2( Tx 0) ,

wherec = — (|a]? + |b |?) andd = 2ab. Now takey > O and
veZ®. Multiply the above equation by (1/p)exp[ — 2i(¢
+ ax) — iT, 6-v] and integrate it from O to y with respect
to x. Since R ? and |y|* belong to L '(T?) we can use the
ergodic theorem to let yt o and conclude

0=de~%*(¢?%),, forall v, a.e. (£,0)eT¢+",

where (%), denote Fourier coefficients. This shows that
d =0, i.e., either a =0 or b = 0. Theorem 1.2 follows now
from Theorem 1.1. O

IV. WEAK BLOCH WAVES

Here we discuss the a.c. Deift-Simon eigenfunctions g
on S and prove Theorem 1.3. Henceforth we will often omit
the sentence (E,0) a.e. in S X T

Since [g.8] = — 2i, 7(x) never vanishes and the nor-
malized phase 8 is a well-defined function from R—R. The
Schrodinger equation for g implies

r'=1/r + (v, — E)r, (4.1)

B' =1/ —a, (4.2)
with initial data r(0) = R(8), r(0) =D, R(6), and
B(0) =0 (mod 27). [ The initial value for 5 is explained by
the identification g(x,68,E) = R(0)f(x,6,E), cf. Ref. 3].
Deift and Simon in Ref. 3, extending to.S'a formula by John-
son and Moser, proved

im (1o Lo

xteo X Jo r2 Td R 2

This, together with the Schrodinger equation for g, yields
easily the finiteness of

— x - ! -1
fim if g and T ST
X Jo X

Our next goal is to show that (4.1) and (4.3) imply R ~%eL!
and that R is a distributional solution of (1.4). Let
0<PeC »(T?) and write ¢(x) = ¢(x,8) =P(T,6). Then
by the ergodic theorem, (4.4) and (4.1),

a. (4.3)

(44)

f RD24 = lim -
Td

Xt X

[ rao0ze1T,000
0
= lim L fx rg”
X Jo
= tim L 0p15 ~ 1783 + [ 78]
X o]

.1 (1
=lim— | {= - .
im . J;( + (v, E)r)qi
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Another application of the ergodic theorem to positive ran-
dom variables shows

.1 (4 ]
I _f_=f 2
1m.x o 7 pa R3
But then from (4.5) we conclude, a _fortiori, that
—-=f(E V)R<I>+f RD:®<w. (46)
¢ R 3

In particular, by taking =1 we get

1
—=| (E-WNR.
L«*R’ J;d( &

Now we can repeat the computation in (4.5) with an arbi-
trary ®eC = (T?) and get back (4.6). This is the same as
saying the R is a weak solution of (1.4).

Next we turn to the proof of Theorem 1.3. Since o satis-
fies (1.2),

B(H)E z ._I'.(EI?) eiy-ﬂ

v£0 IV
is seen to be a distribution on C * (T9). Infact,ift> 7+ d /2,

S 1B, (1 + vw)*
1 :

v#£0
1 (__.1_) 1
Lo lovPI\RYLL (1 +vv)*

A7) 25

shows that BeH _,(T?). Now denote by D ;! the linear
operator

4.7

o~

o,
D;:de0-D ;' 0=y —— %0,

ve£0 iV
Then by (4.3), the ergodic theorem, and (4.2) we have
(B,®) =(B,D, D;'®)
= — (D, B,D;'®)
= —(1/R*—a,D;'®)

B[

.1 (1 )—-———_,
—lim— | (== —a)| D o (T,0)d
lme;(Rz * (1,00dy

i

- _um_l_j B'DCT®(T,0)dy
X Jo
= —lim ~[gD,THT,0];
X
+1im—1~J BB(T,6)
X Jo

=1imif BB(T,6),
X Jo

in which the last equality holds because « is the rotation
number of g so that lim(1/x) B(x) = 0. ]

To connect the existence of smooth Bloch waves with
regularity properties for (1.4), assume that ¥ is of class
C = ('T“) and that R is a smooth solution of (1.4). Then, by

2894 J. Math. Phys., Vol. 28, No. 12, December 1987

the equation, min R >0 and 1/R 2 — a belongs to C = (T9).
Thus also B, as defined above, is a smooth function and we
can identify S(x,8) with the quasiperiodic solution of (4.2)
B(T,0) — B(8). Unfortunately, regularity properties for
such nonlinear equations on tori are difficult to obtain by
general PDE methods. (See, however, Ref. 24.)

V. PERIODIC SCHRODINGER OPERATORS AS
HARMONIC OSCILLATORS

From now on we will be concerned with the construc-
tive part of the theory. In this section we look at periodic
Schrédinger operators L © from the Hamiltonian point of
view described in the Introductlon We show briefly that for
each E in the interior & of the spectrum o of L ©, the Hamil-
tonian H, of Sec. 1 is conjugated to aud;+ w4,
(ApAd,)eR . X R, a,= rotation number for L ¥ — E. (We
learned about the integrability of A, in Ref. 15.) For more
details on this and the followmg sections see Ref. 25.

From Floquet theory®® one knows that, for each Eecr,
there exist two independent Bloch waves f;, £, of the form

So(x)=e""y(@x)

eio(2m/w) __f Qr/w)
=f(x) + ! L~ f,(x),
4 FoQu/o,) £
YoeC(T),
with
i - , sin{a,(27/ew,))
k=—[ fo, /ol =Imf{(0) = ——2—- 10
> [ for fol fo(0) T nlon
Now define
Q(0,,0,)=Re F,(6,,8,), P(6,0,)=Re DF,(6,9,),
where
FO(BO’GI) Eeiw" - (a"/“")g‘fo(al/w, ), (60,0] )ETZ,
ad a
D=
%36, T 36,

One recognizes easily that x - F (8, + aox,8, + wx) is
an eigensolution for L(v, ) and that

d

—;;—Fo(eo + aox,0; + wx) = DF (0, + apx,0, + o,x).
Moreover, from
aQ i - i -
Rt U = e > = 03
390 ano 2[ff] z[ﬁ;fo] K>

it follows readily that the map

(7.B,80,0,)€R . X RX T (p,B,q,0,)
E(rp(eo,el),B,rQ(go,el),91)
is a diffeomorphism onto the phase space of H,, ie,

R¥*%x T — (O,R,0,T). Now we can construct a diffeomor-
phism

C: (p,B,g,0,) — (40,4,,60,0,)€R , XRXT?
by setting 4, = (r*/2)x,

aQ p ap)
A, =B ( )
=2+ 2 \96, Qael
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Straightforward computations will show first that
dpAdg + dBAdO, =dA,NdO, + dA,N\db,, so that C is
canonical, and then

(P*/2) + 0B+ (§°/2)(E — V) = apd, + a,4,,

confirming what we claimed above.

Remark 5.1: Even for ¥V merely continuous, ag, f1, />
and « are real analytic functions of E.*® Furthermore, a,
maps o(L @) onto [0, ), day,/dE >0 on & and, setting 9
={E{<E{ <}, ah=a,(E) = hw,/2 for some in-
teger 1. Now denoting by ¢,(a), aeR ., a#a}, the inverse
function of a,, one can easily show that, if p < w,/4, ¢, ad-
mits a holomorphic extension to

D(p; Ay)= U {aeC: |a — ay| <p},
€A,

with
AOEkgo[ag +P"12+ 1 —P] .
This will be of later use.

VI. QUASIPERIODIC PERTURBATIONS

Now let € > 0. Under the canonical transformation
(p.B1,--sB1,9,61,..,0,)ERY T2 X T¢ — (O,R%,0,T%) — (4,6)

= (A A -4 4,00,01,.-,0, ) EM =R, X R X T¢*1,
(40s41,00,6,) =C(p,B,q,0,), A, =B;, i>2

0
(Casin Sec. V), the Hamiltonian Hy, , ;. (-;E), Eeo (L @),
takes the form

H, (A,6,E)=0""A4 + ed,F(0)
with

o= (apw),F(O)= — [Q 2(00:01 Y/K]W(6y--.,0,4).

In this section we describe an iterative scheme that will
allow us to integrate H, for special values of the parameter E
and small €. Henceforth, it will be more convenient to con-
sider H, parametrized by the rotation number a,=a rather
than by the eigenvalue E. It will be only later that we shall
express our result directly in terms of eigenvalues. We start
by considering the jth order analog of H,. Let j>0 and, for
(A4,0)eM, let

HY(A,8:a0,6) =0V (a;€)"4 + ezleF V(8sa,€),

0V = (0§, @15y
Assume that 0§’ and F ©, as functions of @, are holomorphic
in

D,=D(p;AV)= UU){aEC: la — ao|<p;}
ageAd
for some AY’ CR. Also, as a function of 8cR?*+ !, F ¥ is re-
quired to have holomorphic extension to
S,=89+1(&)={6eC*": |Im 6,|<§;}, £ >0,
with

IF PN, ,,= sup |FPI<M,

(8,2)€5;x D,

independently of €. Notice that because of the analyticity
assumptions on ¥ and W, H_(4,0;e,(a)), A, as in Remark
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5.1, satisfies the above hypothesis, thus we can set H ©=H_.
Now, let §; <§;/2 and let us define the main recursive ob-
jects

to=1+ 3 [v|Q(|v))e=, s>0,
vezd+1_o

N,=2+'6""loge™ ',

FP 0= 3 FP e,
V> N;
do® N\~ o
Pia Emin[(ZchQ(Nj)Sup 20 ) ) P_,] ,
«b,| da 2

§i+15§j_25j’

AV P ={aeA?: |0¥(a) v|>1/cQ(]v|),
veZi+1 — 0, [v|<N},

D;,,=D(p;, ;AU "),

S =89 EL ).

Lemma 6.1 (Inductive Lemma): If acAY+ "V and € is
small enough, i.e.,

K\£(8,)87 ' eMe2<],
where X is a universal constant, then the function
(4',9)eEM >4 "0 + €40, (8;a,€),
F9o

o= —_—
J SROR
o<lvicN; — i@V

(6.1)

is the generating function of a surjective canonical transfor-
mation, (4,0)—»(4',0') =(4'(4,0),6'(8)), that conju-
gates H V' (4,0) to
HY+Y(4'6%a,)

=H "(4(4",6"),6(8"))

=wUtV4’ 4+ &7 A5 FIT(0%a6),

where
0Vt V=0 + € FP0),
, 3o FQ©O
FU+D(0(8))=—L(HF (0 R )
@) é"90( YFD(6) + =

Furthermore, aeAY+V-w{’(a) and (f,a)eR?*!
XAU+DLFU+D(g.q) have holomorphic extensions to,
respectively, D; , ; and S;, , XD; ., with
”F(J'+ 1)||§j+ hyet <K7_¢(6j)6jq d+1 CMJ?E 1
in which X, is a second universal constant.
Applying this Lemma infinitely many times one can in-
tegrate H, for acA‘=’ =N/ AV,
Theorem 6.2: Let {5,} be such that 2 ; §; <£ /2, let
acA‘™’ and let € verify

(K\/Ky)er1
with

6.2)

(6.3)

r=KgcM,, =[] [£8)87 “+ 1],
j=0
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Then the Hamiltonian H  is conjugate to
H(oo)Ea)(w).A’
where 0¢*’ = (0=’ ,w) satisfies
[--] 1 -
c|a)((, - al(? Z (67')2/,

2j=0

(6.4)

1
¢ v|> , veZit!' _0.
| | cQ2(|v))

The (surjective) canonical transformation conjugating
H© to H ‘= has the form

(A ”0,)GM_’(A’0)
=(S(0")A4',0; +€eA(8§),01,....0 ;)EM
with S'a (d 4+ 1) X (d + 1) matrix of the form

(6.5)

i+e, 0 O - O
€S1 1 0 e 0
€s, 0 o0 - 1

Moreover, the vector s= (s,...,5; ) and A have holomor-
phic extensions to S+ (£, ), £, =€ — 23272, §;, and

max{”s”;m ’”Allgm }<(K1/K2)T.

Remark 6.3: Examples of {6} and Q such that ¢ < o
are displayed in Appendix A.

Remark 6.4: Perturbations of the Hamiltonian of the
form h(A4,0) =& A were investigated in Refs. 27 and 28 us-
ing Moser’s idea of “‘modified systems.””?®

Remark 6.5: An easy corollary of Theorem 6.2 is that all
the eigensolutions of L ©' for EeE‘© =a; ' (A'*) are quasi-
periodic with basic frequencies (w{*’,@). Also, since all the
transformations involved in the process are close to the iden-
tity it is easy to see that w{®’ coincides with the rotation
number a.

Remark 6.6: From an elementary asymptotic analysis
(E>»1) of the periodic case, one realizes that

1Q2)//K ~1/E so that My~|| W ||/JE .

Vil. KAM BLOCH WAVES

Even though we already obtained a complete descrip-
tion of the quasiperiodic eigenfunctions of L ‘ for EeE‘©, it
is not immediate from the above analysis that such eigen-
functions are of the form ¢“*y(wx). Since this representa-
tion is crucial in the application of Theorem 1.2, we proceed
now with a direct construction of Bloch waves for values of E
inaset E‘© Ca(L @), which a priori need not be identical to
E®©.

The eigenvalue equation L ‘f = Ef is equivalent to the
first-order system

, 0 1 0 0
y_[V(Gl)—E o]y“W(ez”"’e")[l o]y’

0'=w,
with y = (/,). A fundamental matrix for (7.1) ate =0is
fo fo ]
Y= b as in Sec. V).
A )
By setting

(7.1)
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Y = Te®, TE[. Xol@) , ) _A_',o s
WAoo+ w1 Yo — QYo+ @1 X0
ia 0
0 —iq

the system (7.1) becomes, under the change of variable
y=1Tz,

Z2=Cz+¢ePz, 0'=w (7.2)
with
p (0r80) [ —ilxo(8) >  —ixz(6))
2% i i|xol?

Notice that PeG,={GeG: tr .G =0} where G denotes
the ring of matrix-valued functions on T¢ of the form

o-f; !

Theorem 7.1: If € satisfies the smallness condition
(KI/K2)€T<1, TEszcMo,

where K, and K, are suitable universal constants, then one
can construct a set E‘° Co(L®) and, for each E€E®, a
change of variables z = (I + eU)w, with UeG,, which trans-
forms (7.2) into the trivial system
ia 0
= , 0'=o.
w 0 - ia]w @
Furthermore, U as a function of 8T admits a holomorphic
extension to S9¢&_), for a suitable £_ >0, with
Ul <(K/K,)7 and a verifies

1

, veZ®—0, EeE'9,
cQ(|v))

e — |w-v/2]||>

sup |a — a,| <€er/c.
EEE(‘)

Remark 7.2: Above we used the same symbols for quan-
tities that are analogous, but not always identical, to the ones
appearing in Sec. VI.

The proof of this result is based on a scheme very similar
to the one described in Sec. VI: One removes infinitely many
times the order of the perturbation of systems like

, [iaj 0
4%lo —ia

7
by the aid of a change of variable (I + € U;(h)z .1 =2z
The set E® will be given by a; '(A‘=’) where
A>=NAY, where as in Sec. V, A? is the positive half-line
minus suitable intervals of length 2p and
AV V={geA?: |a;(a) — w-v/2|>1/cQ(|v)),
veZ?, 0<|v|<N;}

with N; denoting the jth cutoff in the Fourier expansion of
PO,

]Zj + GyPU)zj, 0'=w (P U)GGO)’

Viii. WHITNEY SMOOTHNESS

In this section we study the E dependence of the KAM
limits. Following Ref. 16 we say that a function  ACR-R
belongs to C 3, (A) if there exist, on A, functions £, 0<k<n,
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Jfo=f, with the following property: For each x,c4 and € >0
there is a 8> 0 s.t. if x,x’e{yeA: [y — x,| <5} then

"ok (x)

fix) =3 Y EiCR)

o  h!

Atinterior points this definition coincides with the stan-
dard one but the next lemma shows how nontrivial C 3, (A)
functions can arise.

Lemma 8.1: Let ACR, r;10, and {gj} be a sequence of
holomorphic functions on D(r;,A) which are real on A. If

217" < o

then g=3g; belongs to C'}, (A).
Proof: Since for any k<n

(x —x')"|<elx —x'|"~*% (8.1)

dgj

sup

k —k
dx /2 <2 llg " < o0,

we can define

d*g Z d* g,
onA. To check that the d *g/dx* are the Whitney derivatives
of g let x, x'eA, let s=s(|x —x'|) be such that
r,.1<|x — x'| <r,, and consider the splitting g = g'* + g'!
with g!/=3%;. The lemma follows now from gleC =
X (D(r,;A) ﬂR) the inequality

sup |<2r S liglln
A j=s+1
andfromhmlx_x,“o s(jx —x'|) = . O

The KAM limits of Secs. VI and VII are exactly of the
above kind. For example,

o> =a+ 3 EFP(),
0

with £ § holomorphic on D( p;;A'=)) and one has the fol-

lowing theorem.
Theorem 8.2: If 2 and {8, } are such that

£ < w, (8.2)
is—1
limM)—=0, (8.3)
Jteo
and
2[eMopo—‘ + (er)zi (eT)ZINjQ(Nj)] <1, (84)
i=o

then w§=’eC 5 (A=’).
The proof follows easily after noticing that (8.4) yields

d [63)
sup D _ 1' <2, (8.5)
Dy, vAY-D) | da 3
so that
p <4N, QN )e. (8.6)

For more details see Ref. 25, Sec. 2.6.
Remark 8.3: Whitney smoothness is obviously pre-
served under composition with smooth functions. Thus
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06 (ao(E))
=a; ((A)).

Remark 8.4: While a condition analogous to (8.2) ap-
pears in the (analytic) KAM literature,® condition (8.3) is
new. This condition is necessary in order to be able to meet
the smallness condition (8.4) and, as we shall see, to give a
complete description of A‘’. We also point out that (8.2)
and (8.3) are independent (see Appendix A).

(=a(E)) belongs to C3(E®@) E®

IX. STRUCTURE OF KAM SPECTRA

The main theorem in Ref. 16 is that any function
geC 5, (A), A closed, can be extended to a C"(R) function
which is real analytic on R — A; a simple corollary of this
and of the maximum principle imply
d*g
dx*

dkg

, k<n.
dx*

<max

sup
R

Here we show how to use the above facts in order to give a
precise description of the KAM spectrum E‘©.

Denote by R the “resonant” set of a = ay(E) for which
we cannot apply the KAM scheme,

-]
A=U U RY,
=0 ez
0<lv|<Nj

REA(O) _

where for 0 < [v[<N;
RO ={aeA?: |q;(a) —wv/2| <1/cQ(|v|) }.

A condition analogous to (8.4) implies easily that the Whit-
ney extension of the a;’s satisfy

da; 2
sup ;';L — 1‘<-3—.
Thus defining
=a; (0'v/2), r,=3/cQ(|v]),
we see that

RYCIP={aeA”: |a —aq,,|<r}.
This completes the description of A’ and hence, via the
smooth map a; ', of E©.

Finally it is not difficult to show that?
7 + log log 3Q(|v|)

cQ(|v))

and a, ~w-v/2. These facts together with the asymptotic
evaluation a,(E) ~JE yields (1.4).

ur¥c{la—a,|<r}, r=
j=0
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APPENDIX A: ON A NEW CONDITION IN ANALYTIC
KAM

Here we show that conditions (8.2) and (8.3) are inde-
pendent as announced in Remark 8.4. To do this we give two
examples.

(1) Let £2(r) = r" for some m. Then

(8.2) @2%10g5j"1< o,

(8.3) &(1/%)log 6j“—>0(jToo).
(2) Let

_ exp(r/log’r), rze°,
&r = [Q(e"), 1<rge’,
(8.2) &6 '/j7 is bounded;
(8.3) <6, /°-0(j1).

In the first example (8.2) is stronger than (8.3) but in
the second one the opposite occurs.

Notice that since Q(r)»r? ' (8.2) implies easily the
finiteness of .

APPENDIX B: MOSER-DEIFT-SIMON INEQUALITY ON
KAM SPECTRA

Deift-Simon,® extending an idea of Moser,*® showed
that, for general, almost periodic potentials,

2 _ 2 _
lim01(E+.€) a’(E 6)>1,
€10 2€
Here we want to discuss briefly the constructive version of

(B1) for L ©, namely, we sketch the proof of

d
E a } 1
Without loss of generality we can assume that ﬁ’o =0
and, to simplify the Hamiltonian formalism, we consider
V=0 in which case H.,, =JVEA, + @4, + =+ + 0,4,

— (e/VE)A, sin? 8, W(6,,...,6,). Then we have
a(E) =VE + eF® + &F + 0(e*)

with FO= — (sin” ,/VE ) W(6,,...,0,) and F as in the
inductive Lemma 6.1. Here W, =0 implies F, = 0. Now,
setting @ = (@,,...,@, ), a computation shows that

E ae in S. (B1)

EcE®, = Whitney derivative. (B2)

i;v(()l) =f aq’oF(o) + O(e)

;v(o) )
= v F(0)+0 €
f(o<§<m, —ia)(o)'v ©
2
2 ;‘I +0(e),
2 pert-1 (1)
|| <No
so that
da _ | aNE LA
dE 2 v, [(ua)*—4E]?
+——1—0(e3).
JVE
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The smallness of the parameter €7 confirms (B2).
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Perfect Morse functions on the manifold of coherent states are effectively constructed. The
case of a compact, connected, simply connected Lie group of symmetry, having the same rank
as the stationary group of the manifold of coherent states, such that the manifold of coherent
states is a Kdhlerian C-space, is considered. It is proved that the set of perfect Morse functions
is dense in the set of energy functions for linear Hamiltonians in the elements of the Cartan
algebra of the Lie algebra of the representation of the group considered. It is proved that the
maximum number of orthogonal vectors on a coherent vector manifold is equal to the Euler—

Poincaré characteristic of the manifold.

I. INTRODUCTION

Particular attention has been paid lately to the applica-
tion of geometrical ideas and methods in physics. First, geo-
metrical ideas, especially symplectic structures,' have an im-
portant role in classical mechanics.? Second, the geometry of
classical phase space is the starting point of the geometrical
quantization program.>* On the other hand, the right appli-
cation of the variational principles in quantum physics is
conditioned on the establishment of the topological and glo-
bal geometrical properties of quantum state manifolds.’

Global variational methods are studied by means of the
Morse theory. It is often useful to find the absolute minima
of given functionals. In solving this difficult problem, Morse
inequalities®® can be successfully used. Morse inequalities
imply constraints on the stable and unstable critical mani-
folds, imposed by the topology of the spaces on which the
variational problems are considered. Morse inequalities
have been applied to classical mechanics,® the Hartree-Fock
problem,’®'! and in connection with supersymmetry theor-
ies.'? The extended Morse inequalities have been used in
connection with the symmetry breaking phenomena for a
Lie group of symmetry for Higgs~Landau systems.'* Atiyah
and Bott have applied Morse theory to determine the mani-
fold of minima for the Yang—Mills functional in the equivar-
iant case for Riemannian surfaces and the gauge group
U(n).” Another trend of applications of Morse theory in
mathematical physics is the use of the Lusternick—Schnirel-
man theory (see, e.g., Ref. 14).

Morse inequalities become equalities for perfect Morse
functions. The number of critical points of a given index of a
perfect Morse function is minimal and is a topological invar-
iant (the Betti number) of the manifold on which the vari-
ational problem is based. In the quantum case, many quan-
tum states (e.g., the coherent’>!S state manifolds for Lie
groups of symmetry) are obtained by embedding of some
symplectic manifolds in Hilbert spaces of state vectors.>!’
Generally, these manifolds have locally phase space struc-
tures, but do not admit global canonical coordinates.!-
However, the corresponding quantum dynamical problems
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are global analysis problems. The perfect Morse functions
just provide an economical method for the effective descrip-
tion of the geometry of quantum state manifolds. These
functions exist only on manifolds that have torsion-free co-
homology groups.'®'® They provide a cell decomposition of
the manifold in Morse—Borel cells.®

Many authors have been interested in the construction
of perfect Morse functions. The ideas go back to papers of
Bott'®!° (see also Ref. 21). Let G be a compact connected
Lie group with Lie algebra g, t a Cartan subalgebra of g, and
Xeg a regular element such that t equals the centralizer of X.
Then f: O(Y) -R, f(Z) = (Z,X) is a perfect Morse func-
tion and the number of critical points of fis equal to the
Euler—Poincaré characteristic of t. Here O(Y) = Ad(G)Y,
Yeg, and ( , ) is an Ad-invariant product in g. In our case
the coherent state manifold is a compact, simply connected
homogeneous Kihler manifold (Kihlerian C-space®) (cf.
Refs. 1 and 23, see also Sec. III). The fact that these mani-
folds admit perfect Morse functions was proved by Bott!%!?
(see also references to papers of Borel). Frankel has ex-
tended the results of Bott to some classes of Kéhler mani-
folds, not necessarily homogeneous.?* Also Frankel gives ex-

amples of Morse functions for classical groups using the
trace function? (see also Refs. 26 and 27). Takeuchi®® has
studied large classes of real and complex symmetric R-
spaces (in the complex case these are the irreducible Hermi-
tian symmetric spaces) that admit perfect (“‘economical”®®)
Morse functions, using (Nagano’s) zonal spherical func-
tions. Another idea is to embed the manifolds into suitable
Euclidean spaces and apply Morse theory to the length func-
tion.>”° Flag manifolds®!—* are embedded in the projective
space by means of Pliicker embedding and the perfect Morse
function on projective space is used.?

In this paper, perfect Morse functions are constructed
on coherent state manifolds admitting a Kihlerian C-space
structure. These functions have the significance of energy
functions associated to the Hamiltonian.

Section II comprises elements of Morse theory on a
manifold of quantum states: Morse inequalities and proper-
ties of perfect Morse functions.
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In Sec. III, perfect Morse functions are effectively con-
structed as energy functions associated with linear quantum
systems, described by coherent state manifolds for Lie
groups of symmetry. The cellular structure of these mani-
folds and the maximal orthonormal systems of coherent vec-
tors are deduced.

Some applications to the Slater determinant manifold
are outlined in Sec. IV. The last section is devoted to con-
cluding remarks.

Il. MORSE INEQUALITIES ON A MANIFOLD OF
QUANTUM STATES

(1) The conventional model of quantum mechanics at-
taches to every physical system a complex Hilbert space 7#°.
To every wave vector ge#* =7 \{0} the state ¢

= {e”® ||| ~'¢|@ R} is associated. The complex projective
space of states is denoted by 7.

Let £: 7% — % be the projection £ (¢) = @, pc#°*. The
unit sphere in 2% is defined as % () = {¢|¢e; || 4|

=1}

Let Q be a C ~-differentiable manifold and let 7:
Q— #(F) be an injective and continuous mapping so that
each function f* Q -G, fY(p) = (¥ (), peQ, ¥
€ () is differentiable. Here { , ) is the symbol of the
scalar product of 5#°. The manifold M = 7 (Q) is called the
quantum vector manifold. If the restriction of the projection
& to M is injective, then M= £(M) is called the quantum
state manifold. The structure of the differentiable manifold
is canonically carried from Q onto M and M.

Differentiable functions f: M — R will be studied later.
Asatypical example, functions f, (¢) = (¢,4¢) will be con-
sidered in Sec. I11, where )M and A4 is a self-adjoint opera-
tor with M in the domain.

(2) The Morse inequalities used further will be now
outlined.5834-3¢

Let £t M — R be a smooth function on a compact, C * m-
dimensional manifold M. Let € ~( f) be the set of critical
points of f, that is, the set of points when df = 0. The Hessian
H( f) of fbecomes a well-defined quadric form on the re-
striction of the tangent bundle of M to € ~( f }.The number
of negative (resp. 0) eigenvalues of the Hessian matrix at a
critical point p is called the index of p (resp. the degeneracy
degree) and is denoted by 4, ( /). The connected submani-
fold NC % ~(f) is called the nondegenerate critical mani-
fold for fif the degeneracy degree of all peN equals the di-
mension of N. The latter condition means that the restriction
H, (f) of the Hessian to the normal bundle of &V is nonde-
generate.

A function f on M is called a nondegenerate (Morse)
Sfunction in the extended sense if € ~( f) is a union of nonde-
generate critical manifolds. If NV is a nondegenerate critical
manifold of M, one may choose a subbundle vy ( ) on the
tangent bundle to M restricted to N on which Hy ( f) is
negative definite. The fiber dimension of vy ( f'), denoted by
A, is called the index of N, and we say that V is orientable
along fif and only if v5 ( f) is orientable. In the orientable
case the extended Morse (counting) series for the Morse func-
tion fis defined, relative to a coefficient field X, as
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M,(fK)= ; t*P,(N,K), .1)
NCE~( )

whereas in the nonorientable case the field K is Z,. Here
P,(N,K) is the Poincaré series for N relative to a coefficient
field K,
dim N
P, (NK)= 3 t'b;(N,K), (2.2)
i=0
and b, (N,K) is the Betti number relative to a field X i.e.,
b,(N,K) = dim H'(N,K), H'(N,K) being the ith cohomo-
logy group of N with coefficients in the field X.
For a nondegenerate (Morse) function f in the ex-
tended sense, the Morse inequalities can be written compact-
ly,

where R (¢) is a polynomial with non-negative coefficients.
Note also that for a nondegenerate Morse function in
the extended sense, Eq. (2.1) can be put in the form

m

M,(fK) =S t/C/(fK), (2.4)
j=0
CUKY= 3 b, (NK). (2.5)
NCEA(f)
The Morse inequalities (2.3) can be written
C/l(f;K)>bA (M)K), 0</i<m9 (2.63)
A
3 (= DAC(SK)
i=0
A
>y (— *~',(M,K), 0<d<m, (2.6b)
i=0
z (= D"C,(£K)
i=0
=Y (= D" b (MK) = y(MK), (2.6¢)
i=0

where y(M,K) = P_,(M,K) denotes the Euler-Poincaré
characteristic of M.

The Morse function £ in the extended sense is perfect’
(or economical®®) if in Eq. (2.3) R(¢) =0. From Eqgs. (2.6)
it follows that if all odd coefficients C;( £,K) of M, ( £,K)
vanish, f'is a perfect Morse function in the extended sense
(Morse lacunary principle) and C; (fK) = b;(M.K).

When € ~( f) consists of points alone, Eq. (2.5) re-
duces to

G (f,K) =card{ pe€ ~( f)|A,(f) =j}, Ogj<m.
(2.7)

Note also that the set of Morse functions on a compact
manifold is an open set, dense in the set of differentiable
functions on M (relative to the C? topology®”).

The existence of perfect Morse funtions on a compact
manifold has other topological consequences. For example,
perfect Morse functions can exist only on manifolds that
have a torsion-free cohomology group.'®'?

The compact manifolds M appearing in this paper admit
a Kihlerian C-space structure (cf. Ref. 1, p. 168 and Ref.
23), so the field X = R can be used. However, because the
manifolds here are Hodge, it will be sufficient to take K = Z.
The existence of perfect Morse functions on Kéhler C-spaces
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is known.!%!® More precisely, the homogeneous manifold
G /C(T), where G is a compact, connected, semisimple Lie
group and C(7) the centralizer of a toral subgroup T of G,
admits perfect Morse functions and also admits a homogen-
eous Kihler structure.'®2%*% Here we shall present a con-
crete realization of a perfect Morse function in local coordi-
nates, indicating also the globalization for a compact
manifold of coherent states admitting a Kéhlerian C-space
structure. Also these manifolds have complex analytic cellu-
lar decomposition in the sense of Morse~Borel,2*?%3%! and
this cell decomposition is the one as the CW complexes,
identical to the decomposition of certain classical groups like
the Grassmann manifolds.*?

lll. PERFECT MORSE FUNCTIONS ON COMPACT
MANIFOLDS OF COHERENT STATES

(1) Lately, the coherent states have been intensively
studied. '>'® Now we shall introduce in a convenient manner
the strictly necessary elements used in this paper.

A quantum system with symmetry (in the sense of
Wigner*? and Bargmann**) is characterized by a continuous
homomorphism 7 of a topological group G into a group of
transformations G of the space #° which leaves invariant the
transition probabilities

(T @7 @9 =(($,9)), 8G, $pei?,

where

(S0 = el eI~ Ko % ppet™.
Let ¢/,c# be a fixed state. The G orbit containing ¥,

M =Gy, = {7(8)#ho|geGl, (32)

is called the manifold of coherent states, and every deM is
called a coherent state.

The closed group

K = {h |heG; 7(h)thy = o} (3.3)
is also considered. Then #(K) is a stationary group of the
state ¢, and there exists the bijection &: G /K — M, defined by
§ g) = ﬂ(g)t/fo, where g’ =gKeG /K. Let the notation
#(g') = E(g’). Evidently, £(8') = t,, where 6 is the unity
element of the group G.

Further, G will be taken as a compact, connected Lie
group. The fact that rank G = rank K will result in the next
paragraph from general considerations, when restrictions on
the fixed state ¥, and representation # will be imposed. Also,
further it will result that X is the centralizer of a toral sub-
group of G and, moreover, is connected. The manifold M
will be endowed with the canonical differentiable (even real
analytic) structure induced by £ from the homogeneous
space G /K, hence M is a quantum state manifold diffeomor-
phic with G /K. On the other hand, according to a theorem of
Wigner and Bargmann,**** there exists a continuous, uni-
tary representation 7 of the group G onto the complex Hil-
bert space 77, such that

N - ~
(@)Y =7(g)y, geG, PYe*. (3.4)
Then, there exists the cross section o: M~ % (%),

where o is  an injective mapping such that
E(o(¥(g)) =¢(g'), ge€G/K. Let the notations
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M =o(M), y(g') = o(¥(g"), Yo =0 (¢,). It follows that
M is a differentiable manifold relative to the structure in-
duced by o from M. The manifold M is named a coherent
vector manifold, and every ¢eM is called a coherent vector.
However, M is not a submanifold of #°.

Let us also introduce the mapings £o: M ~Mand7: G/

KM by £(¥(g))=¥(g') =£(8'), g€G /K, and 7(g’)
=0°8(g") = o(¥(g)) = ¥(g'). Evidently, &, 7, and £
= §,°7 are diffeomorphisms. It follows that the coherent
state manifold M, the coherent vector manifold M, and the
homaogeneous space G/K are diffeomorphic. It can be noted
that M is a system of coherent vectors of type (,¥,) in the
sense of Perelomov'® [local sections of the holomorphic line
bundle & ~'(M) —M].

The previous construction is natural from the point of
view of the interpretation of symmetries in quantum me-
chanics. Moreover, this construction is important for estab-
lishing the global properties of coherent state and coherent
vector manifolds.

(2) Further, we need some elements of the theory of
finite-dimensional representations of compact, connected,
simply connected Lie groups (see, for example, Ref. 45).
Because we deal with coset spaces G /K (rank K = rank G),
there is no loss in generality in assuming that G is semisimple
and simply connected (see, e.g., Ref. 46, p. 490).

Now, let T be a Cartan subgroup of the group G, and
suppose that 1, is a ~-dominant weight vector relative to the
representation 7. Let 57, denote the complex linear cover-
ing of the manifold M. Let 7; denote the restriction of the
representation 7 to #°;. Hence 7; is a finite-dimensional
unitary irreducible representation of the group G onto the
complex linear space ;. There exists an isomorphism ;] of
the Lie algebra g of the group G onto the Lie algebra 7 (g) of
the group 7; (G) such that

7;(e*) = exp(m] (X)), Xeg, (3.5)

where e: g— G and exp: 7] (8) —7; (G) are exponential map-
pings.

Let us also fix a Cartan-Weyl base*” of the complexifica-
tion g¢ of the Lie algebra g, with elements 4,, ¢,,, 1<i<r, a€A,
where 7 is the rank of the group G and A is a system of
nonzero roots satisfying the commutation relations

[Aishi] =0, [hien] =a(h))e,, (3.6a)

[eae_o]= 3 alhh, (3.6b)
i=1

[exes] =0, a+BeAU{0}, (3.6¢)

[exres] = Noporss @+ Pe], (3.6d)

where 1<i<j<r, a, BeA, and a(h;), N,z are real structure
constants (cf. Ref. 47, pp. 166-171). If @ + B #0, then the
roots e,, ez are orthogonal relative to the Killing form
B(-,"), and the relation a{h) =B(h,h,), where h,
= [e,,e_, ] was taken into account in Eq. (3.6b). The root
system A is included in the dual t* of the Cartan algebra t of
T, and by means of the mapping @ — A, A can be embedded
int.
The elements 4, (1<i<r) form a base of the complexifi-
cation ¢ of the Cartan algebra t.
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Let IT denote the set of simple roots. The simple roots
can be chosen such that

a;(h) =6 1<i, jgr. (3.7

Every root €A is a linear combination of simple roots
from II with integer coefficients of the same sign. If these
coefficients are non-negative, the root a is called a positive
root. Let A, denote the set of positive roots.

Let € be the fundamental Weyl chamber

iis a.€ll,

¢ =l

w= i /1,-w,-, AIEZ+] ,

i=1

(3.8)

where the fundamental weights w,et* verify the relations
1<i, j<n. (3.9)
Here (-,-) denotes the Euclidean scalar product in t*,
The representations 7; and 77/ can be uniquely extended
to the group homomorphism 7*: G°—; (G ) and, respec-
tively, Lie algebra isomorphism 7}*': g°— 7}’ (g°) by
m¥(e?) = expln?’ (Z)), Zeg', (3.5")
where 77 (g%) is the complexification of the Lie algebra
m;(g), but G° and 7} (G ) denote the complexification of
the groups G and, respectively, 7;(G). Of course, 7(G°)
and 7} (g°) are the sets of linear operators on ;. Also let
H, =7} (h), E,=7"(e,), (3.10)

where 1<i<n and a€A. According to the theory of compact
representations,’® the j-dominant weight can be chosen to
belong to the Weyl chamber % and

z(wi’aj) = 6,] (ajyaj)’

Hpo=jithoy 1<i<r,
E_ ¥,#0, aeld’, (3.11)
E__¥y=0, acA\A’,
wherej = (ji,eesj, )sJi = (@5, f), i = 1,...,1, and
A’ = {a|ael; (ja)<0}. (3.12)

The base of the real Lie algebra g [resp. 7; (g) ] is made
of elements ih,, i(e, +e_,), e, —e_, [resp., the anti-
Hermitian operators (H,, (E,+E__), E,—E_,
1<k<r, aeA].

Also, the unitarity of the representation 7; implies

Ht=H, E;j=E_, (3.13)
where A * denotes the adjoint of the operator 4.

Let p denote the complex Lie algebra with base h;,e _
1<i<r, aeA\A'. The complex Lie subgroup P = ¢’ of the

group G °is a parabolic group corresponding to the parabolic
subset — (A\A’) of A (cf. Ref. 45, p. 54) (Borel group if

1igr, ael,

A'= —A,). The representation #; is irreducible,
K = GNP, and
AN ~
P={g|geG<; m;(g)ho = o} (3.14)

It follows that there is a diffeomorphism of homogen-
eous spaces ¢: G /K — G /P, defined by c¢(gK) = gP, geG.*®
The following facts are known about the homogeneous space
G ¢/ P strictly associated to the irreducible representation 7;
of dominant weight j.!**?*>** The space G /P is algebraic.
The isotropy group K = GNP is connected, with the same
rank as G and it is the centralizer of a torus in G (K is a
maximal torus if P is a Borel subgroup). The principal bun-
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dle PG “—- G /P is holomorphic. Details on the geometric
realization are provided by the Bott—Borel-~Weil theorem
(see, e.g., Ref. 45, p. 201). Following the denomination of
Wang,”® G¢/P is a C-space, endowed with a Kihlerian
structure.

Let W(G) denote the Weyl group*’ associated with G,
defined as the quotient W(G) = N(T)/C(T) of the norma-
lizer

N(T) = {g|geG; gTg~ ' =T} (3.15)

of the Cartan group T by the corresponding centralizer
C(T) = {g|geG; gt = tg, any teT}. Similarly, W(K) de-
notes the Weyl group associated with the group K. Let
2 CN(T) be a set of elements such that the quotient space
W(G)/W(K) is made of the coset classes (sC(T))W(K),
seZ. Let us define the mappings §: A — A, for every se3, by

5. (h) =a(s~hs), het, (3.16)

The action of 5, on an element k& of the space generated
by A is the reflection

5,(k) =k —2(a,k)a/(a,x), (3.17)

and for every a€A, there exists SeA and ye€ll such that
a=3g(y).

(3) With the previous facts, the Kéhlerian structure of
the homogeneous space G °/P will be carried onto the mani-
fold M of coherent vectors. Moreover, the Kihlerian struc-
ture of the homogeneous space G °/P will be also transport-
ed onto the homogeneous space G /K.To get the Kihlerian
structure on G /P, here we use local coordinates. The effec-
tive construction of a Kdhler metric on a compact manifold
of coherent states in the case of nonsingular highest weight
was pointed out in Ref. 23. The same argument as in Ref. 23
provides the globalization in the present construction.

Let us introduce the vectors

ael.

o, =exp(2 zaEﬁ.,) Yor (3.18)
acd’
¥, =P, || 7', = ¥(g)eM, (3.19)
for
c(g’) =exp(z z,,E_,,) P, (3.20)
acA’

where z belongs to the m-dimensional Euclidean complex
space C™ and

2m = dim M = dim M = dim G /K = dim G*/P.

(3.21)

Let the notation

7 o= {t,|zeC™}
and let us consider the homeomorphism A: 7"y — C™, defined
by 2 ~'(z) = ¢,. Let also the notation 7", = m;(s) 7", and
h, = hom;(s) ™ for every seX. Then (77, ) 5 is an open, fin-
ite covering of the manifold M, and the collection of local

charts (7, h,) . generates an atlas of a Kiahlerian mani-
Jold with the fundamental two-form on 7",

o= —1iY g,pdz, Ndzg,

a, BA
where
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d*F(z2)

_9FeD) 322
2 =, &, (3.22)
Fz3) = In(®,,0,). (3.23)

Note that w is nonsingular everywhere.?

The Kahlerian structure of the manifold M is induced by
the mapping &, onto the coherent state manifold M.

To every linear operator 4 on 57, a function f, : M-C
can be associated by

fi () = ($AY), yeM,

1.48

(3.24)

called the covariant symbol.*® If 4 is a Hermitian operator
associated to an observable, then f, is a real function, and
£, (#) can be interpreted as an expectation value of the con-
sidered observable. If H is a Hamiltonian, then f3; is called an
energy function. The manifold M (being Kahlerian) is, of
course, also symplectic, hence the symbol £, associated to a
Hermitian operator admits the interpretation of a classical
observable.
Let us now introduce the notation

Ag = i €a(h;), €= (€,...€)€ER"

i=1

(3.25)

After this long preparation, we are ready to state the
main theorem of the paper.

Theorem 1: Let M be the homogeneous compact mani-
fold of coherent states, diffeomorphic with G /K and the
Kihlerian C-space G “/P. Here G is a compact, connected,
simply connected Lie group and K is a closed subgroup
(connected and rank K = rank G). Then the energy func-
tion f3 associated to the Hamiltonian

H= Y €H; e€=/(€,..€)eR)

i=1

(3.26)

is a perfect Morse function in the extended sense. The nonde-
generate critical manifolds of M are described by ¥; .
=m;(s)Y,,., s€X, where

'pz,u = exp( z zaE—a) ¢0’ (327)
acA’\N A"
A" = {y|yeA’, A, 50}. (3.28)

Every nondegenerate critical manifold has even index

A,.. =2card{alacd”, A, >0}, seZ. (3.29)
Moreover, if
A, = Z €5, (h;)#0, se3, ach’, (3.30)

i=1
then the associated energy function f;, is a perfect Morse
function.
Proof: Let us consider the function f/: C” — R defined by

fzz) = (¢,, Hy,), zeC™. (3.31)
The function f can be put into the form
- L. F(z,z
f22) =3 €ji— 3 4,2, a_(_z,z_) (3.32)
yea’

oz

Y

Indeed, from Eqs. (3.18) and (3.19) it follows that

i=1

fz2) = ||®, || XD, . He ), (3.33)
where
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X=3 z,E_,. (3.34)
aed’
But
Hex=e“'z (n)~1( — ad X)"H, (3.35)

n>0

where, taking into account Eqs. (3.26), (3.25), (3.34),
(3.10), and (3.6a),

ax

(adX)H=[X,H] = z Z Ay —, (3.36)
aed’ aza
n n—1 aX
(ad X)"H = Z z,A, (ad X) % n32. (3.37)
aecl’ Zy
Equation (3.35) becomes
He¥=eH — Y z,A,¢*
acl’
XS (= D(tn+ DY~ ad X" IX
n>0 aZa
de*
= H — A _— 3.38
GEZA, oZa > - (3.38)
From Egs. (3.11) and (3.26),
Hipo= Y € jYo (3.39)
i=1
and also
Hex¢0 =eXz 5i]i¢o— 2 za/la az . (340)
i=1 aed’ a

Introducing the latter expression in Eq. (3.33) and tak-
ing into account Eq. (3.23), the relation (3.32) is proved.
Note that if the subspaces generated by E _ ,, where acA’
and acA\ A’ are Abelian, all terms with # > 1 in Eq. (3.35)
are 0. This situation corresponds to Hermitian symmetric
manifolds (cf. Ref. 49, p. 1191).

The point zeC™ is a critical point of the function fif and
only if

af 3°F
L = — SN Az, ——=0, BeA 3.41
Fg ; " G, &, “ (34D

Since the fundamental two-form o is nondegenerate, the
matrix I = (g,3),, gea’ is nonsingular. Then Eq. (3.41) is
equivalent to the conditions

Az, =0, yel' (3.42)
The manifold of critical points of fis
€ r(f) =1{z|zeC™; z, =0, yeA"}, (3.43)

where A" is given by Eq. (3.28).
If the point z,€% ~( f), then (3.41) and (3.42) imply

%f af
S =0, afBeh, (344
(3za oz, ),0 (aza 7z, )ZO a. pe (344)

(W,o(f))aﬂ':(azf;ffﬁ)

= - A'aga[? = - gaB/]’ﬁ'
Zy
(3.45)
From Eq. (3.45) it results that the positive definite ma-
trix I" and the matrix A = (1,8,5 ), gea- aresimultaneously
diagonalizable. So, the Hessian matrix of the function fin z,,
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man-wlf 3o
1 (3.46)

1, m
U=27'" (il,,, - ilm) ’
admits A _ (resp. A,) negative (resp. 0) eigenvalues, where
A_ =2card{y|yed’; 1, >0},
Ao = 2 card{y|yed’; 4, =0},
and 1, denotes the unit matrix of the group GL(#,C) and
W' denotes the transpose of matrix W. In Eq. (3.46) the

Hessian is expressed in the real coordinates (x,, y, ), where
Zy =X4 + Yy,

(3.47)

¥ ¥
dx, xg  Jx, dyg
H( Nag = 3% ar | @ BeA'.  (3.48)
dy, Oxg Iy, Ay

Equations (3.44)—(3.47) imply that the Hessian matrix
(3.48) has the nonzero determinant det(H( f)),, gea- 70,
hence the manifold (3.43) is a nondegenerate critical mani-
fold. A point (vector) of this manifold has the expression
(3.27).

Now, choosing f* = fy,0&0°m; (s)oh ~*, seZ, it follows
that the nondegenerate critical manifolds of M for f* are
described by fb‘,,” = 7;(5)¥Y,,... Every nondegenerate criti-
cal manifold has even index (3.29).

It follows that in Eq. (2.1) the fiber of the nondegener-
ate critical manifold has even dimension, and, moreover, the
coefficients C;( f) (2.5) are all even, hence the lacunary
principle of Morse in the extended sense is applicable.

The first part of Theorem 1 was proved.

If A’ = A", then z, = 0 is the only critical point of the
function f. This point is a nondegenerate one and has an even
index (3.47).

If the conditions (3.30) are fulfilled, then it results that
the critical points of the function f,, are the distinct states ¢*,
s€Z, where ¢ = 7, (s),. Every critical state 1 is nondegen-
erate and has an even index

A, =2 card{alaeA’; 1 >0}. (3.49)

Now, the lacunary principle of Morse is applied and the
Theorem is proved.

Remark 1: The set of perfect Morse functions is dense in
the set of energy functions associated to Hamiltonians which
are linear in H,, i = 1,...,r.

Remark 2: As in the formulation of Bott’s theorem?!
presented in the Introduction, Theorem 1 is also true for
Hamiltonians H such that /H belongs to the Lie algebra
7;(@). Note also that the case iHen;(g) corresponds to co-
herent state preserving Hamiltonians for semisimple Lie
groups.*! We also remember that Frankel has proved the
existence of perfect:-Morse functions for linear Hamitonians
in the generators of the Lie algebra of a group of isometries of
a compact connected Kihler manifold.?* Here the Kihler-
ian structure of the compact coherent manifold follows, as
was already pointed out, from the fact the M is the orbit of
the j-dominant weight (see also Ref. 1, p. 168). The exis-
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tence of perfect Morse functions on Kéhlerian C-spaces was
proved by Bott. 192!

Remark 3: The perfect Morse function f, is related to
the spherical zonal function used by Takeuchi in the case of
irreducible symmetric complex and real R-spaces.”® The
complex R-spaces in the paper?® of Takeuchi are the C-
spaces of Wang.?? In the complex case, the function of Ta-
keuchi is constructed only for Hermitian symmetric spaces,
whereas the proof presented here is valid for Kéhlerian C-
spaces. In fact, in the case of complex Grassmann manifold
Takeuchi®® claims that the economical spherical function
reduces to the “nice” function (of Hattori), which is a par-
ticular case of the function constructed in Sec. IV [see Eq.
(4.11)]. On the other hand, the proof presented here in the
case of the compact coherent state manifold is more direct.

As an application to Theorem 1, a description follows of
a maximal system of coherent vectors.

Theorem 2: If 7 C M is a maximal orthogonal system of
coherent vectors, then there exists an element geG such that

T = {m;(g)¥’|seZ} (3.50)

and the number of vectors in .7 is equal to the Euler-Poin-
caré characteristic y (M).

Proof: The perfect Morse function fy appearing in
Theorem 1 induces a cellular structure onto the manifold of
coherent states M. For every sc= there exists in the cell 7,

= £,(77,) one and only one critical state 1 of the function
JSu-Observing that {7 }.; is an open covering of the mani-
fold M, that the group G acts transitively on M, and that

('l's"ﬁs} = 6ss':<¢0’1/’z> #0, (3.51)

for s,s'eZ, zeC™, Eq. (3.50) follows. On the other hand, from
the Morse equality (2.6¢c) with all odd Betti numbers equal
to 0, it can be deduced that = and .7~ have exactly y (M)
elements.

IV. APPLICATIONS TO THE MANIFOLD OF SLATER
DETERMINANTS

From the preceding section, it can be noted that the
results outlined there are applicable to large classes of quan-
tum systems with symmetry, where G is compact and rank-

G = rank K, and admit a Kéhlerian C-space structure. The
situation when the manifold M is endowed with a homogen-
eous complex structure includes the Hermitian symmetric
spaces [in fact, this situation occurs when dim(cen-
ter K) = 1, and there are only two invariant structures (see,
e.g., Ref. 46, p. 505). This situation also corresponds exactly
to the case when the subspaces generated by E _ ,, where
aclA’ and acA\ A’, both can be chosen as Abelian subalge-
bras of 7*' (g°).*°

The irreducible Hermitian symmetric spaces (see Ref.
47, p. 518) appear frequently in different branches of phys-
ics. For example, SU(p + ¢q)/S(U(p) XU(q)) appears in
connection with Hartree-Fock problems'® or Grassmann
nonlinear ¢ models,*® SO(2r)/U(n) is present in fermion
models'® or in quantum field theoretical models as the
Gross-Neveu type model,”® SO(p + 2)/SO(p) XSO(2) is
used in models with spins with SO(p) symmetry,’' and
Sp(n)/U(n) is the manifold of Lagrangian subspaces of the
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phase space.’? Also, Fordy and Kulish have studied the gen-
eralization of nonlinear Schrédinger equation by getting the
field components to take values in irreducible Hermitian
symmetric spaces.>> Here we sketch a short application of
the general Theorem 1 to the Hartree—Fock case. Details
will be presented elsewhere.

The time-dependent variational principle of Hartree—
Fock is based on the Slater determinant manifold.>* A geo-
metrical description of this manifold will be achieved by
means of perfect Morse functions and topological con-
straints onto the energy function will also be established.

Let us consider a fermion Fock space #° with vacuum
state (1. Let #; denote the linear complex subspace of #
with a base formed by the n-particle vectors

a,a,) - a,; A, (4.1)

1<py <py " <p, <1,

where a,", a, (p = 1,...,n’) are the usual fermion creation
and annihilation operators, respectively.

The Hartree—-Fock Hamiltonian is a Hermitian operator
on %, realized as a second degree polynomial in bifermion
operators

Co 1<p, <n'. (4.2)

From the usual anticommutation relations of the anni-
hilation and creation operators, it follows that

[CogrCrq ] =84 Coy — 8,y Cpys 1<p,g<n’.  (4.3)

The Lie algebra of anti-Hermitian operators on 7,
which are linear combinations with complex coefficients
Xpqs Xpg = — X,p, Of the operators C,,, is isomorphic with
the Lie algebra u(n’) of the group U(n’). But the group
U(n') is canonically isomorphic with the product of groups
U(1) XSU(n'), being, of course, connected, simply con-
nected. Hence it can be chosen that G = SU(n’). Let us also
fix the initial vector

— +
=4ap g5

Yo=a a; -atl (44)
Since

Cogo="0,%0, 1<pg<n,

C ¥ =0, 1<p<n’, n+ 1<g<n’, (4.5)

Cooth#0, n+ 1<p<n’, 1<gq<n,

1, is a vector of dominant weight j = (10" ~") of the uni-
tary irreducible representation 7; of SU(n') on #;.

A manifold of coherent states of dimension m

= 2n(n' — n) is obtained,

- o ——

M = {|¢y = m;(8)¢y; geSU(n")}, (4.6)
and is diffeomorphic with the complex Grassmann manifold
G, (C")=U(n')/U(n) XU(n' — n)."** The manifold of
coherent vectors M is diffeomorphic with M, as in Sec. II1.
Here we introduce the notation

P, = exp( > i E,K,Cpq) Yo

p=n+1 g=1
s = {A%loeS(n,n")},
A% = (6,0 )1<i, j<rn's

wherez = (2,,) ;. 1¢p<n€C"" ~™ and the set S(n,n') of C;

4.7)

1<g<n
Schubert symbols comprises all permutations o: {1,2,...,n'}
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—{1,2,...,n'} with the property that its restrictions to the
subsets {1,2,...,n} and {n + 1,...,n'} areincreasing. The atlas
of the manifold M is generated by the open covering
{7, }oescnny» Where

7, ={m; (%), |zeC*™ ~ M}, (4.8)

Here the local coordinate mappings 4,: 7, —»C"" =™ are
h,(Y,) =2, m(A) Y, =4, oeS(nn’).

The manifold M is called the Slater determinant mani-
Jold (in the second quantization).

According to Theorem 1, the energy function fy, asso-
ciated with the Hamiltonian

4.9)

n
Hy= Y ¢Cy ¢1<e< " <6y,

i=1

(4.10)

is a perfect Morse function.

By direct calculation' it is obtained, for f=fy &,
om; (A%)oh ;- ',

A2)=Tr[(U+2Vz*)(1, +zz%)7'],

U= (€,6p)1p, g<n> (4.11)

V= (cp‘qu nti1<p, g<n'

Then, the function £ C** ~ " R has a unique critical
point z = 0. This point is nondegenerate, and the Hessian
matrix has double degenerate eigenvalues: ¢, —c,, 1<p<n
<g<gn'.

The critical sets of the energy function f;; consists of the
critical states ¥, (0€S(n,n’)), where

Yo =a1,8502) " "oty 2 (4.12)

and the critical state ¢, has the index

A, =2 card{(p,g)|1<p<n <g<n’; o(p)>a(g)}.
(4.13)

It is funny to recover directly the Betti numbers of the
manifold M of Slater determinants™

by .1 =0, 0<A<n(n’ —n),
b,;, = card{(w,,...0,€Z", |0<0,<"**<w,<n’ —n;

o +o,+  +o, =4} (4.14)
and also the Euler-Poincaré characteristic y (M) = C.

Remark 4: Observing that the uniparticle states are ei-
genstates with eigenvalues ¢;, / = 1,...,n, it can be noted that
perfect Morse functions are obtained when the uniparticle
space is nondegenerate.

Remark 5: If the Hartree-Fock energy function f; ad-
mits only nondegenerate critical states, then the Morse in-
equalities (2.6) are satisfied, where O<A<m = 2n(n’ — n),
C, ( f) is the number of critical states of index A for fy, and
the Betti numbers are given by (4.14). The problem of exis-
tence of Hartree—-Fock states for Hamiltonians that do not
have spurious states was analyzed in Ref. 10. The Hamilto-
nians that give the minimum number of Hartree—Fock states
were effectively constructed here. It can also be shown that if
the eigenvalues of the uniparticle states c; are not all distinct,
then the set of critical states are Grassmann submanifolds of
the Grassmann manifold.

Remark 6: Perfect Morse functions of the type (4.11)
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have been constructed in the mathematical literature for the
Grassmann manifold (see, e.g., Refs. 31-33, where in the
last reference, a calculation with components of matrices is
performed). Note that the proof from Ref. 11 is more direct
than the proofs of Refs. 32 and 33. Also in the case of Grass-
mann manifolds there are direct proofs that the Morse-
Borel cells are identical to the Schubert cells.*®

V. CONCLUSION AND DISCUSSION

The Morse inequalities in the classical and extended
sense have been used for the effective construction of perfect
Morse functions on a manifold of quantum states and quan-
tum vectors. Actually, the case of a compact Lie group and
of a compact manifold of coherent states having the struc-
ture of a Kéhlerian C-space was considered. It was proved
that the set of perfect Morse functions is dense in the set of
energy functions for linear Hamiltonians in the elements of
the Cartan algebra of the Lie algebra of the representation of
the considered group, which was chosen compact, connect-

_ed, simply connected, and having the same rank as the sta-
tionary group of the manifold of coherent states. By the con-
struction of perfect Morse functions, the cellular
decomposition of the manifold of coherent states was found.
For every energy function, the Morse inequalities are satis-
fied, the odd Betti numbers being in this case 0. Particularly,
the energy function admits a number of critical points at
least equal to the Euler—Poincaré characteristic of the mani-
fold of coherent states. It is also proved that the Euler-Poin-
caré characteristic is equal to the maximum number of or-
thogonal vectors. The existence of perfect Morse functions
for Kihler C-spaces is well established.'®'*?! Here we have
presented a construction of a perfect Morse function with
physical significance as an energy function on the manifold
of compact coherent states, diffeomorphic with Kéihlerian
C-spaces.

The results obtained permit a correct approach to differ-
ent problems of the classical limit and variational principles
on manifold of coherent states from the point of view of
global analysis and geometry. In this context, the cellular
decomposition of the coherent state manifold induced by the
perfect Morse functions is useful for solving asymptotical
problems of actual interest such as the following: the classi-
cal limit of quantum collective models,***’ 1/N expansions
in quantum field theory,*® semiclassical behavior of func-
tional integral based on coherent states,’® Lagrangian analy-
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Exponential time-evolution operator for the time-dependent harmonic

oscillator
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The time-evolution operator for the time-dependent harmonic oscillator H = ;{a(t)p2

+ B(t)g*} is exactly obtained as the exponential of an anti-Hermitian operator. The method is
based on the equations of motion for the coordinate and momentum operators in the
Heisenberg representation. The problem is reduced to solving the classical equations of motion.

I. INTRODUCTION

The time-dependent Schrédinger equation (units are
used sothatfi=1),

igt—U=HU, Uit=0)=1, (N
can be exactly solved for a number of simple problems. The
solution is most conveniently written as a product of unitary
operators.”2 However, in some cases it is preferable to look
for a solution of the form

U=e™ 4, (2)
where 4 is a Hermitian operator. When no exact solution is
available exponential perturbation theories may be used.
One of them is the celebrated Magnus expansion® that en-
ables one to write 4 as 4, + A, + A5 + -+ . The conver-
gence of this series was extensively discussed.*

The applicability of the Magnus expansion to spin sys-
tems in periodic magnetic fields was investigated by Fel’d-
man® and Salzman.® To this end exactly solvable problems
prove to be very useful.’

Il. THE TIME-DEPENDENT HARMONIC OSCILLATOR

The purpose of this paper is to obtain the exponential
time-evolution operator for the time-dependent harmonic
oscillator

H=Ha()p* + B(1)q}, (3)
where a and B are real functions of 7 and [g,p] = i. Since the
operators

H =i, H,=1(gp+pq), Hy=1ip’ (4)
span a three-dimensional Lie algebra there is a solution of
(1) of the form (2) with?

A=b()H, + b,(t)H, + b;()H,, (5)
where b;, j = 1,2,3 are real functions of ¢ and b, (0) =0. It
remains to determine the form of the b’s.

The coordinate and momentum operators in the Heisen-
berg representation ¢, = U *qU and p, = U *pU, respec-
tively, satisfy

d d

;;pt = _Bqn tht = ap;. (6)
Therefore they can be written

p.=Pp+Pyq ¢ =0p+0.4 (7)
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where the P’s and Q ’s obey the classical equations of motion

d d

dt P hQ. dt
with the boundary conditions P,(0) =Q,(0) =1 and
P,(0) = Q,(0) = 0. Only three of the four P’s and Qs are
independent since [g,,p,] =i/ which leads to P,Q,
—PQ,=1

On using the well-known Baker—Campbell-Hausdorff
formulas it is not difficult to prove that

Q,=aP,, u=pg, (8)

P,=cosw ~bw 'sinw, P,= —bw 'sinw,
Q, =bw 'sinw, Q,=cosw+bw 'sinw, ®)
where 0 = b,b; — b3. When w? < 0it is convenient to write
o =i, o 'sinw =& ~!'sinh £ andcos w = cosh £. Clear-
ly, the form of the b ’s is completely determined by Eqgs. (8)
and (9) and the problem of finding U is solved.

Pechukas and Light? showed that U can also be written
U = exp(ia,H,)exp(ia,H,)exp(ia;H;), wherea, = P, /Q,,
a,= —4{InQ,,anda; = — Q,/2Q,. Therefore the resuits
of this paper also reveal the quite complex relationship be-
tween the two forms of writing U.

Apparently, the exponential time-evolution operator
for the model just discussed was not obtained before. The
method proposed here can be applied to other problems
where the Hamiltonian operator can be written as a linear
combination of the operators in a Lie algebra. Although the
resulting expressions for U appear to be difficult to disentan-
gle, they may be useful, for instance, in checking the applica-
bility of the Magnus expansion.?>

Spin systems in periodic magnetic fields>® can be treated
exactly in the same way if it is taken into account that

M, =1(g* +p*), M, =1i(¢* - p?),
M, = —li(gp + pq),

and the Pauli spin matrices o, o, and o, obey the same
commutation rules.

(10)
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Quadratic zeros of Racah 6/ coefficients: A geometrical approach
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It is shown that the projective symmetries of the polynomial ® of quadratic 6/ coefficients form
the symmetrical group Sg. Nonlinear rational symmetries of ¢ are found. Partial

parametrizations of the zeros of ® are presented.

I. INTRODUCTION

Recently some progress has been made in finding zeros
of 6f coefficients for the quadratic case.' Unlike the linear
case>* all solutions are not known.

In this paper we study the quadratic case from the point
of view of geometry. All concepts of algebraic geometry used
in this paper (projective coordinates, multiple points, base
points, etc.) can be found in Semple and Roth.> Beyer,
Louck, and Stein® have recently found that the polynomial
of 6j coefficients is invariant under a symmetrical group Sg.
In Sec. II, by studying some geometrical properties of the
surface associated to the polynomial we also arrive at this‘

(T+A4+C—-2)/2 (S+A+B—-2)/2

(T+B)/2 (§+C)/2

where 4, B, C, S, and T are integers >2.

This 6/ coefficient has exactly three decompositions in
terms of extremal elements*:
2—k)e,+ (S—k)e; + (T—k)e; + (A —2 + ke,

+ (B — 2-|-k)6‘5 +(C-2 +k)es+ke7,
with k = 0, 1, or 2 in the notations of Ref. 4.

The polynomial part of this 6/ is given by
®(4,B,C,S,T)

=A(A—-1)B(B—-1)C(C—-1)

4+ 24BCSTU+S(S— 1)I(T—1HUU-1), (1)

where

U=2—A—-—B-C-S-T.

Using the notation 4 ®¥ =A4(4 — 1) (4 -k +1)
and considering it as a symbolic exponential we can write
Eq. (1) as

® = (4BC + STU)?@.

Ii. SOME GEOMETRIC PROPERTIES OF THE SURFACE
o=0

We consider 4, B, C, .S, and T as belonging to C, the field
of complex numbers, and view the solutions of ® = 0 as an
algebraic surface (which we also call @) of complex dimen-
sion 4 in the projective space P3(C). More precisely, we in-
troduce the homogenizing coordinate z, and the homogeni-
zation of ®, which is of degree 6:
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symmetry group and show moreover that there is no other
projective symmetry of the polynomial in the quadratic case.
In Sec. II, we present rational nonlinear symmetries of the
polynomial that we conjecture to generate an infinite group.
In Sec. IV, two-dimensional cubic surfaces of zeros are
found from geometrical considerations. These cubic sur-
faces, like those introduced by Bremner’ for the linear case,
can be rationally parametrized. However these parametriza-
tions do not provide a complete parametrization of the four-
dimensional surface of all zeros. By considering a family of
cubic surfaces we arrive at a parametrization of a three-di-
mensional subvariety of zeros.
We take a quadratic 6f coefficient in the form

(S+T+B+C—4)/2

(S+T+4-2)/2

&, (4,B,C,S,T,z) = (A /2,B /2,C /2,8 /2,T /2)25.

The projective coordinates 4, B, C, S, T, z of a point of P*(C)
are defined apart from a multiplicative factor. Points at in-
finity are those for which z = 0.

Let us first study the multiple points of the surface ®. To
determine if a point M of the surface ® is a multiple point we
proceed in the following way. We take any other point
Q(#M) in P*(C) and parametrize the points of line MQ as

R(t)=Mt+Q(1 —1) (tC).

The equation of degree 6 in ¢
Pro(t) = Py(R(2)) =0,

for M and Q fixed, gives the intersection of line MQ with the
surface ®. The point M is multiple of multiplicity k if r = Qis
a root of multiplicity k of @, (¢) = O for any point Q.

The only multiple points of the surface @ are triple and
double points. There are 31 triple points, ten of which are at
infinity (Table I, where the coordinates will be defined a
little below). We use a notation for the triple points that
makes easy the description of the system L of lines joining
these points (Table II). The double points of ¢ form a set of
195 lines that is also the set of lines of types ¢ and d of system
L. We can classify the triple points of ® accordingly to the
type of lines of system L going through them. The triple
points fall in three classes ( Table III) that also correspond to
the difference of notations of the triple points.
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TABLEI. The 31 triple points. The indices k, /, m, i take the values 1, 2, ...,
6. Note that there are two notations for the 15 points like 7', = 75, and 12
notations for the ten points at infinity like T3 = Tysg = Ty = * -

Number of
points Notation Coordinates
6 T x; =8y, z=1
15 T x=1-6, -8, z=1
k #£1
10 Tiim x;=1—86, —8;—6,,, 2z=0
k#l#£m#k

The six triple points (7, );.x<¢ are independent and
form one of these classes. It is then very natural to introduce
new projective coordinates (x;), ;s such that the triple
point T, has coordinates x; = 6, . The transformation from
projective coordinates 4, B, C, S, T, U (we use coordinate
U=2z—A—B—C—8—T instead of z to make the
transformation simpler) is given by

Y 0 1 1 0 0 X,
B 1 01 0 0 O\[x,
cl_fr 1t oo o0 oflx 2
s 000 0 1 1{lx
T 000 1 0 1)]x
U 0001 1 o \x

The transformation matrix in (2) has been chosen so
that its column & represents the 4, B, C, S, T, U coordinates
of the triple point 7, with the determination corresponding
toz=1.

We recall that here, the projective coordinates 4, B, C,
S, T, U, or (x;),;.:<s Of a given point of P*>(C) are defined
apart from a multiplicative factor. Thus if we want that 4, B,
C, S, T, U correspond to our earlier definition of Eq. (1) we
have to fix this multiplicative factor by z=1. Since
z = 32f_,x,, this condition corresponds to the relation

o= x =1 (3)

on the new coordinates.

TABLE II. System L of lines. Classification of the lines joining the triple
points.

Type of Number of
lines lines Lines
a 30 T. T, meet @ only at T, and T,
b 120 T.T, lines of simple points of ¢
T,7T,

c 60 T T Titm lines of double points of ¢
passing through three
triple points

d 135 Tiim Ty lines of double points of ¢

(#Tim T) passing through two
y Y - triple points
2910 J. Math. Phys., Vol. 28, No. 12, December 1987

TABLE III. Classification of triple points. The three types of points, 4, B,
and C are characterized by different values of the numbers n,,, n,, n_, n, of

lines of types a, b, ¢, d of the system L through one triple point (n, + n,
+ 2n, + ny = 30).

Type of Number of
points points Points n, n, n, ny
A 6 T 5 5 10 0
B 15 T 2 14 4 6
C 10 Tiim 0 0 6 18

Transforming polynomial @, by Eq. (2) gives, after
dehomogenizing by o, = 1 [Eq. (3)],

‘D=$(03+%)2-—§(05+£), 4)
where
6
Uk = xl

In this form it is clear that the polynomial ® is invariant
under any permutations of the x,.

This symmetric group S, has also been found by Beyer,
Louck, and Stein® in a more general setting (for 6j coeffi-
cients of any degree). However, with our approach we can
now show in addition that there is no other projective sym-
metry of ®. We intend by projective symmetry a projective
transformation [in other words, this is a linear transforma-
tion of the (x,), ;¢ coordinates] that leaves the surface ®
unchanged.

The system L of lines together with their types (a~d)
and the triple points together with their classification are, of
course, invariant under any projective symmetry < of ®. By
considering the triple points of class A4 of Table III, we see
that ¢ permutes the six triple points T,

l?(Tk) = Ta(k)’

where ¢ is a permutation of 1,...,6.

Then by considering the lines of types a and c we have
HTw) = Tounowy and H Ty ) = Toikyonoim - Since T,
T, ..., T, and T, form a basis of the projective space P3(C),
the transformation ¢ is entirely determined by #(T)), ...,
3#(T) and #(T,,), and so by the permutation o. This shows
that there is no other projective symmetry than the permuta-
tions of the x, .

We now mention another remarkable property of the
surface ¢ which will be useful in Sec. IV. The 45 projective
three-spaces E .y (Where k, I, m, n are different integers
<6), defined by

x,+x,=0, x,+x,=0,
are on the surface ®. Moreover, there is no other projective
three-space on ®. Each of these spaces contains ten triple
points, for example, E,,, 34, contains the points T, T, T3,
T4y To3, Ty Tizsy Tizer Thasy and Tyye

Let us point out that 27 of these spaces can be obtained
at once from Eq. (1). For example, each term of Eq. (1) is
zero if we set A =8=0 (giving E 13,5, ) OF if we set

J. J. Labarthe 2910



A4=S8—1=0(giving E 53,y since ] —4 —8§=x, +x,
for dehomogenized x; ).

lil. THE RATIONAL SYMMETRY A OF @

Equation (1) is invariant under two transformations R
of coordinates 4, B, C, S, T of the form

R(A,B,C,S,T) = (5,T,C + w,A,B).
Indeed forming D = ®(4,B,C,S,T) — ®(S,T,C + w,A,B)
we obtain a polynomial in w of degree 2:
D=a(w—w)(w—w,).

But one root of D, w,, corresponds to the permutation A4S,
BT, C—U, which is an obvious rational symmetry of Eq.
(1). It results that the symmetry corresponding to the other
root of D, w,, is also rational. More precisely we have

w=2—A—B—-S—T—2C

(AB — ST = [(A +S)®(B+8)%,

It turns out that the base points consist of the 18 three-
spaces of ® given in Table IV. The neighborhood of a base
point is transformed by A into a line (i.e., when we let 4, B,
C, S, T approach a base point from all directions, the corre-
sponding transforms by A tend to points forming a line). The
neighborhoods of points in E 3,4, are lines that generate
E 15y(46y, S0 We write Ay (E(13y24) ) = E(15y(a6,- We have a
similar property for the 18 three-spaces of base points:
AN(E(25)(46) ) =E;3 05, AN(E(IS)(46) ) = E(13)(46) yeets
which is also displayed in Table IV. ‘

(c) Weknow very little about the group of rational sym-
metries generated by A and the permutations of the x;. We
conjecture that this group is infinite. Calculating orbits of
A,; = (13)0A (A followed by the permutation of x, and x5)
in P5(Fp) (the five-dimensional projective space over the
field F, of integers modulo a prime number p), we get divi-
sors (the number of points of an orbit) of the order k of A ;5 if
this order is finite. By calculating a few orbits we got that if
exists, it is a multiple of a very large number ( > 10%°).

V. SOME CUBICS ON THE SURFACE @

If we put S = 4 and 7= B in Eq. (1) we observe that ®
factorizes in three linear factors and one cubic factor,

TABLE IV. The 18 three-spaces of base points of A. Two three-spaces on
the same line in the first and second columns are exchanged by A . The

three-spaces in the third column are self-transformed by A .

E(m(u) E(ls)(‘é) E(l3)(46)
E(13)(25) E(25)(46) E(H)(ZS)
E(IS)(SG) E(Z])(‘G) E(l4)(36)
E(l‘)(23) E(l‘)(56) E(l5)(24)
E(ls)(23) E(24)(56) E(ZS)(56)
E(IS)(JG) E(24)(36) E(ZS)(36)
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A+S-—D " PB+S- D% D((4+8)(B+S) —kS),

and

w,=(1—A4—B—S-T)
X[(APB? —SPT?) /(4B —STH?].  (5)

We shall denote by A the symmetry corresponding to root
w2,

A(4,B,C,S,T) = (S,T,C + w,,4,B). (6)

Some properties of A are as follows.

(a) A is an involution, AZ = 1.

(b) The base points of A, that is, the points where A is
not defined (giving homogeneous transformed coordinates
all equal to zero), are the points canceling both the numera-
tor and denominator of Eq. (5).

The base points can be obtained by making use (for
k = 2) of the first part of the following identity:

ifA+B+S8S+T=k—1,
ifA+B+S+T=k.

r
P =A4B(4+ B — 1)F,

F,=C*+2(44+B—1)C (7)
—(A-1)(B—1)(24 +2B—1).

A similar factorization also occurs by setting S =A4 and
T=B+1,

® = AB(A + B)F,,
F,=C*+ (2B+1)C (8)
—(A=1)(B+1)(24+2B - 1).

The geometrical interpretation of these factorizations is
very simple. For example, relations S = 4 and T = B define
a projective subspace P, of P°(C) of dimension 3. Equation
(7) describes the intersection of P, and ®. The factorization
means that this intersection consists of three planes and one
cubic surface. The three planes are in fact, the intersections
of P, with the three-spaces E 3, s¢) » E(13y(46)» 20 E 15,24y -
Similarly, Eq. (8) describes the intersection of the subspace
P, (§=A4,T= B + 1) with ® that consists of three planes,
intersections of P, with the three-spaces E ;3 s6; » £13) (259 »
and E 5, 3¢, and of the cubic surface F, (we also denote by
F, the surface of P, defined by the equation F, = 0).

In P3(C) the intersection of two projective subspaces of
dimension 3 is, in general, a line. So the intersections of a
generic projective subspace P of dimension 3 with the spaces
E 41y (mny consist of lines. It is only for particular positions of
P that some of the intersections of P with E ;;, ,.,, become
planes giving a factorization of linear factors in the equation
of the intersection. It happens that there is an interesting
family of such three-spaces:

{xl+x2+x3+x4——a(x1+x2)=0,

X, + X, + a(x; 4+ x5) =0. )

The space P, intersects each of the spaces E y3y4,,
E 15)05), and E 54, 36, along a plane. We can take any value
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for a, excepted @ = 0 for which P, coincides with E 3, ,4,,
and @ = 1 for which P, coincides with E ,, .5, . Algebraical-
ly we use the projective coordinates u, v, w, and z of P, :

X, =u~-0,

X, =10,

x;=(a—Nu+v—uw,

X, = — U+ w,
xs=(l—a)u—v+ (1 - 1/a)w,
X¢= —u+v—(1—1/a)w+z.

Substituting into ®, we obtain a factorization of the
form

® =uv(au —v)F,,

where F, describes a cubic surface. Rather than writing the
complicated expression of F, in terms of «, v, w, and z we use
the classical theory as exposed in Chap. VII of Semple and
Roth® to obtain a simpler form. The cubic F, has one double
pointonly whena = — 1,4, or 2. For these values of a, there
is a permutation of the x; coordinates such that the space P,
and the cubic F, coincide with the space P, and the cubic F,
of Eq. (8), respectively. For other values of ¢, F, has no
double point and possesses a system of 27 lines that are ra-
tional in a. There are 45 tritangent planes that are also ra-
tional in @ and cut the cubic along three lines. The method
for simplifying the equation of the cubic consists in finding a
pair of associated Steiner trihedrals. This is two sets
(X, X5 X3), (Y, Y,,Y5) of three tritangent planes (of equa-
tions X, =0, X, =0, ...) such that the mutual intersections
as shown in the array

X, X, X
nw/h L I

are nine different lines /,,...,/; of the cubic F,. There are 120
such pairs of Steiner trihedrals, but it is enough to find one of
these. It is then possible to choose X, X,, X3, Y}, Y,, ¥, such
that the equation of the cubic takes the form X XX,
= ¥,Y,Y; and such that the following relation is verified: X,
+X,4+X;=7Y,+ Y, + Y,. Then by setting X, =y, + y,,

Xo=y1+y5 Xs=y14ys Yi=~ys—Ve Yo= —J,
— Y6, Y3 = — y, — ys the equation of the cubic can be writ-
ten as
0 Ya+rs Vst Vs
det|y; + Vs 0 »+ys| =0 (10)
Nhtr: Pat)s 0
or as
6
Sy yi=0. (11)

i=1
Carrying out these calculations, we obtained that a pos-
sible choice for the y, is given by

= —(a—1)du+ (a— 1)aw
+ (@® —a*/2—3a/2 + 1/2)z,

2912 J. Math. Phys., Vol. 28, No. 12, December 1987

yo= —(a—D%au+ (a— Dw
+ (@® —5a%/2 + a/2 + 1/2)z,
y3=(a—1)a*u— (a— 1)w
—(a®=3d%/2 + 3a/2 — 1/2)z,
Vo= — (@a— 1)2au —2(a — av (12)
+ (@— Daw + (&®> +a — 1)z/2,
ys=(a—1)%au+2(a— Dav
—(a — Daw — (a*> - 3a + 1)z/2,
Y= (a—1)%au — (a — 1)aw
— (@ —3a%/2—a/2+1/2)z.
These variables are linked by two linear relations:

6
2 ¥ =0,

“~ (13)
2(a— Dy, —2ap,— (& —a+ 1)y, +ys) =0.

The sum of cubes of y, is then related to the cubic factor F,
by

6

S yi=3(2a—1)(1-1/a)°F,,

i=1
so that for a #1 the equation of the cubic F, is given by Eq.
(10) or (11).

The cubic F, can be parametrized rationally by homo-
geneous variables b, ¢, d by solving in terms of u, v, w the set
of linear equations

2 +ys)e +s+y)d =0,

(Va+ye)b + i +y)d =0,

1 +y)b + (st ys)e =0.
(14)

Indeed the equation of the cubic [Eq. (10)] is the result of
eliminating b, ¢, and d from Eq. (14), and as shown in Sem-
ple and Roth® the correspondence between the projective
plane b, ¢, d and the cubic F, is birational (i.e., bijective and
rational).

Dehomogenizing by ¢ = 1, for example, and z = 1, we
obtain six rational functions R, (a,b,c) that give the parame-
trization x; = R, (a,b,d) of the cubic F, for fixed a. We omit
giving the complicated expressions of the R,. We can inter-
pret this result by considering the surface Q (of dimension 4)
generated by the spaces P, by varying a. The equation of Q is
obtained by eliminating a from Egs. (9),

(X + x5 + X3 4+ x4) (X5 + X5)

+ (x; +x3) (x5 + x4) = 0,
so that Q is a quadric. The functions R; are thus giving a
rational parametrization of the intersection of @ and ¢ in
terms of the three independent parameters a, b, and d.

The cubic F, can be studied by proceeding as in the case
of cubic F,. We introduce in this case the following y,:

n=-1 »n=-A-B-C+j,
V3=4A+B+C—3, ys=B—|,
ys=A—1, yo= —A—B+},
which are linked by
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6
Z »i=0 (15)
i=1
and
2y, +3(0,+y5) =0.
The expression F,, Eq. (7) then takes the form
2 6
F= ? 2 y: (16)
i=1

The cubic F, then can be parametrized by solving Eq. (14).
This gives, settingd = 1 and ¢ = b ? — g, afull rational para-
metrization of F, as

A=(b*+b*—2b)/2a+a/2 - b2,

B=(b2—a+ 1)/2, (17
C=0b—-—1DA+1—~(b%2+b—a)/2.
In the case of the cubic F, we define similarly
n=4, »p=-B-C—3,
y3=B+C+3}, ys=B+},
y5=A_%) Y6 = —A—B+£y
which are linked by
6
z yi=0
=1
and (18)
Wy +yatys+rs=0.
The expression F,, Eq. (8), then takes the form
2 6
i=1

For the cubic F, there is a very simple way of obtaining a
rational parametrization. We have already mentioned that
F, has one double point 2. Itis (4=1,B= —}, C=0).
The line (for fixed @ and & the line is parametrized by ¢),

A=a2t—1)+1, B=t—1, C=5b(2t—-1), (20)

intersects F, twice at { (for ¢ = {) and at another point given
by

t=b(b+1)/a(2a+ 1), 21)
as can be verified by substituting Eq. (20) into F,. Equations
(20) and (21) give a rational parametrization of F, in terms
of the two parameters a and b. Let us note that this method
cannot be applied to F; or F,, which have no double points.

It is clear that Eqs. (18) and (19) describing the cubic
F, are invariant in the permutations of the triplet (y,, ys, Vs)
and the pair (»,, y;). The corresponding symmetry ex-
pressed in terms of 4, B, and C is described in Table V. In
fact, the 12 transformations are the only projective transfor-
mations of P, that leave F, invariant. This can be shown by
considering the system of Steiner trihedrals and the double
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TABLE V. Symmetries of F,(A,B,C). The cubic polynomial F, takes the
same value for the 12 sets of 4, B, C.

4 B C
4 B ~2B-C—-1
4 —A-B A-C—-1
4 —A—-B A+2B+C
B+3 A4-3 —A—-B-C+}
B+3 4-1 ~A+B+C+3
B+3 —A—B A4A-C—1
B +3 —A—~B A4+2B+C
—A—-B+3 A—3 ~A—B—-C+}
~A—B+} A—3 —A+B+C+3
—A—B+3 B —2B-C—1
—A—B+3 B c

point of F, that have to be invariant under any projective
symmetry.

Similarly, Egs. (15) and (16) for the cubic F, are also
invariant under the same 12 permutations of the y, as in the
case of F,. However unlike the case of F,, the corresponding
transformations are simply permutations of the x; coordi-
nates.

V. CONCLUDING REMARKS

(1) It is still an open question whether there exists or
not a full rational parametrization of the surface ¢ (in terms
of four independent parameters). The parametrizations that
we have found (in terms of three or two independent param-
eters) really represent a very small part of the surface.

(2) Once a rational parametrization is found, one would
like to know how to find all the values of the parameters that
give genuine zeros of 6/, that is, for which the corresponding
A, B, C, S, T are integers »2. This is, however, a difficult
problem in itself, even for a simple parametrization like Eqgs.
(20) and (21) for the cubic F,. Indeed, if it is quite easy to
generate integer 4, B, C [for example setting b = a(2a + 1),
and taking any integer for parameter a, in Eqs. (20) and
(21) 1, it seems difficult to characterize the parameters a and
b that give integers 4, B, C without calculating A, B, and C.
Note that a and b are not necessarily integers (for example,
a=},b=3gived=6,B=7,C=25).
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On discrete Schrédinger equations and their two-component wave

equation equivalents
Alfred M. Bruckstein® and Thomas Kailath

Information Systems Laboratory, Stanford University, Stanford, California 94305
{Received 23 October 1986; accepted for publication 24 June 1987)

An approach to inverse scattering problems for discrete Schrddinger equations, which are
discrete three-term recursions, is presented by systematically transforming them into discrete
two-component wave-propagation equations. The wave-propagation equations permit the
immediate application of certain computationally efficient and physically insightful “layer-
peeling” algorithms for inverse scattering. The mapping of three-term recursions to two-
component evolution equations is one to many, because the relation between the “potential”
sequence parametrizing Schrodinger equations and the “reflection coefficient” sequence
determining local wave interaction is a nonlinear difference equation. This mapping is
examined in some detail and it is used to study both direct and inverse scattering problems

associated with discrete Schrodinger equations.

I. INTRODUCTION

A highly nonstandard approach to the inverse scatter-
ing problem of quantum mechanics is due to Krein (see, e.g.,
Chadan and Sabatier,’ p. 123). It is based on a transforma-
tion of the Schrodinger equation, parametrized by a poten-
tial function P(x), into a two-component system of first-
order differential equations parametrized by a local
reflectivity function K(x).

The point of this transformation is that the correspond-
ing inverse scattering problem for the two-component sys-
tem leads to an integral equation (the Krein equation) dif-
ferent from the classical equations due to Gel’fand and
Levitan and to Marchenko. One can formally show in a rath-
er straightforward way that, to a given one-dimensional sec-
ond-order nonhomogeneous wave equation

a d*

(ax2 % 2) V(ix,t) —P(x)V(x,t) =0
(which by Fourier transforming w.r.t. the time variable be-
comes a Schrodinger equation), we can associate a two-com-
ponent first-order differential equation [relating right and
left propagating waves { Wy (x,t), W, (x,t)}] of the follow-
ing form:

3 WR<x,r>]_[_a/at
ax W, (x)] L —Kx)

(1.1

- K(x)] [WR (x,2)
a /9t W, (xt) ]’
(1.2)

Indeed, if the reflectivity function K (x) is related to the po-
tential P(x) via the Riccati equation

——d—K(x) +K3*(x) = P(x) (1.3)
dx

and V(xot) = Wy (xgt) + W, (xt) at some point x,, it
follows that

Vix,t) = Wi (x,t) + W, (x,1) (1.4)
holds everywhere (see Chadan and Sabatier,! Bruckstein

*Presently with the Faculty of Electrical Engineering, Technion, IIT,
32000, Haifa, Israel.
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and Kailath,” and Bruckstein, Levy, and Kailath®). Note
that if one starts with wave-propagation equations as in
(1.2), then it is immediate to determine the potential func-
tion of the corresponding second-order (Schrédinger) equa-
tion; however, the reverse mapping is more problematic.
From (1.3) we expect it to be nonunique, since we also need
an initial condition, say K(x,), in order to determine K(x)
given the potential P(x).

Several interesting questions now arise in the context of
Krein’s approach to inverse scattering: For which potentials
can we find reflectivity functions obeying (1.3)? Are there
potentials for which the reflectivity function is uniquely de-
termined from the corresponding Riccati equation? Are
there potentials for which no reflectivity function obeying
(1.3) exists? The answer obviously depends on the interval
over which we wish to determine a model as well as on the
properties of the potential P(x). If the potential is identically
0 for x€[0, 0 ) then reflectivity functions obeying (1.3) are
of the form K(0) /{1 — K(0)x), and, to be well defined on the
positive axis, K (0) can be any negative value. However, had
we required a solution over the entire real axis, the conclu-
sion would have been that K(x) = Qs the only one that does
not blow up at any point. This simple example shows that the
mapping from potentials to reflectivity functions may some-
times be problematic.

We shall analyze the problems raised above for a dis-
crete version of the wave (or Schrédinger) equation. Doing
a straightforward discretization of Eq. (1.1), with both spa-
tial and temporal quantization intervals chosen to have
length A, one arrives at the equation

Vix+At) + V(x—Ay)

= G(x){D+ D '}V (x,t) + 0(AY), (1.5)
where G(x) is defined as
G(x) = exp{A?[P(x)/2]} (1.6)

and D acts on time sequences as a A/unit delay operator, i.e.,

Df(t) =f(t—A) and D~ 'f(1) =f(t+A). (1.7)

For details of the discretization see, e.g., Case and Kac.* If,
for integer values of n and 7, V(nA,7A) is rewritten as
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V(n,7) and all functions of the (discrete) time index are
replaced by formal two-sided power series in D, i.e.,

A =f(D)=73 fir)D",
T€Z

Eq. (1.5) becomes a discrete wave equation
V(n+1,D) +V(n—1D)=Gn){D+D '}V(nD),
(1.8)

which has the form of a “classical” discrete Schrodinger
equation with eigenvalue 24 = D + D ~' (see, e.g., Case and
Kac* and Case®). Note that by (1.6) the potential sequence
G(n) is always positive. Since in the continuous case it is
assumed that P(x) tends to 0 as x goes to infinity (in each
direction), we have that G(n) tends to 1 as |n|— 0. It is
usually further assumed that convergence to these limits is
quite fast, therefore our discussion will often refer to the case
of G(n) = 1 for |n| exceeding a certain value V.

We shall also consider here a generalized version of
(1.8) parametrized by two sequences of numbers
{F(n),G(m)},

Fn)V(n+1,D) + F(n — 1)V(n — 1,D)

=G(m){D+ D '}¥V(nD), (1.9)
where F(n) is never zero and tends to 1 as |n| - .

Our interest in discrete Schrodinger equations arose
from recent research on efficient algorithms for solving nest-
ed (linear) systems of equations, or integral equations, re-
cursively for increasing dimensions. Such algorithms pro-
vide lattice filter solutions for linear prediction/estimation
of stochastic processes and are of crucial importance in digi-
tal signal processing (see, e.g., the discussion in Kailath® and
the references therein). It gradually became clear that there
are close connections between inverse scattering problems
for transmission-line models and estimation theory, and in
both fields the problems are solved once one has an algo-
rithm for recursively determining a layered medium, or a
cascade filter, from impulse responses or equivalent spectral
data. Moreover, in both fields the solutions may be found
either by first deriving and solving sets of linear equations
(or integral equations, in the continuous case) or in a direct
way, by exploiting the causality of signal propagation and
structure of the layered medium, i.e., the assumed structure
of the elementary processors in a cascade filter. This re-
search also showed that the more efficient way of finding the
solution of inverse scattering problems is via a recursive lay-
er identification and peeling process, in which signals are
propagated through the already identified layers to provide
the scattering data for the deeper and yet unidentified layers
of the medium (see, e.g., Bruckstein, Levy, and Kailath® and
Bruckstein and Kailath>?). It was thus natural to look for
similar algorithmic solutions to the classical inverse scatter-
ing problem, which starts with the Schrédinger equation as
the propagation model. This paper shows that, in the dis-
crete case previously analyzed by Case and Kac,* and Case>®
and several others, direct layer-peeling solutions are always
possible via a mapping of the Schrédinger equation to a two-
component wave-propagation model, and hence to an equiv-
alent discrete transmission line. The mapping then provides
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anew algorithmic inverse scattering procedure that does not
proceed via classical systems of equations (see, e.g., Case’)
corresponding to the solutions of Gel’fand-Levitan, Mar-
chenko, or Krein (see, e.g., Chadan and Sabatier’).

This paper is organized as follows. The next section
deals with the formal mapping of the discrete Schrodinger
equation into a two-term wave evolution equation, and
proves that such a mapping is always possible. In Sec. III we
then discuss some properties of the mapping between poten-
tials and the reflection coefficients that parametrize two-
term evolution equations. In Sec. IV we deal with direct and
inverse scattering problems and derive layer-peeling algor-
ithms for inverse scattering based on inverse scattering for
transmission-line models; an example from Case® is then
reexamined from this point of view.

. FROM THREE-TERM TO TWO-COMPONENT
EQUATIONS

Equations (1.8) and (1.9) relate discrete functions of
time, in their formal power series representations, at three
consecutive points in space. They may be regarded as recur-
sive ways of defining V(n,D), given the “interaction” pa-
rameters {F(-),G(-)} and some initial conditions ¥(0,D)
and V(1,D), say.

Suppose that, over a certain interval in the space coordi-
nate ne[N,,Ng ], we have F(n) =1 and G(n) =1. It is
then straightforward to verify that, over [ ¥, ,N ], the solu-
tion of the three-term recursion is of the form

V(nD)=D"$o (D) +D "¢, (D). (2.1)

To determine the functions ¢ ; (D) we of course need the
signals V(n,D) at two points in space. In the time domain,
(2.1) means that

Ving)=¢g(r—n)+¢,(t+n), 2.2)

i.e, V(n,7) is a sum of two noninteracting right and left
propagating waves over n€[ N ,Ny |. Regarding V'(n,7) asa
sum of waves propagating in opposite directions can give
simple physical interpretations to relations induced between
time signals at various points in space, as a consequence of
linear and causal wave interaction. One of the major aims of
this paper is to show that a decomposition of signals V(n,r)
into interacting waves propagating in opposite directions can
be done in general: The potential sequences {F(n),G(n)}
determine the local interactions between the right and left
propagating wave components of ¥(n,7) via a local reflec-
tion coefficient sequence {K, }, corresponding to the contin-
uous reflectivity function.

Todo this, we start by writing, for a general Schrédinger
equation, that ¥(n,D) is the sum of two components as fol-
lows:

W (n,D)
W, (n,D) )

Now, since ¥(n,D) obeys (1.8) or (1.9), we have to deter-
mine a sequence of operators, {®(n,D)}, that will yield
wave components at # + 1 from the ones at #, and also en-
sure that (2.3) will hold at all points in space. This sequence
of 2X2 matrix operators will, of course, be determined by

V(nD)=1]1 1][ (2.3)

A. M. Bruckstein and T. Kailath 2915



the potential sequences, i.e., G(n) and F(n), that parame-
trize the three-term evolution equation. Since we wish to
consider both forward and backward evolution operators we
require the ®(#,D) to be invertible for every n. Writing

W,(n+1,D) W, (nD

) =®(n,D)[ x )],
W, (n+1,D) W, (n,D)

some algebra shows that we can determine ¥ (n 4 1,D) from

V(n,D) and ¥V(n — 1,D) as follows. Here V(n + 1,D) is giv-
en by

24)

11 -1

V(n+1,D) =[1 1]®(”’D)[[1 110~ '(n—1,D)

V(n,D)

X [V(n —1,D)yl’ (2.7)

a three-term recursion for ¥ (#,D) that should be made iden-
tical to (1.9). For this the sequence of matrices ® (n,D) must
obey

We (n.D) (1 110wy =22 (p 4 p—y - HE=1)]
V(n+ 1,D) =[1 11@(n,D) (2.5) F(n) F(n)
W, (n,D) 11
and using (2.4) and (2.5) we also have X[[l 110-1(n — l,D)] . (2.8)
V(n,D) ]_[ 11 ] WR(n,D)] If we set
Vin=1D) [1 1167 — L)W, (n.D) O(nD) = 6,,(n,D) 6,,(n,D) (2.9)
(2.6) 02 (n,D) 6, (nD)]’ '
This yields | then (2.8) reads
[6,,(n,D) + 6,,(n.D) 6,,(n,D) + 6,,(n,D)]
1 1
G(n) _ Fn—-1
= [F—(”)— {D+D7} - —(F(n—)) Opp(n—1,D) — 6,,(n — 1,D)  6y(n— 1,D) — f,,(n — 1,D) (2.10)
det ®((n — 1,D) det®(n — 1,D)
P
There are many ways of choosing operator sequences that s 1 0
will make (2.10) into an identity. We shall be interested, for (mD)y=1, p
reasons to become clear soon, in nonsingular matrices hav- )
ing the following structure: % [(73’ —Koly, K, ] [D 0] )
K, l/y, JLO 1
D 0 (2.13)
G(n,D)‘:@n[o D—l
= 2.11 @)
""[—K,, 1 Ho o]’ 1b
) .\{Ve(n,D) o % O WR(n+|,.Dz .
where we require K, | #1, for all n. Thus it will be assumed
that the propagation operators are composed of a relative _ h
shift operator, delaying Wy (n,D) one unit of time and ad- W (n.0) Kn Kn |
vancing W, (n,D) by the same amount, followed by a sym- ook n0 0~ +{+) WL("”LD. .
metric pure-gain matrix mixing the two sequences, .
DWg (n,D) and D ~'W,_ (n,D), pointwise in time. We as- ®,
sume this form for the operators ®(n,D) because their so-
called scattering domain representation 2(n,D), relating ®)
We(n+1,D) and W, (nD) to Wy(nD) and K
W, (n + 1,D), is then the cascade connection of a causal Wgr(n,D) %N~ Waln+l,0)
scattering matrix that delays the waves propagatinginoppo-  * "' D ! > e
site directions and a wave-interaction matrix that transmits
part of the signal and reflects part of it adding the reflected Kn | ~Ka
part to the wave propagating in the opposite direction (see W (n,D) 2 W (n+1,D)
Fig. 1). Indeed, writing rec e 0 ) y v
Wyn+1 We(n
& ( ,‘D)]=2(H,D) = (n,D) ] (2.12) Za
W, (nD) W,(n+ 1,D)

a few steps of algebra show [using (2.11)] that
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FIG. 1. (a) Transmission and (b) scattering representations of wave-prop-
agation operators.
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The above assumed structure for the signal transfer opera-
tors, and their scattering equivalents, leads to transmission-
line models that are discrete-case analogs of (1.2), see, e.g.,

Bruckstein and Kailath.”
Using (2.11) for the ®(n,D) operators (2.10) becomes

.|
[v.(1—K,)D y,(1-K,)D']
1
[g((n)) {D+D~ '} — E(;—(—)—Q D_lyn——ll +D7’n_—llK 1 D_lyn———ll -1 +D7’n—1 (2.14)
" 1-K2_, 1-K2_,
7 I

and the equation becomes an identity provided lute value, since p,, in (2.15b) is strictly positive. The follow-

=F(n)/G(n+1)(1 —=K2) (2.152) ing lemma shows that we can a/ways choose an initial condi-

K, ;) =F*(n)/G(n)G(n+1).
(2.15b)

Here we have used the fact that delay and advance operators
commute with scalar gains and have equated the coefficients
of D and D~! in (2.14). Thus to have that
V(n,D) = Wy (n,D) + W, (n,D), the wave components
should evolve according to (2.4) with the parameters of the
symmetric delay-and-interaction operators ®(n,D) being
determined by (2.15).

To summarize, suppose that we are dealing with a three-
term recursion (1.9) defined over ne( — o0, 0 ). Given the
potential sequences {F(n),G(n)}, we have the following re-
sult: If a sequence K, can be determined so that it obeys
(2.15b) and is, for all n, different in absolute value from 1,
then we can associate to the three term recursion (1.9) the
following transmission-line type wave propagation model

[WR (n+ I,D)]

(A+K,)(01-—

W, (n+ 1,D)
Gn+(1—Kk2) L-k, 1
D W (n,D)
o 1)—l W, (n,D) (2.16)

We now show that we can always determine infinite se-
quences K,,, so that |[K,|#1 for all n, and also satisfying
(2.15b). Let us further analyze the relation (2.15b). Define
the strictly positive sequence of numbers

pn =F*(n)/G(n)G(n+1). (2.17)

It is clear that the nonlinear difference equation (2.15b) can
be read either as a right, or forward propagating recursion,
yielding X, from XK, _,,

K, =p,/01+K,_,)—1, (2.18a)
or as a left, or backward propagation equation, yielding K,
fromK,_,,

K, ,=1-p,/(1+K,). (2.18b)
To determine a {K,, } sequence, we thus need to choose an
“anchoring” value at some point, say n =0, i.e., to set an
initial condition to the forward and backward recursions
(2.18). Clearly we need to have K, different from 1 in abso-
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tion that determines a {K, } sequence that has |K,|#1 for
all n.

Lemma: Given an arbitrary sequence of numbers {p,, },
p. > 0 for all neZ, there exist uncountably many sequences
{K,}, such that, for all n,

(l +Kn)(l _Kn—-l)=pn .

Proof: We shall show that there are uncountably many
values for K, for which both forward and backward recur-
sions yield sequences K, having |K,|5# 1. The forward re-
cursions will never yield a — 1 since p,, is always positive,
however, they cannot be propagated past a point where the
K-sequence hits a value of 1. The backward recursions never
hit the value 1, however, they may at some point yielda — 1,
beyond which we cannot proceed. Assume that at all points
n>0 we start backward recursions, i.e., (2.18b), with the
initial value of 1, and at all points » <0 we start forward
recursions with K, = — 1. We proceed, if it is possible, with
these recursions until # reaches 0 and exclude the values that
are attained at this point from the set of possible anchoring
values for K. But, since any real value can be an anchor
point for K, and the above described process rules out at
most countably many of them, it will be possible to find un-
countably many initial values K, that will yield solutions of
the nonlinear difference equation (2.15b) on the entire line.
Hence there always exist infinitely many different {K, } se-
quences that correspond to any given p, sequence. Q.E.D.

We have proved that to any three-term recursion of the
form (1.9) there correspond many wave propagation mod-
els of the form (2.16). We call these models wave-propaga-
tion equations because, as pointed out above, (2.16) implies
that the signals Wy (n,D) and W, (n,D) may indeed be re-
garded as waves propagating in opposite directions in a
layered scattering medium that determines their causal in-
teraction. The wave-interaction 2 (11,D) show that the medi-
um layers operate causally on the incoming waves W (n,D)
and W, (n+ 1,D) to generate the outgoing waves
We(n+ 1,D) and W, (n,D). As we see from (2.13) the
pointwise interaction matrix of the layers’ scattering repre-
sentations have as right and left reflection gains K, and

— K, respectively. This is the reason for calling the X,’s
local reflection coefficients.

The causal picture of wave propagation proves to be a
most intuitive physical interpretation of signal interactions
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described by the discrete Schrédinger equation: Given a po-
tential sequence {G(n)}, or generally, a pair of sequences
{F(n),G(n)} we shall investigate the properties of the dis-
crete Schrodinger equation via corresponding reflection co-
efficient sequences {K, }.

lll. POTENTIALS AND LOCAL REFLECTION
COEFFICIENTS

It is usually assumed that the sequences {F(n),G(n)}
tend to 1 as |n| — . In this case the corresponding p, se-
quences defined by (2.17) also converge to 1 with increasing
|n|. We have from the forwards and backwards recursions
(2.18) that, if K, tends to a limit, then

| l|1rn K,=0.
However, the convergence of X,, to O is conditioned on the
asymptotic behavior of the sequence p,,. From (2.15) we see
that, in order to have a convergent K,, sequence for |n| - oo,
it is necessary that p, — 1 approaches O as fast as
K,—-K, ,-K,K,_, (=p,—1),forsomeK, sequence
convergent to 0. It is not difficult to show that a sufficient
condition for having a convergent K, sequence is that
8, =1 — p, approaches 0 from above, i.e., so thatp, < 1 for
all n big enough in their absolute value. This means, for ex-
ample, that the potential in Eq. (1.8), G(n), should obey
G(n)G(n + 1) > 1for all n, a condition trivially met if G(»)
is always greater than 1.

To avoid dealing with convergence conditions we often
assume that the potentials are already at their limiting value,
1, for |n| > N,. In this case the iteration of the functions

3.1

F(x)=1/(1—x)—1 and F,(x)=1-1/(1-x)

3.2)
yields K, sequences that converge to O as 1/|n|. To see this
we can either check directly that sequences converging to 0

as 1/|n)| satisfy the recursions induced by (3.2) or transform
(2.18) into two-component recursions for 4, and B,,, where

K,=A4,/B, . 3.3)
It is straightforward to show that
o= ]
= 34
[Bn] IR G4
implying that, for n >0, 4, and B, are given by
An 0 1 Pi — 1][K0]
= . 3.5
Now if p, = 1 for n > N, we obtain
K,=A4y/— (n—Ny)Ay, + By —-0. (3.6)

and a similar exercise shows that forn— — 0, K, also tends
to zero as 1/(|n — Ny|).

Note that if we had F(n) = G(n) =1 for all neZ, the
sequences K, that would correspond to an anchoring value
of K, would be

K, =K/(1 —nK,)
the excluded values for K, being {1/n|neZ}.

3.7)
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A. Conditions for losslessness

Suppose that we can find a sequence K, corresponding
to the given potential sequence(s) so that

|K,| <1 foralln. (3.8)

The evolution equations (2.16) into which the three-term
recursion (1.9) is mapped then yield sequences proportional
to those provided by the following associated wave equation:

Wxin+ l,D)]

Wtn+1,D)
(1 K )1/2 K 1
D W"(n,D)] (39)
0 D_l W¥(n,D) '

These equations describe wave propagation on a lossless
transmission line, as discussed in Bruckstein and Kailath.”
The interaction (gain) matrices are J lossless in the trans-
mision representation, i.e.,

O*JO* " =J with J= [0 _1] (3.10)

and this implies that they are unitary (lossless) in their scat-
tering representation.

Let us determine conditions under which a given three-
term recursion may be mapped into a lossless model, with all
reflection coefficients less than 1 in absolute value. From
(2.19) we see that necessary conditions for this are

0<p,<4=max{(1 +K,)(1—-K,_)}. 3.11)

To obtain sufficient conditions, too, let us study the forward
and backward recursions providing the {K, } sequence from
the anchoring point K, say. A simple analysis of functions of
the form

=p/(1—x)—1and F,(x;p) =1—p/(1 +x)
(3.12)

shows that, if p < 1, then F,(x;0) maps the interval ( — 1,0)
into itself, whereas F, (x;0) maps (0,1) into itself. If we
therefore ensure that K isin ( — 1,0), then K, e( — 1,0) for
all positive n, and similarly if X_ ,€(0,1) then K, will remain
in that interval for all » < 0. Thus, choosing K, = 0 [or any
value in the interval (p, — 1,1 — p,)], we shall have that
|K,| < 1for all n, provided p, < 1, for all n. This proves that
a sufficient condition for the three-term recursion (1.9) to cor-
respond to a lossless two-component evolution equation is that
all the positive values p,,, defined by (2.17), are less than 1 in
magnitude.

In the special case of the three-term recursion (1.8),
which is parametrized by the single sequence {G(n)}, we
realize that the above condition for losslessness is satisfied
automatically provided we have all G(n) > 1. This corre-
sponds to a continuous model for which the potential is al-
ways positive, a well-known condition for the nonexistence
of so-called “bound-state” solutions for Schrodinger equa-
tions. Losslessness should intuitively correspond to no-
bound-state situations, since bound states correspond to en-
ergy trapped in the medium, which is impossible in lossless

Ff(x;P)
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media (see, e.g., Ablowitz and Segur®).

B. Local mapping between reflection coefficients and
potentials

Suppose we are given a local reflection coefficient se-
quence {K,} and we ask for the potential sequences
{F(n),G(n)}. These sequences should obey

FX(n)/G(m)G(n+1) =p, =(1+K,)(1—K,_,)
(3.13)

and they are not uniquely determined by (3.13). If F(n) =1
for all » and G *(n) obeys the relation (3.13), then clearly
G(n) = G *(n)Z '~ "*isanother valid potential sequence for
any Z #0. To determine the potential sequence uniquely we
need to anchor it at a given point, say n = 0. Suppose, how-
ever, that we wish to have a local functional dependence of
the potentials on the reflection coefficients. If we try to set
G(n) =T (K, _,), then we see that it is necessary for F(n)
to be different from 1. Writing (3.13) out in terms of the
T'(K,) we obtain

F?’(n)=(1+K)I'(K,)(1 -K,_T(K,_,).

(3.14)

Requiring further F(n) to be independent of K, _, leads to

rK,_)=Gn)=1/(1-K,_,)
and (3.15)

Fmy=[(1+K,)/(1-K,)]~'*
and we see that, to have positive G(n) and real F(n), it is
necessary for all X, to be less than unity in magnitude. In
this case the evolution equations (2.16) become identical to
the lossless propagation model (3.9). Three-term recursions
having F(n) and G(n) given by (3.15) were first derived in
(Bruckstein and Kailath?) from the corresponding lossless
two-component equations as recursions that describe the
evolution of the voltage on a transmission line with piecewise
constant impedance function. The associated current signals
are defined as I(n,D) = Wy (n,D) — W, (n,D), and obey a
complementary pair of three-term recursions, with G(n) re-
placed by G(n) = 1/[1 + K, ].

We note that associated wave difference or current vari-

ables can be defined for arbitrary three-term recursions and
then we can write that

[V(n,D)]__[l 1][Wx(n,D)]
InD)l 11 —1}{W,(nD)

and we readily obtain two-component evolution equations of
the following form:

[V(n+ I’D)]_L[l 1]
In+1D)] ™ 211 -1
V(n,D)]

11
XG(”’D)[l - ][I(n,D)
(3.17)

(3.16)

After some simple algebraic manipulation these equations
can be put in the form
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[V(n +1,D)
I(n+1,D)

_ F(n) [1 0
2G(n+ 1)[1+K,]10 (1+K,)/(1-K,)

[D+D - D-D _‘][V(n,D)]
D—-D-' D+D'lInD)]"
This form of two-component equations associated to a trans-
mission-line model was recently found useful in deriving
new and computationally efficient algorithms for matrix fac-
torization and estimation applications. It turns out that, by
parametrizing the media in terms of
A, =(1+K,)/(1 —K,), these algorithms require about
half the number of multiplications when compared to con-

ventional transmission line based algorithms see, e.g., Bis-
tritz, Lev-Ari, and Kailath.'©

(3.18)

IV. DIRECT AND INVERSE SCATTERING PROBLEMS

Up to this point we discussed the basic three-term recur-
sions (1.18) and (1.9) and showed that we can always asso-
ciate to them two-component propagation equations of the
form (2.16) or (3.18). The basic three-term recursions
(1.9) can be written out in the space-time coordinates (n,7)
as a second-order system of partial linear difference equa-
tions (see, e.g., Fort,'")
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FIG. 2. (a) Computable regions of ¥(n,7) from given sequences, and (b) a
diagram of influence propagation from a certain data point.
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a,(n)V(n+ L,7)+a,(n7)V(n—1,71)
+a,(n,YV(nr+1)+a;,(n,7)V(nr—1)

+a. (n7)V(nr) =0, 4.1)
where

a,(nr)=F(n+1), a(nr)=F(), (4.2)

a,(n7)=a,(n7)= —G(n), a.(n1)=0.

Notice that the a,, (n,7) are independent of the time index 7,
which made possible the transform analysis, i.e., the repre-
sentation of (4.1) as a recursion relating formal power series
via three-term propagation equations having constants or
time-delay/advance operators as coefficients.

To determine V(#n,7) from (4.1), or the three-term re-
cursions (1.9), we need to be given two initial condition
sequences, say V(0,7) and F(1,7), or in general any pair
V(m,r)V(m + 1,7). Then we can forwards or backwards

J

i F(i)

(M. D] = T]
M(m:n,D) =
(Mr>)]7'= 11

i=m—1

F(i)

i=h—1 G+ 1D[1-K?]
" GUi+1) [D“
0

propagate the three-term recursion to obtain the time se-
quence V(n,r) at any point in space n. Furthermore, the
sequence at ¥'(n,7) depends linearly on the initial given ini-
tial sequences. To analyze graphically the influence propa-
gation of given data sequences we can plot space-time dia-
grams as depicted in Fig. 2. We see in these diagrams that
given a contiguous portion of the data sequences, it will be
possible to determine ¥(n,7) in a certain influence region
that can readily be mapped.

If we pass to the equivalent two-component domain,
where we are given interlocked recursions for the right and
left propagating signals then we need as initial conditions the
two wave components at a certain point in space, say
Wx (m,7) and W, (m,7). The waves at any point in space
will obviously be given by (in the transform domain),

WR(n,D)] WR(m’D)
[WL(n,m =MmnD) g (mDy | @3
where the operator M(m:n,D) is given by
1 —K.-“D 0 "
-k, 1 Jlo p—fp BT
(4.4)

0][1 Ki] £
ollk, 1] if n<m.

Given a legal choice of “anchor” value for the reflection coefficient sequence, at m, K,,, and the data pair
{V(m,D),V(m + 1,D)}, we can determine the wave components { W (m,D),W, (m,D)} from

Wg(m,D) + W (m,D) = V(m,D),

{F(m)/G(m + )[1+K,, 1} (DWg(m,D) + D ~'W, (m,D))=V(m + 1,D),

i.e., we have
Wg (m,D) V(m,D)
W, (m,D)] B E(m’D)[V(m + 1,D)
1
= F(m)

F(m)

(4.5)

(4.6)

Gm+ D{1+K,]

Now to determine ¥ (n,D) for any n we can write that
Wg(n D)

V(n,D) = (1 ll[W (n.D)
L

~ . V(m,D) ]
=[1 l]M(m.n,D)E(m,D)[V(m_,_ 1,D)

(4.7)
and, since the choice of the reflection coefficient sequence,
and thus of K, clearly does not enter in the determination of
V(n,D) from the initial conditions { V(m,D),V(m + 1,D)},
we have that the row vectors

[(®(m:n,D)¥(m:n,D)] = [1 1]M,,., (D)E(m,D)
(4.8)
are independent of K,,, and in fact of the two-component

medium altogether.
We have shown that there exist transfer functions relat-
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Gm+1[1+K,]

V(m,D) ]
Vim+1,D))’

—

ing the initial conditions to the signals at any point in space,
and they are seen to have a very special structure. Let us
analyze further the properties of these transfer (Green’s)
functions.

A. Transfer function properties

Let us first analyze the transfer matrices M}, (D), for
m < n. We have by the definition (4.4) that

n

MLD)= [[ ©GD)

i=n—1
(M)

[M:,w)]u]
MDY @9

[M}.(D)]2
and from the symmetry and invertibility of the elementary

layer transfer functions, we obtain that M, (D) is invertible
and obeys
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IM" (D)I=M" (D~') with 7=[(1) (1)] (4.10)

Furthermore, the entries of M}, (D) are polynomials in D
and D ~! of degree not more than n — m. The determinant of
the matrix operator M 7, (D) is given by the product of the
determinants of the ®(i,D) appearing in (4.9). We have

det{®(,D)} = F())*/G(i + 1)’[1 — K?] (4.11)
yielding
n—1 F(l)2
det{M (D)} =
(M7 (D)} il_-[mG(i+1)2[1—K§]
_ 1=K ]Gm) (4.12)

[1-K,_,]G(n)

Note that det{M " (D)} approaches 1 as m— — o and
n— + oo, if the potentials approach 1 as the space index
increases. Equation (4.12) also shows that the inverse of the
transfer matrix from m to n is given by

(M7 (D)]™!
_[1-K, 16(m
[1-K,_,]1G(m)

(M.(D)],, —[M.(D)]n
= [ML(D)]ar  [ML (D]
_ [1-K,_,16)
" [1—K,._;]G(m)
M. (D D] —[ML(D)]:

R . (4.13)

—[M.(D)]n [M,(D"]xn
Finally, we shall note that the matrices M, (D), when for-
mally regarded as functions of a complex variable z = D,
obey on the unit circle

[M2(e®)] T [M:(e®)]*=det{M (D)} J
(4.14)

showing that the transfer matrix approaches (as the
boundaries tend to + o ) a J-unitary matrix (provided it
converges, i.e., if its entries have limits as functions of a com-
plex variable z).

The transfer matrices M, (D) yield the wave variables
at depth n from those at depth m. It is natural to inquire
about the relationship between the waves impinging on a
portion of the medium extending from depth m to depth n
and the outgoing ones. If the medium is originally at rest, the
emerging waves are the causally generated response of the
medium layers, since, as we have seen, the scattering descrip-
tions of elementary medium layers are the causal, linear and
time-invariant operators (2.13). A few steps of algebra show
that the scattering representation corresponding to M |, (D)
is

SnDy=—~t
[M7 (D)]2
[ det{M [ (D)} [ML(D)].
— [M5(D)], 1 ‘
(4.15)
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Important properties of the scattering representations
S (D) are causality, inherited from the causality of elemen-
tary layers the medium is composed of, and asymptotic loss-
lessness due to the J losslessness of the corresponding trans-
fer representation on the unit circle.

We shall see that the data assumed to be available for
inverse scattering, a problem that requires the recovery of
the local parametrization of a scattering medium described
by either a three-term recursion (or partial difference equa-
tion) or a two-component evolution equation, are signals
that are causally generated in these media. In the case of the
wave-propagation description the causality has immediate
meaning, however, if we are dealing with the ¥(n,D) signals,
the concept of a causal signal has to be properly defined. We
shall show that the Jost solutions as defined in the classical
theory of inverse scattering (Case®) doindeed correspond to
causally generated waves in the equivalent wave propagation
media.

B. Causal solutions and inverse scattering

Suppose first that we are dealing with a two-component
system corresponding to the discrete Schrodinger equation
(1.8), and that we know the medium parametrization up to
depth m, i.e., we have G(m) and K,,, _ ;. Assume that we are
also given an input-response pair { Wy (m,D),W, (m,D)} at
m = 0, that is right causal, i.e., we know that the Wy ,, (n,7)
were zero prior to the time 7 = 0 when the first nonzero lag
of the sequence Wy (0,7) is sent into the medium towards
the right. This implies that W, (0,7) will be the causal re-
sponse elicited by right propagating input signal, and a little
thought will show that we have, at depth n,

WR (”;T) = 0 ]
W, (nr)=0,

simply due to the delay structure of the medium. Also we
shall have, immediately (see Bruckstein and Kailath”), that

W,inr=n+2)y=K,Wi(nr=n). 4.17)

This observation is the basis of a straightforward inverse
scattering process that yields the medium parameters from
the data. Indeed, (4.17) readily yields K, from the given
data, then (2.15) provides G(1), and then we can use (2.16)
to determine the sequences {Wy (1,D),W, (1,D)}. These
sequences are a synthesized set of causal scattering data for
the medium starting at depth 2 and extending to + «, and
we can proceed to determine K, and G(2), and so on. We
thus have an immediate recursive layer-peeling procedure
that recovers the medium parameters from the scattering
data. For more detail on such procedures see Bruckstein and
Kailath.” We note that the scattering data assumed to be
available is equivalent to having the left reflection function
of S &, the scattering representation for the medium portion
extending from 0 to + oo. We have, from the structure of
the medium, that the nestedness property

[S7(D)]ao1= [S7 (D) ]z + D>~
X {a bilinear function of [S (D) ).}
(4.18)

for r<n,

.1
for r<n+2, (4.16)
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holds, showing that the medium up to depth » can be recov-
ered from the first 2n lags of its impulse response alone.
There are interesting connections of the above discussed in-
verse scattering method to an algorithm by Schur for testing
for boundedness inside the unit circle, analytic functions of a
complex variable (see Schur,? Kailath,® and Bruckstein and
Kailath”).

Suppose now that we are dealing with scattering asso-
ciated to the original three-term recursion (1.8), and assume
that the potential sequence G(n) is different from 1 only
somewhere between # =0 and # == N>0. In this case we
know that solutions of (1.8) in the “outer” regions
(—»,0] and [N, + ), are of the form
$x(0,.DYD" + ¢, (0,D)D —" and ox (N.D)D™
+ ¢, (N,D)YD —", respectively. Only two of the four
& .. (0/N,D) functions are independent, and those may be
determined if we are given the signals V' (-,D) at any two
points in space. If we consider the Jost-type solution (see
Case®), for which ¥ /(n,D) = D "for n > N, then it is easy to
see from the influence propagation diagrams (Fig. 3) that
we have for all n that

VIinD) =3 DQ(n). (4.19)
Since by definition the sequences ¥ /(n,D) obey the recur-
sion (1.8), we readily obtain that the potential can be com-
puted from the function (,-) as

Gn)=QQn—1n-1y/Q{(nn), (4.20)

therefore, an inversion algorithm could be based on first de-
termining the kernels Q2(-,-). The classical approach to in-
verse problems was to derive integral/matrix equations re-
lating the kernels Q(n,i) to the scattering (or so-called
spectral) data, and then using (4.20) to recover the poten-
tials. We shall outline here an alternative approach, which
exploits the structure of the problem directly, and recovers
the potentials by propagating a nonlinear difference equa-
tion. The insight that yields immediate derivations of these
results follows from the equivalent two-component evolu-
tion equations that can always be associated to three-term
Schrodinger recursions.

The scattering data that we shall assume available are
the functions ¢% ,, (D) that specify the behavior of ¥ /(n,D)
in the region ( — 0 ,0]. First let us see what is the meaning
of a Jost-type solution in the equivalent wave propagation
representation. We have at depth n> N, that ¥(n,D) = D"
and also that ¥(n + 1,D) = D"+, and using (4.6) we ob-
tain

We(n,D)=D"{1—[1+K,]D?}
x{14+D2>+D*+D%+ -},
W, (nD) =D"+2K,,{1+D2+D“+Dﬁ+ e},

(4.21)

where K|, is the local reflection coefficient at depth 7 in some
equivalent two-component model, and the formal expansion
/(1 —=DH =1+D*+D*+ D%+ -+ wasalsoused. An
interesting fact becomes clear from this exercise: the waves
corresponding to the Jost solutions are causal pairs in the
region n > N. Let us look at what happens at the other edge of
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FIG. 3. Causality of Jost solutions.

the medium, at n = 0. Assuming without loss of generality
that G(0) = 1, we have that V7(0,D) = ¢z (D) + ¢, (D)
and V'(— 1,D) =¢x(D)D ~' 4+ ¢, (D)D. Using (4.6)
again we obtain the following expressions for the waves:

W (0.D) =1/(1—K_){$x (D)[[1 —K_,] — D?]

—¢.(D)K_H1+D*4+D*+D%+ -},
W.(0,0) =1/(1—K_,){¢x (D)DK _, (4.22)

+¢, (D)1 —[1—K_,1D?}

X{14+D?*+D*+ D%+ --}.

It can be seen that, provided ¢, (D) has a D? factor and is
causal, the waves at # = 0 will constitute a causal pair of
scattering data. It is relatively easy to show, using the struc-
ture of the wave-propagation medium that we shall have a
causal pair at all depth #. This follows from the relation
(4.3) and the form of [M(D)] .

Therefore the Jost solutions are causal, in the sense of
corresponding to causal waves for any choice of equivalent
reflection coefficient sequence. The straightforward layer-
peeling algorithm can now be invoked to recover the poten-
tial over the region [O,NV]. If we would have chosen K _, = 0,
and assuming that this choice yields a legal two-component
model, we would have that

Wi (1,D)=¢p(D) and W,(1,D)=¢,(D) (423)

A. M. Bruckstein and T. Kailath 2922



and we could start propagating the layer-peeling algorithm
on this data. Note that we can never recover both F(n) and
G(n) in the general equation (1.9) since the recovery of the
local reflection coefficient sequence provides recursions for a
nonlinear combination of these parameters. Therefore we
can use this method to recover the parameters of either the
classical discrete Schrodinger equation (1.8), or of a variant
for which only F(n) are different from 1, and there exists a
mapping between such equations based on a renormaliza-
tion, see, e.g., Case.® Also it is important to note that if we
assumed K_, =0 and the algorithm yields a X, =1 at
some point, we can continue the medium recovery from this
point on by recomputing the scattering data under the as-
sumption of another X,. This can be done by obtaining
V(n.— 1,D) and V(n. — 2,D), say, and recomputing via
(4.5) the waves with a different X, _ ;.

It is clear that if we are given the Jost functions, we can
obtain alternative causal pairs by assuming that the behavior
in the region n> N is ¥ “(n,D) = D" (a causal function),
since this corresponds to convolving the input and output
waves at n = O with the same causal function. Sometimes the
scattering data is given by an equivalent set of functions, for
which, at # <0 we have

VC(n,D) =D" +s(D)D ~" = V' (n,D)/$,(0,D) .
(4.24)

Here s(D) = [¢,(0,D)]/[¢x (0,D)] and we consider its
causal expansion, starting with D %, a property inherited from
¢, (0,D). The pair Wy (0,D) =1 and W, (0,D) =s(D)
form a causal impulse response pair for the scattering medi-
um associated with the Schrodinger equation, having
K _, =0 as the “anchor” reflection coefficient and we shall
be able to recover the sequence G(n) from this data, via layer
peeling.

In his paper on one-dimensional inverse scattering
Case® tests an inversion method, based on the discrete ver-
sion of the classical theory that proceeds via Gel’fand-Levi-
tan or Marchenko systems of equations, on an example that
corresponds to the following one. Assume s(D) of (4.24) is
given as

2

s(D) =1)2{__P_—_1__ _ 1]

(2—-g)D*—¢g
= (_1__ 1)1)2 + (l__g_i)p"
g £ g
2
g g
Applying the layer-peeling inversion algorithm on the pair
of sequences {1,5(D)} is seen to yield

(4.25)

K0=-—1——l, Klz__“:g_)__,
g ~(1—-g)+1
21— 44

which provide, via (2.17) and assuming G(n) = 1 for n<0,
the potential sequence

G(l)=g, GR2)=1 G@3)=1, 4.27)
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a result that coincides, up to a shift in space, with that ob-
tained by Case.’

V. CONCLUDING REMARKS ON BOUND STATES

We have presented a rather direct approach to the anal-
ysis of three-term recursions by mapping them into two-
component wave-propagation equations having a certain de-
lay-and-interaction structure. Note that we have assumed
that the propagating signals are general time sequences and
used their representation as formal power series, or generat-
ing functions. This immediately puts us into the domain of
so-called scattering solutions of Schrédinger equations,
therefore we did not discuss issues pertaining to the existence
of so-called bound states. Indeed note that once Eqs. (1.8) or
(1.9) is written as an eigenvalue problem

Fn+1D)V(n+ 1A) + F(n)V(n — 1,4)
=G(n)2A¥(nA), .

it receives more mathematical content than that implied by
its interpretation as a wave-propagation equation. The spec-
trum of values for A where solutions exist consists of the
values A = cos 6[ — 1,1], for which D = e, and can have
the interpretation of a delay operator in the harmonic analy-
sis of time sequences, but we may also ask what happens for
values of A outside the itnerval { — 1,1]. If a solution to
(5.1) exists for such a value of A, then we shall have that
DeR, i.e., it will be a real value, since

D+D'=21
implies that
Dl,2 =A + [/12— 1]”2,

which also shows, incidentally, that D, = D ;..

In our two-component interpretation, the waves then
disappear in a rather mysterious way and are replaced by
single values at each point in space (or rather, time se-
quences will be have a constant value at all times). The D
operators become pure gains, instead of delays, and the solu-
tions of (5.1) effectively become sequences in only the space
dimension. If we want these sequences to be bounded and
have finite energy, it turns out that there is only a discrete
spectrum of values of A for which such solutions exist. Sup-
pose that we have a medium described by a sequence of po-
tentials for which the reflection coefficients are very close to
zero outside an interval [O,N]. Then we have that M (D)
describes the interaction of signals that exist at # = 0 and
those at » = N. In order to have bounded solutions corre-
sponding to some real value D = d; < 1, we need to have, see
Fig. 4,

(5.2)

We(Nd,)#0 and W, (0,d,)#0 (5.3a)
together with
Wp(0,d,)=0 and W,(Nd,) =0 (5.3b)

proving that in this case we shall have [M §(d;)],, =0.
Therefore, to have a bound-state solution, [ M §(D) ],, has
to have zeros inside the unit circle. The alternative analysis
of d; > 1 leads to the same conclusion, viz. [M {(D)],,
needs to have zeros outside the unit circle. This condition
however implies that the scattering matrix (4.15) has poles
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FIG. 4. Conditions for the existence of bound states.

inside the unit circle, which means that, from a system theo-
retical point of view, the wave-scattering system is unstable,
i.e., some inputs will elicit exponentially growing causal re-
sponses. This did not bother us much, since all along we were
not concerned with the boundedness of our functions, or
with the convergence of the generating functions to legal and
analytic functions in the complex variable D. We, however,
obtained sufficient conditions under which such problems
do not arise: indeed it is easy to realize that if the medium can
be associated to a lossless structure we shall never have
bound state solutions. Also if we stay in the scattering do-
main and deal with sequences represented by purely formal
generating functions, we can apply the straightforward
analysis without any problems. If we want to deal with se-
quences of numbers that are bounded and summable in some
sense, we should only use inputs that do not excite the unsta-
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ble modes of the scattering medium. These issues underlie
much of the effort in the rigorous treatment of discrete in-
verse scattering problems, however, we feel that the simpli-
city of the approach outlined in this paper explains the mech-
anism of inverse scattering in a way that most directly
exploits the wave interaction model assumed.
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The canonical formalism of thermally dissipative semifree fields in the time-dependent
situation is presented. The use of thermal covariant derivatives simplifies the formulation
considerably. With this formalism one can unambiguously obtain the interaction Hamiltonian
under any thermal situation which together with the free propagator enables perturbative
calculations to be performed. The “on-shell” renormalization condition in the time-dependent
case is also discussed. The model of a system with a thermal reservoir illustrates how the

present formalism works in time-dependent situations.

I. INTRODUCTION

Thermo field dynamics (TFD) is a real time quantum
field theory with thermal degrees of freedom. In a series of
papers'~’ we have been extending TFD to describe any ther-
mal situation, including nonequilibrium phenomena. This
extended TFD has been shown to be equivalent to the den-
sity matrix formalism with the Liouville equation.! The pur-
pose of this paper is to present this extended TFD in a sys-
tematic form placing a strong emphasis on the time
dependence of thermal situations.

Before starting on the extended TFD we summarize
here the equilibrium TFD®® that is now well established.
The basic concepts in equilibrium TFD are the following: (i)
the doubling of each degree of freedom through the tilde
conjugation rules, (ii) the thermal Bogoliubov transforma-
tion taking care of the freedom in choice of the temperature,
and (iii) the total Lagrangian density is given by

=92, (L.1)

where . is the usual Lagrangian density and . is obtained
from .Z by the tilde conjugation rules.

According to (i), with an operator 4 we associate with it
its tilde conjugate 4. The tilde-conjugation rules are sum-
marized in the next section. In TFD, therefore, any field has
its tilde conjugate, forming a thermal doublet. A similar situ-
ation of the doubling of the degrees of freedom is observed in
other formulations of real-time quantum field theory at fin-
ite temperature such as the C *-algebraic formalism,!° the
path-ordering formalism of the Schwinger—Keldysh type,!*
and the superoperator formalism'? of the Liouville equation.
The relation between TFD and the C *-algebraic formalism
was beautifully analyzed by Ojima in Ref. 13. The relation
between TFD and the path-ordering method was clarified in
Ref. 14. In the theory of the density matrix there appear
right- and left-operating operators which form thermal
doublets and which are called the superoperators.'? The re-
lationship between the superoperator formalism and TFD
was given in Ref. 1. Intuitively speaking, the nontilde opera-
tors take care of the usual quantum excitations, while the
tilde operators describe the thermal excitations.®

Since each field is a thermal doublet, there appears a
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mixing of the doublet components through the Bogoliubov
transformations. In the equilibrinm TFD the different
choices of temperature correspond to different choices of
these Bogoliubov transformations. Thus we were led to the
concept (ii), i.e., the thermal Bogoliubov transformation.
The concept (iii) for the total Lagrangian in TFD ex-
hibits the following beautiful feature of TFD. Since . does
not depend on the temperature, neither does .#. The tem-
perature appears only through the thermal Bogoliubov
transformations. Since these features play a fundamental
role in the extension of TFD to nonequilibrium situations let
us elaborate on them. As is well known the language of quan-
tum field theory has a dual structure.® The basic entities such
as the Lagrangian, the Heisenberg equations, and the basic
canonical commutation relations are expressed in terms of
the basic fields called the Heisenberg operators, while the
phenomenological language is constructed in terms of the
“quasiparticle” operators, which are the particles including
all the renormalization effects. The state-vector space is the
Fock space associated with these quasiparticles. When a La-
grangian is given, an essential task in quantum field theory is
to obtain the expressions for the Heisenberg operators writ-
ten in terms of the quasiparticle operators. This expression,
which has been frequently called the dynamical map,® deter-
mines the realization of the Heisenberg operators. The dif-
ferent choices of the thermal Bogoliubov transformation
correspond to different choices of the realization of the Hei-
senberg operators. Thus concepts (i) and (ii) imply that
different temperatures correspond to the different realiza-
tion of the Heisenberg operators that are determined by the
total Lagrangian .. Since the state-vector space is the Fock
space associated with the quasiparticles, the best choice for
the unperturbed Hamiltonian is the Hamiltonian of the
quasiparticles. Denoting the annihilation and creation oper-
ators by (£.,&) and (£],£]), respectively (ie.,
£.]0) =&,10) =0 and (0|} = (0|} = O with the ther-
mal vacua |0) and (0|, where k represents any quantum
number), the Fock space is constructed by the cyclic oper-
ation of creation operators on |0) and of annihilation opera-
tors on (0|. Denoting the quasiparticle energy by @, the
temporal behavior of the creation and annihilation operators
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are required to be of the form

Ec () =B, (1), & () =&EX®) (1.2)
with E, (¢) = exp( — iw, ). Then, the feature (ii) means
that the oscillato~r operators (@, (2),a, (¢)) of the fields are
related to (£, (2),&, (1)) through the Bogoliubov transforma-
tion B,

[ak(t) _B[fk(t)
am) TLEIo)

where B is a 2 X2 matrix.

A remarkable fact in equilibrium TFD is that the loop
corrections to the self-energy of the quasiparticles create an
imaginary term, making the quasiparticles dissipative
(spontaneous creation of dissipation). This dissipative be-
havior is caused by the presence of the background tilde field
whose quanta carry negative energy. The real quanta de-
scribed by the nontilde operators live in a world with the
background tilde field of negative energy, which easily ab-
sorbs the energy of real quanta and makes them dissipative.
An essential reason why the quasiparticles easily become
dissipative, irrespective of the fact that the Lagrangian .% is
real, is that the quantum field has an infinite number of de-
grees of freedom. When we denote the number of degrees of
freedom by N, the (1/N) expansion provides us with a clear
picture for the spontaneous creation of dissipation. The lead-
ing term in the (1/N) expansion exhibits the dissipative be-
havior. Since the Lagrangian is real when V is finite the dissi-
pative behavior disappears when all of the terms in the (1/
N) expansion are summed up. However, when X is infinite
and only the leading term in the expansion is picked up, the
dissipative behavior may arise from a real Lagrangian. This
consideration will be explicitly demonstrated in the analysis
of the reservoir model in Sec. V. The appearance of a dissipa-
tive effect in the equilibrium situation is not surprising. Al-
though the equilibrium situation is stationary, a short-time
measurement induces excited states which approach the
ground state dissipatively. Thus although the thermal aver-
age of the observable is independent of time, the dissipative
effect appears in the multipoint functions such as Green’s
functions and correlation functions.

The same dissipative effect becomes apparent even in
the thermal average of observables when the thermal situa-
tion becomes nonstationary. Even a brief consideration® of a
time-dependent transition between a disordered state and an
ordered state indicates that the renormalization effects due
to loop corrections become dependent on time, making most
of the physical quantities (such as energy, order parameter,
dissipative coefficient, particle number, etc.) dependent on
time. This analysis also indicated a need for time-dependent
renormalization.? This motivates us to extend TFD to time-

dependent nonequilibrium phenomena.

The task of extending TFD began with the construction
of the Hamiltonian for dissipative quas1partlcle 124 The idea
is that once this Hamiltonian, say H becomes known the
interaction Hamiltonian is given by H- H %, where H is the
Hamiltonian obtained from the total Lagranglan Z. This
provides us with the Feynman-diagram method for compu-
tation. In the density matrix formalism the description of an

(1.3)
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open system in terms of quasiparticles was obtained by elimi-
nating the variables of the reservoir through the coarse
graining process. Our first approach’ was to reformulate this
coarse graining process in terms of the TFD formalism. In
Ref. 3 this approach was reformulated in terms of the
Green’s function formalism and the result was compared
with the path-ordering method. Our next step, made in Ref.
4, was to construct H ° by making the so-called thermal state
condition time dependent [this is equivalent to making the
thermal Bogoliubov transformation (1.3) dependent on
time]. It turned out that the H° thus obtained depends on
time explicitly. A remarkable fact is that this Hatthe long-
time limit (z— o) coincides with H 0 obtained from the
coarse graining process. Another significant point in the
analysis in Ref. 4 was to point out that the spontaneous cre-
ation of dissipation can be formulated in terms of the renor-
malization technique. The basic idea here is that since the
unperturbed quasiparticles include all of the self-energy cor-
rections, and since the self-energy corrections frequently
make quasiparticles dissipative, the unperturbed Hamilto-
nian contains dissipative terms. Thus we are led to the self-
consistent renormalization condition which states that the
interaction Hamiltonian (H — H°) should not create any
on-shell self-energy. Since the on-shell self-energy is a 2 X2
thermal matrix this condition gives four complex equations,
which are equivalent to eight real equations. Although not
all of these equations may be independent of each other, this
condition does contain more information than the energy o,
and the dissipative coefficient «, . However, the precise for-
mulation of the self-consistent renormalization condition re-
quired more analysis and was not presented in Ref. 4. To
learn more from this formalism in Ref. 4 we applied it to two
models in the stationary case in Ref. 5, one of which was an
exactly solvable reservoir model. Since TFD treats the reser-
voir as a part of the quantum field system we do not need to
eliminate the reservoir variables. This analysis clearly exhib-
its the previously mentioned argument based on the (1/N)
expansion with the limit N — o . The other model was a real
scalar field model without a reservoir. Since, as was pointed
out above, TFD treats a reservoir as a part of a quantum field
system, it is readily applicable to any quantum field system
without any reservoir. Here it is important to note that a
quantum field has an infinite number of degrees of freedom
as the reservoir does and also that a stochastic effect is
caused by the background tilde field, which has negative
energy. In any application of the formalism to a quantum
field system it is important to put the theory of dissipative
quasiparticle in the canonical form. This was done in Ref. 6.
However, this just dealt with the stationary case.

With all of the results mentioned above, we are now
ready to put the foundations of nonequilibrium TFD in a
systematic form. This is the purpose of this paper. The exact-
ly solvable reservoir model in a time-dependent situation
will be treated as an example. The foundations of nonequilib-
rium TFD are the previously-mentioned basic concepts, (i),
(ii), and (iii). We now state that any (even time-dependent)
Bogoliubov transformation, which is consistent with other
basic concepts, is permitted and that the entire set of the
Bogoliubov transformations cover all possible thermal phe-
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nomena. In other words, the general TFD considers all pos-
sible realizations of the Heisenberg fields controlled by the
Lagrangian .¢ . In the equilibrium TFD we considered only
a particular set of Bogoliubov transformations. To cover the
time-dependent phenomena, we consider time-dependent
Bogoliubov transformation. Furthermore, since the quasi-
particle is dissipative we might assume that E, (¢) in (1.2) is
exp( — iw, t — Kk, t) with unknown parameters w, and &;.
However, we find that when a time-dependent thermal situa-
tion is considered the higher-order loop corrections may
make @, and x, dependent on time. We thus state that the
dissipative quasiparticles are defined by (£, (t).€ | (t)) with

E ()= exp[f ds{ — iw, (s) — iy (s)}].
0

This dissipative quasiparticle is called the “semifree” quasi-
particle. The appearance of x, in E, (¢) and the time-depen-
dent Bogoliubov transformation are the basic features in the
extended TFD. Our unperturbed particles are the fully re-
normalized semifree quasiparticles. Since these particles are
fully renormalized the interaction Hamiltonian (which con-
tains the renormalization counter terms) should not create
any on-shell correction. This leads to the self-consistent re-
normalization condition which, in general, depends on time.

The extended TFD distinguishes itself from the equilib-
rium one by the fact that the unperturbed Hamiltonian HOis
not the usual free Hamiltonian, but the semifree Hamilto-
nian which has an imaginary term responsible for the dissi-
pative effects. Then we need the full knowledge of the semi-
free field in order to perform a perturbative calculation
formulated in the terminology of the interaction representa-
tion. We first formulate the extended TFD in terms of the
oscillator operators a(k) and a’ (k). It is not an easy task to
formulate the extended TFD in terms of field operators 1 (x)
and ¥(x) when the formalism is required to include any
time-dependent thermal situation. In order to construct
such a formalism one requires a method simpler and more
systematic than those that have previously been presented.
In this paper the formulation of the extended TFD begins
with the time-dependent Bogoliubov transformation applied
to a semifree field. This leads us to the thermal covariant
derivatives that simplify the construction of the extended
TFD.

The reconstruction of the generalized semifree oscilla-
tor operators® is given in Sec. II by use of the thermal covar-
iant derivatives. Then by using the same method we formu-
late a theory of semifree fields which is applicable to
time-dependent thermal phenomena. Although the use of
the time-dependent Bogoliubov transformation and the co-
variant derivatives simplified the formulation of semifree
fields, the consideration in Sec. II is still limited to semifree
fields of type 1 (i.e., the semifree fields with a positive fre-
quency part only). Study of semifree fields of type 2 (i.e,,
those with both the positive and negative frequency parts) is
limited to time-independent situations only. This is present-
ed in the Appendix. The works in the past*’ showed that
there exists a flexibility in the formulation of TFD: TFD
carries an arbitrary parameter denoted by a. In equilibrium
TFD it has been shown'® that the freedom in choice of
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corresponds to the freedom in choice of path in the path-
ordering method. This might lead us to anticipate that this
freedom might disappear in nonequilibrium TFD. Contrary
to this expectation, this freedom remains in nonequilibrium
TFD. This means that the choice of a is not intrinsically
related to the choice of path in the path-ordering method.
Furthermore, the consideration in Sec. II will show that the
formulation of TFD has a wider choice of arbitrary param-
eters. The entire consideration in this paper is made without
specifying these parameters.

Once we have a formulation of the semifree field we try
to develop the perturbative calculation in the extended TFD
including the time-dependent situation by using a semifree
quasiparticle field for the unperturbed field. To do this we
need the knowledge of the interaction Hamiltonian. A meth-
od for identifying the interaction Hamiltonian is presented
in Sec. IV. The argument there begins with the fact that the
TFD Lagrangjan density is given by J £ — % and the
Hamiltonian H in TFD follows from .2 through the usual
route in the canonical theory. The Hamiltonian HO of the
semifree quasiparticle field is given in Sec. III. Then the in-
teraction Hamiltonian in the extended TFD is found to be
H,  =H-H"

In the perturbative calculation in the extended TFD a
vital step is the renormalization procedure which leads to a
set of so-called self-consistent equations.** The latter equa-
tions determine not only the renormalized energy and the
dissipative coefficient, but also the temporal behavior of the
average number density when the initial value of the average
number density is given. Any renormalization procedure is
based on the on-shell renormalization condition which is
associated with the renormalization point. In previous pa-
pers the on-shell renormalization condition has been given
only for the time-independent case, so in Sec. V we formulate
the on-shell renormalization condition for time-dependent
thermal situations. This renormalization method is applied
to a simple solvable model to illustrate how the energy and
dissipative coefficients as well as temporal behavior of the
average number density can be determined. We find a non-
vanishing dissipative coefficient (spontaneous creation of
dissipation).

Section V1 is devoted to a brief description of the phys-
ical mechanism for the appearance of the dissipative coeffi-
cient in an isolated quantum field system. There, the impor-
tance of the infinite degrees of freedom and the presence of
the negative energy background field (tilde quanta) is ex-
plained in terms of the (1/N}-power expansion method. A
similarity between the mechanism of spontaneous break-
down of symmetries and the one for spontaneous creation of
dissipation is also pointed out. A discussion on the relation
between the spontaneous creation of dissipation and the
spontaneous breakdown of time-translation symmetry is
also presented. It will be pointed out what kinds of problems
still remain in order to complete the extended TFD.

Il. RECONSTRUCTION OF THE GENERAL SEMIFREE
HAMILTONIAN IN TFD

We start by introducing certain quasiparticle annihila-
tion and creation operator £ (k) and £T (k) in the interaction
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representation with the thermal vacua |0}, (0|:

§(k)[0) =0, (2.1a)

(0|t (k) =0. (2.1b)
These operators obey the commutation relation

[Ek).£T(D], =8k -1, (2.2)
where the o commutator is defined by

[4,B], =AB — oBA, (2.3)

with o =1 for boson operators and o = — 1 for fermion
operators. The other commutators vanish. We suppressed
all indices representing spin and any other internal degrees
of freedom other than the momentum k. For simplicity we
will drop the momentum variable in the section below unless
it is required.

It is now widely known that in TFD with an operator 4
we associate with it its tilde conjugate 4 according to the
rules

(AB)" = 4B, (2.4a)
(c;d +¢,B) = c’f‘z + c’2"§ (¢sc, are ¢ numbers),
(2.4b)
A4h =41, (2.4¢)
(4)" =04, (2.4d)
|0)" =10y, (0| =<0 (2.4¢)

Taking the tilde conjugate of (2.1) and (2.2) we get

£10y =0, (2.5a)
(0" =0, (2.5b)
[E),ET ()], =8k —1). (2.6)

The o-commutation relations between tilde and nontilde op-
erators are assumed to vanish. Equations (2.1) and (2.5) are
called the thermal state conditions.

For later convenience we introduce the thermal doublet
notation

§“=[§fr» Er=lg' -kl =12 @D

Then we write (2.2) and (2.6) compactly as

[£+E*], =& (2.8)
We now introduce £(¢)* and E’(t)" with the form
E@H = Eo ()€, (2.9a)
Ey =EE5 ()™, (2.9b)
where
Ey(t) = exp[ - ift ds{w(s) — iKo(s)T3}]. (2.10)
0

We call £(£)* and £(¢)* the semifree quasiparticle operators.

Our state vector space, called the thermal space, is the
linear space spanned by the set of bra and ket state vectors
that are generated by cyclic operations of the annihilation
operators £ ' and £ ? on the thermal vacuum (0|, and of the
creation operators £ 2 and £ * on |0).

Let us now identify how the quasiparticle creation and
annihilation operators are related to the variables describing
a quantum field system. A usual choice for variables is har-
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monic oscillator-type operators, a and a', satisfying
[a(k),a’ (1)], =8(k —1). In TFD these operators also
form thermal doublets. Introducing the notations

a(t) =S 1(1)aS, (¢), (2.11a)
a't(t) =57 ()a'S, (1), (2.11b)

where the time-translation operator g‘, (¢) will be specified
later, the thermal doublets are
a(t)

m
&TT(t) ’ a(t),u=[aﬁ'(t)_aa(t)],u.

(2.12)

The thermal state conditions for a (¢)* and @ (¢)* in TFD (cf.
Ref. 4) can be rephrased by the statement that these opera-
tors in the interaction representation are related to £ (¢)* and
£(2)* through a generalized Bogoliubov transformation

a(t)* = b N (O*E@), (2.13a)

a(n* =E(t)"b(1)"™ (2.13b)
In this paper we use these as basic relations in TFD, rather
than the thermal state conditions for @ and @. The above
relations give the commutation relation

la(t)~a(s)"] = 6. (2.14)
For the consistency of the tilde conjugation rules (2.4) for
both a and &, we must have

detb(¢) = 1. (2.15)

The observable average number density #(¢) is given in
terms of a(¢) and a'? (¢) by

a(t)“=[

n(t) = (0|a*t(r)a(2)|0). (2.16)
Let us express the matrix b by
b, b
b(t) = [ H ‘2]. (2.17)
b21 b22

Using (2.13) together with (2.9) and considering the defini-
tions of the quasiparticle creation and annihilation opera-
tors, (2.1), (2.2), (2.5), and (2.6), together with the unimo-
dular nature of b, (2.15), we find that

b,b,, = on(t), (2.18a)

bby =1+ on(s). (2.18b)
From (2.18) it follows that the matrix b(#) contains two free
parameters. We can therefore write b(z) as

b(t) = W (1)By(1) Wr (D), (2.19)
where

By() = [1 +_‘_”;(’) —”1”(”], (2.20a)

W, () =exp[rsInb, ()], (2.20b)

We(t) =exp[r3Inbg ()]. (2.20¢)

The two arbitrary parameter b, and bz, which generally
depend on time and momentum, etc., are related to b,, and
b,, by

b%‘ = — b21b22, (2.21a)
b; = —b21/b22. (221b)
The parameter by is related to the thermal state condi-
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tions (2.1) and (2.5), rewritten in terms of a(#)* and a(¢)*,

[a(r)! — F(ta(1)?]1|0) =0, (2.22a)

[@(1)* + F(Da(1)'1|0) =0, (2.22b)

Ol[@n)' + of(n)F ~(na(nH?*] =0, (2.22¢)

0}{a(t)®> — af(t)F ~'(t)a(r)']1 =0, (2.22d)
where

f() =n@)/[1+o0n(t)], (2.23)

F(t) = gf()b g 2(1). 2.24)

The tilde conjugation of (2.22a) together with (2.21b)
shows that F(t), and therefore, by (¢) should be real. Note
that the parameter 4, does not appear in (2.22). In compari-
son with Refs. 4 and 7 we obtain the previous thermal state
conditions if we choose

F(2) =f*(1) (2.25)

with O < < 1. This implies that the arbitrariness of b, in-
cludes the freedom of choice of a in the previous papers.*’
However, the present formulation is wider than the previous
one since by and F(t) are quite arbitrary as far as they are
real.

On the other hand, the flexibility of choice of b, has not
been discussed in the previous papers. To take into account
this flexibility, we introduce

E(t) = W, (1)Ey() (2.26)
= exp[ —if ds{w(s) — iK(s)1'3}] (2.27)
0
with
k() =ko(t) —3d, In b, (2). (2.28)
Now (2.13) read as
a(t)*=1B "l(t)"”E(t)""é' Y, (2.29a)
a)t = EVE —1(£)B(t)*™*, (2.29b)
with
B(t) =B, ()W (2). (2.30)

This motivates us to introduce the thermal covariant deriva-
tives,

D*(t) =B~ Y(t)E(t)3,E ~'(¢)B(2), (2.31a)

D+ (1) =B~ ()E)3,E ~'(1)B(2). (2.31b)
The equations of motion for a(¢) and @(¢) are

iD* ()" a(t)* =0, (2.32a)

@)D+ ()™ =0. (2.32b)
We obtain from (2.31)

D*(t) =0, +i[w(t) —iP(t)], (2.33a)

DH(t) =8, —i[w(t) —iP(1)], (2.33b)
with

P(t) = Pi(1) + P,(2), (2.34)

Pi(t) =k(8)A(t) 4+ on(£)7(t), (2.35)

Py(2) = W \(8)d,We (D), (2.36)

=d,{In by ()}, (2.37)
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where the various matrices are defined by

A(t) = W (DA () We (1) = B~ (1)T3B(1), (2.38)
Ag(t) = By '(1)13Bo (1)
_ [ 14+ 20n(t) —20n(t) ’ (2.39)
2(1 +on() — (14 20n(1))
T(t) = WR_I(I)TOWR (), (2.40)
1 -1
To= [1 1l (2.41)

The equations in (2.32) show that the semifree Hamil-
tonian for g and a is

HO (1) =a(t)*[o(t) — iP(1) 1*a(t)". (2.42)

This Hamiltonian becomes the one given in Ref. 4 when
(2.25) is assumed. It is easy to prove that H (¢) is tildian,

[HO(5)] = iH(D). (2.43)
We have

a()* =8 ;7' (1a*S, (1), (2.442)

(=8 ;' (0@, ), (2.44b)
with

3,5, (1) = — B3NS, (1), (2.452)

(5. () =53, (), (2.45b)

5,(0) =1. (2.45¢)

The construction of the semifree Hamiltonian & o) in
this paper is considerably simpler than the one in the pre-
vious papers. This is because our consideration in this paper
is based on the existence of quasiparticle creation and anni-
hilation operators which form the thermal doublets £# and
&*, and also on the use of the generalized Bogoliubov trans-
formation. In the next two sections we formulate the semi-
free field theory, not in terms of oscillator variables (a,a) but
in terms of field variables. There we find the thermal covar-
iant derivatives extremely useful.

lil. A GENERAL THEORY FOR SEMIFREE FIELDS

In this section we formulate the semifree field theory in
terms of the field variables. Our consideration is confined to
fields of type 1 (i.e., fields that contain only the positive
frequency part). We have not made the extension to fields of
type 2 (i.e., fields which contains both positive and negative
frequency parts) in time-dependent situations. In the time-
independent case fields of type 2 will be treated in the Appen-
dix.

In this section we consider a Bose field without spin or
any other internal degrees of freedom, the extension to gen-
eral multicomponent fields being straightforward.

We consider thermal doublet semifree fields, say ¢(x)*
and 17/(x )#, which are linear in the semifree operators a (¢,k)*
and a(t,k)”, considered in the last section. Following the
assumption in the usual quantum field theory we require
that the time development of ¢ and 1 is controlled by the
operator S, (¢) in (2.44),

H(x)* =871 (OY(t=0,x)S, (1), (3.1a)
H(x)* =571 (0Pt =0x)"S, (1), (3.1b)
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where x stands for (#,x). Therefore we expand #(x) and
Y(x) as

PY(x)* = f d’k U(x,k)*"a(tk)”, (3.2)
=fd3k u(x,k)ya(k)”, (3.3)
P(x)* =fd3k a(tk) U(x,k)™, (3.2")
=fd3k ak)“u(x,k)™, (3.3)

where U, U, u, and 7 are certain ¢ number 2 X 2 matrix wave
flmctions. According to (2.29), ¥ and % are related to U and
U, respectively, in the following way:

u(x,k) = U(x,k)B ~'(+,k)E(tk)B(0,k), (3.4a)
#(x,k) =B "Y(OK)E ~(t,k)B(t,k)U(x,k). (3.4b)

Here E(t,k) depends on k through (2.27) with w(s) and
x(s) being replaced with @ (s,k) and x(s,k), respectively.

Now, in order for ¢ and ¢ to be canonical, the wave
functions « and # have to form a canonical complete set® that
will be defined shortly. In the case of type 1 field, the simplest
choice of U and T,

U(x,k)* = [/ (2m)3/?]e™>, (3.52)
U(x,k)* = [6*/(2m)>*]e ~ ™=, (3.5b)

turns out to give such a canonical set {u,%}. We are going to
show this below.

- Since the thermal covariant derivatives D *(¢) and
D*(t) in (2.31) depg_nd on the momentum k we denote
themby D * (2,k) and D * (¢,k). The field equations for 1yand
g_b and those for « and # follow from (3.2)-(3.5) and (2.32),

iD * (1, — V)"(x)” =0, (3.6a)
iP(x)*D * (£, V)" =0, (3.6b)
iD * (t,k)*u(x,k)* =0, (3.6¢)
A (x,k)"D * (£ k)™ = 0. (3.6d)

Using (3.4) and (3.5), we can prove that ¥ and # satisfy
the orthonormalization relation
fd3x axK)uxl) =6k —-1) (3.7)

at any time ?.
Furthermore, we can explicitly prove the sum rule

G *(x,x")* = f d 3k u(x,X)*a(x’ k), (3.8)
where
G " (x,x )™

= A R —

(2m)*
X{B Y tK)E(tK)E ~'(¢' K)B(¢t' kK)]*. (3.9)

The function G * (x,x’)** has the following properties:

GH{x,x W8t —1t") =8Y(x —x"), (3.10a)

iD* (1, — iV)"G * (xx')* =0, (3.10b)

iG* (x,x' )" D+ (¢',iV)* =0. (3.10¢)
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When u and # satisfy the orthonormalization conditions
(3.7) and the sum rule (3.8) in which the function G * (x,x')
has the properties in (3.10), the set {u,#} is called the ca-
nonical complete set. Using the properties of the canonical
complete set, we obtain the equal-time canonical commuta-
tion relation

['p(t’x)#,ﬁ(t,xl)v] =i8uv6(x_xl), (3-11)
where
7(x) = ih(x) (3.12)

is the canonical conjugate of ¥(x). This is the reason for the
name “canonical complete set.”

The semifree field equations in (3.6) can be derived
from the following Lagrangian density:

ZO(x) = ip(x) D * (t, — iV)*h(x)". (3.13)
The momentum field 7 conjugate to ¥, already mentioned
above, is indeed given by

F0)# = 3Z0(x) /AP(x)* = ip(x)*, (3.14)

which is consistent with (3.12). The usual Legendre trans-
formation gives us the semifree field Hamiltonian H 9,

HO(n) =J‘d3x[ﬁ¢— 29

= Jd 3x P(x)[w(t, — V) —iP(t, — V) |*¥(x)%,
(3.15)

where use was made of (2.33) in which w(¢) and P(¢) de-
pendAon k as w(t,k) and P(z,k), respectively. Needless to
say, H 9 is reduced to (2.42) when it is rewritten in terms of
oscillator variables, a(¢,k) and @(#,k).

Here some comments on the semifree fields in the time-
dependent case may be in order. As it was pointed out in Sec.
II the generalized Bogoliubov transformation contains two
arbitrary parameters, b, (k) and b, (2,k). Since the phys-
ical results are independent of these quantities we expect that
these quantities do not cause any ambiguity in the choice of
the Lagrangian. When we change these quantities 3 changes
into ¢’ and, at the same time, the expression for the Lagran-
gian density changes from . to .. However, the Lagran-
gian density is really unique in the sense that

LW =L ). (3.16)
Then the canonical momenta of ¢ and ¢ are given by
7=0.2/0¢ and 7 =9.L'/dY', respectively. Thus the
Hamiltonian densities for ¢ and ¢’ are [7¢¥ —.Z] and
[#¢' — .£’]. The transformation (¢,7)— (¢',7') is a ca-
nonical transformation. For example, when b, (f) is
changed to b ; (¢), we have

Ho(t) —HO(D)

btk i
= _ ifd3k c'z(t,k)”[&,[ln & ( )]7'3] a(t,k)”.
bR (t)k)
(3.17)
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The causal two-point function has the form

A, (xx' ) = —iO|T [¢(x)*9(x")"]1|0) (3.18)
= [B~'(t, — V) g. (xx")B(1",i¥") ]*,
(3.19)
with

?C(X,x)”—— —i6(t—1t' )J o )3 exx=x)

Xexp[ — if ds{o(s k) — iK(S,k)}],

(3.20a)
Ze (X,X )22 la(t _ t) (‘; ];3 em-(x—x’)
Xexp[ — if ds{w(s,k) + ix(s,k)}],
(3.20b)
ge (XX =g (x'x)*' =0. (3.20c)

In practical computations using the Feynman-diagram
method we need the knowledge of the Feynman function and
the interaction Hamiltonian in the interaction representa-
tion. The Feynman function is given by A_ (x,x’) in (3.19).
The interaction Hamiltonian will be studied in the next sec-
tion.

IV. THE INTERACTION HAMILTONIAN

Assuming a given system, we denote its Lagrangian den-
sity by .. Then we can construct .¥ by means of the tilde
conjugation rules. It has been shown that the total Lagran-
gian density in TFD is

P—v_2. (4.1)

Different thermal situations are covered by the different re-
alizations of operators satisfying the field equation which
follows from .? . As it was pointed out above, when we deal
with time-dependent thermal situations the Hamiltonian de-
pends on the choice of field variables, while the Lagrangian
does not. In other words .2 is independent of the thermal
situation. Therefore use of the Lagrangian is more suitable
for the unambiguous definition of the interaction than use of
the Hamiltonian.

Let us consider the following Lagrangian density for an
unrenormalized bosonic complex field ¢,

ZL (o) = Y8 [i 8, — wo]¥ho — 8oW (¥8¥y). (4.2)
Here W(x) is a polynomial function of x and the subscript O
means unrenormalized quantities. According to the tilde

conjugation rules we have the total Lagrangian density . in
TFD as follows:

D = & — Z = Jolx)"[i 3, — 00liV) [ho(x)*

— 8ol W (o(x) Yo (%)) — W ( — Po(x) ¢ (x)?)},
(4.3)

where the thermal doublet notation is made use of. The bare
quantities should be related to renormalized ones through
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the renormalization transformations. In addition to the en-
ergy renormalization

wo = o — b, (4.4)

where w is the renormalized energy and 8w is the self-energy,
we consider also the wave function renormalization. In TFD
the wave function renormalization factor can be a 2 X2 ma-
trix that will be denoted by ¥V, with ¥ being a 2 X 2 matrix.
Thus the wave function renormalization reads as

Po(X)* = V()" P(x)",
Do(x)* = P(x)*V 1 (1)

(4.5a)
(4.5b)

We consider this wave function renormalization by requir-
ing that V'is diagonal, i.e.,
V(6)* = V(t;m3)™. (4.6)
The reason for this will become clear shortly. In this paper
we do not discuss the coupling constant renormalization and
the overall wave function renormalization other than V.

Substituting (4.4) and (4.5) into (4.3) we have ..% ex-
pressed in terms of the renormalized quantities

P24 .Sf,m, 4.7
ZO=34[id, — o +iP 1Y, (4.8)
D = —8AW(ZPY") — W( - Z,97)}

+ $H[V WV + bw — iP 1™, (4.9)

where P(t) was given in (2.34). Comparing (4.8) with
(3.13) and (2.33a) we see that the unperturbed Lagrangian
density P (4.7) is the semifree field Lag,{anglan density
in (3.13). Note that (P in Z%and iPin .2, ne cancel one
another. The total Hamiltonian follows from (4.7) as

H=H° + H,, (4.10)
where HO was given in (3.15) and
B, = f d>x[ g{W(P'Y") — W(—¢*4")}
—PH[V WV + b0 — iP 1™ 7] (4.11)
=fd3x[go{W(r7z‘¢‘) — W(—¥#¢»)}
—PH[V WV + 6w — i(kA + A7)
—iW g ‘W ]*¥"], (4.12)

where (2.34)—-(2.36) are considered. Without loss of gener-
ality we can choose

V=Wg. (4.13)
This gives
V-'W— W7 Wy =0. (4.14)

According to (2.20c), this makes V diagonal. Now the inter-
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action Hamiltonian is
B = [ 58 W@W) — WO~ )
— P[0 (2) — H{r(DA(1) + n(D)T()} "],

(4.15)
= [@statw v - wi— )
— [9W & 1) [“180 () — Hx(t)Ao(D)
+ AT [Wr (D¥]"), (4.16)

where (2.38) and (2.40) were used. Note that 4, and 7, were
given in (2.39) and (2.41), respectively.

With the knowledge of this interaction Hamiltonian and
the casual two-point function of the semifree field in (3.19),
we can formulate the perturbative computation in terms of
the Feynman diagrams. A vital step in this formulation is the
renormalization procedure which leads to the self-consistent
equations for w, x, and n. This will be illustrated in the next
section by means of a simple model. There, an explicit form
of the on-shell renormalization condition is presented. We
will see also how the self-consistent equation determines the
time dependence of #(¢) when the initial value n (¢ = 0) is
given.

V. EXAMPLE OF TIME-DEPENDENT
RENORMALIZATION—THE THERMAL RESERVOIR
MODEL

In this section we illustrate the self-consistent renormal-
ization method by taking as an example the well-known
thermal reservoir model, which is a system with a thermal
reservoir. We treat the entire system including the reservoir
as one system. Therefore this example shows explicitly how
dissipation is created spontaneously. The explicit calcula-
tion below will also indicate how the self-consistent renor-
malization method should be formulated in time-dependent
situations.

The model consists of a simple harmonic oscillator
(a,a") and a reservoir (R,,R}; k= 1,2,..,N) interacting
with each other. These operators satisfy

[aa'], =1, (5.1a)
[RiR 1], =i (5.1b)

The total Hamiltonian H is assumed to take the simple bilin-
ear form

N
H=o0@'a+ Y QuRR,
=

N
+g Z (RLG-FGTR]()’ with N- .

k=1
According to the usual notion of a reservoir, g* is of order
1/N,

g =Ng.
The spacing of reservoir energy levels is of order 1/N,
Qo = Qo+ k8; 8 =0(1/N), (5.4)
and the bandwidth A of the reservoir energy spectrum is

(5.2)

(5.3)
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given by
A=N§. (5.5)

Note that the limit N— o should be performed at the
end of computation, because otherwise the (R,,R I ) system
cannot act as a thermal reservoir. At this limit the energy
spectrum £),, becomes a continuum. We have previously
treated this model in the stationary case.’ There the (1/N)-
power expansion was made. With each finite order in this
expansion a dissipation does appear. When N is finite we
should sum up all of the (1/N)-power expansion terms and
then the dissipation simply disappears (i.e., x = 0). How-
ever, since N is infinite only the leading term in the (1/N)-
power expansion should be picked up. Then a dissipative
effect remained (i.e., £5£0).

Physically, the spontaneously created dissipation is a
result of decay processes of the oscillator into the reservoir
quanta through infinite channels, the decay probability for
each channel being infinitesimal. This decay is the thermal
instability that is encouraged by the negative energy of the
tilde quanta. Thus the infinite degrees of freedom together
with the negative energy of the tilde quanta is the origin of
the spontaneous creation of dissipation. The role played by
the infinite degrees of freedom is the same as the one in the
phenomena of spontaneous breakdown of symmetries which
require the infinite degrees of freedom.® We might say that
the system behaves like an “open” system, not because of the
elimination of reservoir variables (which we do not do), but
because each decay product appearing with infinitesimal
probability is not observable. The situation is very similar to
the case of impurity scattering because the unobservable til-
de quanta act like the impurities. In other words, the dissipa-
tion is caused by the communication of nontilde quanta with
the unobservable background field which is the tilde field.
Intuitively this tilde field effect represents the effect of ther-
mally excited particles. It could be that this process may act
as the coarse graining.

In previous papers® we studied only the time-indepen-
dent situation. The result agreed fully with the well-known
result of the projection operator method applied to the Liou-
ville equation for the density matrix. Although the thermal
averages are time independent, any two-point function or
correlation function has a dissipative effect, which is a mani-
festation of the contributions from the excited states dissipa-
tively approaching the equilibrium state. The number distri-
bution of the oscillator was found to be n = 1/[¢** — o]
with 8 = 1/ky T, with T being the temperature of the reser-
voir. This was a result of the self-consistent equations ob-
tained by the renormalization method. Therefore we may
expect that when we prepare the initial value of n(z) differ-
ent from 1/[e#” — o], n should become dependent on time.
The temporal behavior of n(¢) should also be determined by
the self-consistent renormalization method. Thus our consi-
deration in this section presents the renormalization condi-
tion for time-dependent thermal phenomena which has never
previously been presented. With the help of the consider-
ations in the previous sections we are now ready to treat the
model (5.2) in a time-dependent situation.

Since the (R, ,R }) system is a reservoir it should be in
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an equilibrium state and have the number distribution
n = [ —0o] (5.6)

with 2, being the renormalized energy. On the other hand,
the initial value (i.e., the value of ¢ = 0) of the number distri-
bution n(z) of the (a,a' ) oscillator is not specified.
According to (2.42) the unperturbed semifree Hamilto-
nian is
Ho(t) =a(t) “lo — iP() 1*a (1)

N o
+ 3 Re(@F[Q — iP PR (D). (5T)
k=1

Since (), and P, are time independent (2.34) together with
(2.20), (2.38), and (2.39) gives

P, =K, A, (5.8)
with
Ay =W i Ao Wres (5.9)
1+ 20n, — 20m,
°’°=[2(1+onk> —(1+2ank)]’ (310
W = e 0Rk, (5.11)

The P(z) was given in (2.34).

We assume that the wave function renormalization
(4.5) with V=W, [cf. (4.13)] has already been per-
formed. Then the interaction Hamiltonian is given by
(4.16),

A N —
Hy=g 3 RO [W ! Wa(1)]*a(2)”
k=1
+a(H[W g () We ] R ()}
— [ W g () ]#[6w — i{kdy(2) + oRn ()T} 1*

X [Wr(Da(1)]”
N —

bt Z [Rk(t)WR—k‘]"{Sﬂk ‘—'iKkAok]In’
k=1

X [ WriRi (8)]". (5.12)

Note that according to (2.35) 72(¢) should carry the factor o.
We first assume that @ and « are independent of time.
We are going to justify this assumption by showing that it is
consistent with the self-consistent equation which will be
derived shortly.
The casual two-point functions are

A (1,60 = —i(0|T [a(t,)*a(t,)"]]0), (5.13)
= [B "1t g(t; — 1,)B(1,) 1*, (5.14)
A (t,1)"6y = — i(O|T [R, (tn)"ﬁr(tz)v] |0),

(5.13)
=[B; 'gs(t; — ,)B, ]*"84y, (5.14')
where
gt — )"
= —j0(t, — t,)exp[ — i(w — i) (¢, — 1,)], (5.15a)
g2t — 1)
= jf(t, — t)exp| —i(w + iK)(t; — ,) ], (5.15b)
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PACET
= —i0(t, — y)exp[ —i(Q, — i, ) ({, — 1) ],
(5.15¢)
PACET ke
=i6(t, — t))exp{ — i(Qy + ik ) (1, — )], (5.15d)
St — L) = gy (t — )7 =0, for p#v.  (5.15¢)

It can be seen from (5.12) that the computation is very
much simplified when we choose the arbitrary matrix Wy to
be independent of time. This choice corresponds to taking a
time-dependent a because n(t) orf(t) change with time [see
(2.20c), (2.23)-(2.25)]. Then the proper self-energy dia-
gram for (a,a) gives

(e,
N
- W;;'M[gZ{ S Weha (1, —a)W;k'}
k=1

- {50) — i(KAo(tl) + 0’»“!01)‘2'0)}6({1 — tz)]ApW‘j)zva

(5.16)
while the one for (R,,R, ) is
(1) = WM [£{WR A (1) Wi '}
— {89, — ix A 36(t, — ) |* W (5.17)

The connected full propagators of 2 and R, (i.e., Gand G\)
satisfy the following Dyson equations:

G(t,ty) = A, (t,1,)

+ J-ds, ds, A (1,°5,)2(54,5,)G(s,,1,), (5.18a)
Gy (1,1,) = A, (2,1)

+ J ds,ds, A (8, — )2, (51,5;) G (3,15).

(5.18b)
The self-energies above are functions of two times, ¢,
and #,. As a result of this we cannot directly follow the same
procedure for the on-shell renormalization as in the station-
ary case or in the usual quantum field theory.
In the present model, the on-shell renormalization con-
ditions of 2 and 2, are stated as follows:

2(w,k,) =0, {5.19a)
S(kgw) =0, (5.19b)
2. (Q,k,) =0, (5.19¢)
2. (ko)) =0, (5.194)

for arbitrary real k,. Here the Fourier transform of any two-
time function [say f(¢,,t,) ] is defined by

f(k(l),k(z)) = J. j dtl dtz eika‘f(tl,tz)e”‘ikgtz.

These on-shell renormalization conditions are equivalent to

(5.20)

S(w,t) =0, (5.21a)
2(tw) =0, (5.21b)
3. (1) =0, (5.21c)
.9, =0, (5.21d)

at any time £.
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When (5.16) and (5.17) are considered, (5.21a) and
(5.21c) read as

W.2(0,) W'

> N
=eiwt é z 1 -
Nk=] (w_ﬂk)+lKkAOk

— 8w + i(kAy () + a'iz(t)To)] =0, (5.22a)

Wi Zi ()W 5!
= % We [f ds €°B ~1(s)g(s — t)B(t)] Wil

— M [8Q, —iK Ao ] =0, (5.22b)

with (5.3) and (5.14).

Equation (5.22b) is the self-consistent equation for 62,
and «, . This leads to the vanishing of 6Q, and x,, when N is
taken to infinite with fixed g2,

50, = O(1/N), (5.23a)
ke = O(1/N). (5.23b)

This situation is the same as the one in the stationary case
studied previously. On the other hand, dividing another self-
consistent equation (5.22a) into real and imaginary parts,
we have the matrix equations,

N
KA (t) + on(t) Ty = b k§=:1 _—(w 0 i e

Ky

0g

AOk ’
(5.24a)
g_z_ L (@ — Q)
N &= (w—nk)2+Ki ’
using the property 4 2, = 1. Equation (5.24b) again has the
same expression as the one in the stationary case studied in
Ref. 5.
Let us now solve (5.24a) at the limit N— «o. Then 2,

becomes a continuous parameter denoted by ) and summa-
tion becomes integration,

b = (5.24b)

KkAy(t) + on(t)Ty = %J. dQ m6(w — Q) Ayg (1)
A

= ‘_—AOR (w),

A

where A, () is Ay, in (5.10) with n, being replaced with
[cf. (5.6)],

(5.25)

ng(Q) = [#* —0a] L (5.26)
Let us introduce 7 by
i=ng(w)=[e#—0c] " (5.27)
Then
|1+ 207 — 207 ]
Al =51 1oy — (1+20m) ] (3:28)
Now recall (2.39) and (2.41), i.e.,,
_ 1+ 20n(2) —20n(2)
Ao(t) = 201 +on(t)) —(1+20n()/ (5:29)
1 -1
o= [1 B 1]- (5.30)
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The four matrix elements of the self-consistent equation
(5.25) give the following three equations:

{1l + 20n()} + on(t) = (78/0){1 + 207},  (5.31a)
20un(t) + on(t) = (78°/A)20m, (5.31b)
{1l + on()} + on(t) = (78%/0)2{1 + o7i}.  (5.31c)

However the addition of (5.31b) and (5.31c) leads to
(5.31a), which implies that the independent equations are
any two of (5.31a)—(5.31c). They give

x = mg/A, (5.32a)
A(t) = — 2«[n(2) — 7). (5.32b)

The dissipative factor « is found to be the same as in the
stationary case.” When the initial value of n(z) is given by
n(0), (5.32b) determines the temporal behavior of n(z),

n(t) =[n(0) —rle > 4 1. (5.33)
This leads to
n(ew) =n. (5.34)

Then (5.27) indicates that n(¢) in (5.33) starts with the
initial value n(0) and approaches the equilibrium value
ng(w)att— .

The fact that x#0 indicates the spontaneous creation of
dissipation.

Note that the substitution of the solutions of the self-
consistent equation rewrite A °(¢) in (5.7) as the following
form for the final equilibrium situation:

HO(t) = a(t)*[w — iP )**a(t)”

N —
+ 3 R ()*QuR, (1), (5.35)
k=1

where

P = kdop (@). (5.36)
Thus the reservoir model is described by the time-indepen-
dent Hamiltonian for equilibrium. But this may not be true
when the higher-order corrections are taken account of in
general nonlinearly interacting systems.

When we happen to choose n(0) = 7 then n(¢) becomes
independent of time and we have the equilibrium situation.
This is the case studied in Ref. 5.

We now comment on the Heisenberg operators. When
we express the Heisenberg operators a¥; in terms of the inter-
action representation operator a* and R %, we find that

ay ()" = e(t,0)a(t = 0)*

N

=140

t

dr, 0(t —t))e(t,t))R, (2))",
(5.37a)
Gy (1) =a(t = 0)#e*(0,1)

N z -
+ig 2 dt, R, (t))#e*(1,,1)0(t —t,),
k=14J0
(5.37b)

where e(4,¢,) is a certain c-number function.'> When |a) and
|6 ) denote any two vectors in our Fock space and g° = g°/N
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is considered,

lim {(alay (£)*|b) = (ale(t,0)a(z=0)*|b), (5.38a)
N— o
lim (a|ag (1)*|b) = (a|@a(t =0)*e*(0,¢)|b), (5.38b)
N—w

which means that af; (¢) is weakly equal to e(£,0)a*(z = 0),

@ (1) = e(0)a*(t=0), etc. (5.39)

However, this does not mean that @, (¢)a}, (¢) is weakly
equal to |e(2,0)|*3*(0)a”(0) because the R % termsin (5.37)
contribute to @ (¢)a}; (¢) even at the limit N - o0 .’ It can be
shown that e(z,2,) satisfies

[, — wo]e(sty)

t
+ iif dtzf dQ e U=BG(t, — t)e(tyt,) =0,
mT Jo A

(5.40a)
with
e(tt) =1. (5.40b)
Since
F(t—1t) =J dQ e 00— (5.41)
A

is a function that has a peak at ¢ = ¢, and becomes very small
for |t — t;|> 1/A, e(t,t ') can be approximately written as
e(tt') =e(t)e™ (1), (5.42)

when «is small (i.e., Aislarge). Heree(t) is a solution of the
equation
(id, —w+ix)e(t) =0 (5.43a)

with
e(0) =1. (5.43b)
Note that @, is equal to @ in this approximation. Thus

e(t) =e @i, (5.44)

A calculation shows that
ny(t) =(0|ay (1) 'ag (1)'0)

= le(n)|? [n(O)

t
J dtl e—iﬂt,e—l(tl)
0

1

(5.45)

t
+£f dQ ng ()
mJo

Use of (5.45) gives

ny(t)~e= [n(O)

+fdnp(n)nk(ﬂ)}ext—i(w—ﬂ)t_ 1|2]7

(5.46)
where
1 K
Q) = e, 5.47
pY) 7 o) ( )
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We can rewrite (5.46) as

nH(t)zﬁR +e‘2’“[n(0) - ﬁR]

+2e“"‘[ﬁRe""

—f dQp(Q)ng ()cos(w — Q)t], (5.48)
A

where

fig =fd0p(ﬂ)nR(Q). (5.49)

Since p (1) is a function whose peak is at {2 = » and whose
width is «, g is very close to 7 when « is small. Equation
(5.48) indicates that ng(t= ) =ng and
n,(t=0) =n(0), behaving like n(z) at t = o and t =0.
The last bracket term in (5.48) gives the difference between
ng(t) and n(t) when ¢ is finite and nonvanishing. Since
A >k, the presence of p(£) makes the last integral term van-
ish quickly at > 1/x. When A is large and « is small, n, (¢)
and n(?) behave similarly. At present, we are not sure which
one should correspond to the observable value. We might
consider also the quantity

Ny (1) = 4 {0]dy ()'ay (1)'|0) 4
with
|0y = u(0, — )]|0)/[{0]u( o0, — 0 )|0)]"?
and
w0 = (0[u(0,0)/[{0u( 0, — «)[0}]"2.
We then find
Ny (1) = (0|u(co,t)a(s)'a(t)'u(t, — )|0)
X {0]u( 0, — 0)]|0) L (5.50)

Since u(0, — o0 )|0) may make |0) , equilibrium, N (¢) is
the average number in the equilibrium state. This can be
confirmed by means of an explicit computation. It is still an
important open question as to what really corresponds to
each observable quantity. We are planning to continue our
study by assuming that n(¢) describes the behavior of num-
ber in a reasonable approximation.

We discussed the Heisenberg operators in the reservoir
model, but we should be careful not to extend the arguments
to general nonlinearly interacting systems in which the dy-
namical maps may be very complicated. The problem of the
Heisenberg operator in general models of time-dependent
TFD is still unsolved.

VIi. SUMMARY

We have presented a general formalism for semifree
field theory which includes the time-dependent thermal situ-
ation. The formalism expressed in terms of oscillator opera-
tors was given in Sec. II. The formalism expressed in terms of
field operators was presented in Sec. IIL. It is due to a compli-
cation caused by the time-dependent nature of the thermal
behavior that the consideration in Sec. IIT was limited to the
semifree field of type 1. In the Appendix we discuss the semi-
free field of type 2 in a stationary situation. Using the knowl-
edge of the total Lagrangian in TFD and choosing the semi-
free field Lagrangian for the unperturbed Lagrangian, we
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determined the general form of the interaction Hamiltonian,
in the interaction representation, for any time-dependent sit-
uvation in Sec. IV. This is the basis for the Feynman-type
perturbative calculation in TFD in time-dependent situa-
tions. A set of self-consistent equations determine w,, &,
and the temporal behavior of the average number density
n, (t). An example of the derivation of the self-consistent
equations in a time-dependent situation was studied in Sec.
V. A remarkable point in this consideration is the explicit
expression of the on-shell renormalization condition in the
time-dependent situation which leads to the self-consistent
equations. The latter equations were explicitly solved, and «
and n(¢) were determined.

Since n(t) = (0]@(¢)'a(r)'|0), the explicit ¢ depen-
dence of n indicates that the time-translational symmetry
(based on H |0) = 0) is spontaneously broken. This is a re-
sult of the communication between the nontilde quanta with
the background tilde field which is a manifestation of the
effects of the thermally excited quanta which have infinite
degrees of freedom. This communication seems to be playing
a role similar to the coarse graining. The negative sign of the
energy of the tilde quanta encourage the thermal instability,
leading to the dissipation. Since there are an infinite number
of dissipative channels, each of which participates with infin-
itesimal probability, the instability takes the form of dissipa-
tion. This becomes clear through the example in Sec. V when
the (1/N)-power expansion method (N: number of degrees
of freedom) with the limit N «.

The spontaneous breakdown of the time-translation
symmetry suggests that, at any finite time, there are no ei-
genvectors of the basic total Hamiltonian H = H — Hin our
representation space, which is the Fock space of §(0)* and
£(0)*. The diagonal property of the time-translation matrix
E,(¢) in (2.10) implies that the realization space remains
unchanged c,l\uring the time evolution. However, the dynami-
cal map of H expressed in terms of quasiparticle operators
depends on time explicitly. In this sense, the realization of H
depends on time. As a matter of fact, when a system reaches
an equilibrium state, the thermal vacuum may become an
eigenvector of H at ¢ = «. Then the time-translation sym-
metry may be recovered at f — o0, although « does not vanish
at t = . (Remember that « is independent of time in Sec.
V)

Here a comment about the quasiparticle number may be
in order. Although n(¢) = (0|@(¢)'a(z)'|0) is the number
of the unperturbed particles, this includes all of the loop cor-
rections, because the unperturbed particle is the quasiparti-
cle that is fully normalized. Each loop correction in the self-
energy diagram modifies the parameters such as w, x, and
n(t) in the unperturbed Hamiltonian through the self-con-
sistent renormalization condition.

Although the consideration in Sec. V is the first explicit
treatment of the on-shell time-dependent renormalization
condition, this consideration is still simple in the sense that »
and « are independent of time. When we study a transition
from temperature T to 7', and when the quantum energy
depends on temperature, it is obvious that the energy o
changes in time. A study of such a case requires the most
complete form of the on-shell time-dependent renormaliza-
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tion condition. We are planning an application of the formal-
ismin this paper to a case in which @ and x depend on time. A
strong merit of TFD presented in this paper is that it can be
applied to any thermal situation including an isolated dy-
namical system. Thus TFD is suitable for treating the ther-
mal behavior of the Universe.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council, Canada, and the Dean of
Science, Faculty of Science, the University of Alberta, Ed-
monton, Alberta, Canada. One of the authors (I.H.) would
like to thank the Canadian Commonwealth Scholarship and
Fellowship Committee for scholarship support.

APPENDIX: THE SEMIFREE FIELDS OF TYPE 2 IN THE
TIME-INDEPENDENT SITUATION

In Sec. II we considered the wave functions u (x,k) with
the positive frequency. The equation for u(x,k) was sum-
marized in (3.6),

iD*(tk)*u(xk)”"=0, (Ala)

i (xk)*D * (£k)™ = 0. (Alb)
The thermal covariant derivatives were defined in (2.31),
D*(tk) =B " '(tk)E(tk)J.E "' (t,k)B(tk), (A2a)
D*(tk) =B '(tX)E(tk)3,E " '(tk)B(tk). (A2b)

Recall the form of E(¢,k) in (2.27).
In a similar manner, we can write the thermal doublet
wave function v(z,k) with the negative frequency

iD = (£k)*v(tk)* =0, (A3a)
w(tk)*D ~(tk)* =0, (A3b)
where
D~ (tk) =B~ '(tX)E ~'(tk)3,E(tk)B(tk), (Ada)
D (tk) =B '(tK)E ~'(tk)3,E(tk)B(tk).  (Adb)

A difficulty in constructing a semifree field by making a
linear superposition of u(x,k) and v(x,k) is due to the fact
that D + (¢,k) and D ~ (¢,k) do not commute with each other
when we consider a time-dependent situation. Therefore, in
this Appendix, we restrict our considerations to a time-inde-
pendent situation only. Then B(z,k), w(t,k), and k(z,k) be-
come independent of time. These quantities will be written
simply as B(k), w(k), and « (k). Then according to (2.27),
E(2,k) takes the following simple form:

E(tk) = exp[ — {o(k) — ix(k)7:} 1. (AS5)
According to (2.33), we have

D*(tk) =3, + {o(k) — ix(k)A(k)}, (A6a)

D*(tk) =8, — i{o(k) — ik(kK)A(K)}. (A6b)
The matrix A(k) was given in (2.38).

Similarly, we obtain

D~ (tk) =3, — i{o(k) — ik(k)A(K)}, (A7a)

D~ (k) =3, + {ok) — ik(kK)AK)}. (A7b)

We also construct the wave functions in such a manner
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that
u(x,k) = u(t,k)e®™, (A8a)
a(xk) =u(tk)e**, (A8b)
v(x,k) =v(tk)e %=, (A9a)
v(x k) = v(t,k)e*™. (A9b)

Then (A1), (A3), (A6), and (A7) lead to the orthogona-
lity condition at any time ¢,

J-d 3 a(x,k)Tv(x,1) =0, (A10a)

fd 3% v(x,k)Tu(xl) =0, (A10b)
where .

T=i39, =i, -3, (Al1)

Therefore we define the inner product of two wave functions
by

f %% 3(x,) TAx). (A12)

It is obvious from (A8) and (A9) that we can choose
the wave functions to satisfy

fd3x #(xk)Tu(x,l) =p,8(k—1), (Al13a)

fd3x v(x,k)Tv(x,l) =p,6(k —1). (A13b)

Here p, =1 o0r —1and p, =1 or — 1. Thus {u(xk),
v(x,k)} forms an orthonormalized complete set.
In order to relate u to v, we note that

D+(tk)T=BT(k)E ~'(tk)3,E(tk)B ~'T(k), (Al4)

=BT(k)B(k)D ~(tk)B ~'(k)B ~'T(k),

(A15)

D*(tk)T=BT(K)E ~'(tk)3,E(tk)B ~'T(k), (Al4)
=BT(k)B(k)D ~(tk)B ~'(k)B ~'T(k),

(A15")

which follow from (A2) and (A4). Here 7T means the trans-
position. Thus (A1) leads to (A3) when we choose

v(t,k) = v,(K)u”(£,k)B (k) B(k), (Al6a)

v(tk) =B ~Y(k)B ~'T(K)aT(tk)vy(k), (A16b)
where v, and 7, satisfy

g =1 (Aléc)
and are arbitrary otherwise.

According to (3.4) we have

u(x,k) = Ux,k)B ~1(k)E(tk)B(k), (Al7a)

u(x,k) =B Y(k)E _l(t,k)B(k)U(x,k). (A17b)

Since the normalization condition in (Al3a) differs from
the one in (3.7) by the presence of I, we should modify the
definition of U(x,k) and U(x,k). Since 4(k) commutes
with Dt (2,k) according to (A6) and (A7) we choose

U(x,k) = [1/(2m)>2|F [A(k)]e™™, (Al8a)

U(x,k) = [1/(2m)*?|F [A(k) e~ **, (A18b)
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where F[A4(k)] is a function of the matrix 4 (k). Equations
(2.38) and (AS5) show that B ~(k)E(t,k)B(k) is also a
function of 4(k), implying that 4(k) commutes with
B ~Yk)E(t,k)B(k). Now (A16) lead to

p(xk) = [1/(27)**]1B M E ' (tk)B ~ (k)

XF [47(k) Jvy(k)e ==, (A19a)
v(xk) = [1/(2m)*?]5,(k)F [4 T(k)]
X B T(k)E(t,k)B(k)e““". (A19b)

Feeding (A17) with (A18) into (A13a), we obtain

2F?[A(k) Ho (k) — ik(K)A(K)} =p,. (A20)
When we choose

pu =1, (A21)
we have
FlAK)] = (1/2){w(k) — (k)4 (k)} /2, (A22)

On the other hand, (A13b) together with (A19) and
(Al6c) gives

po = —2F[AT(k) Ho(k) — ix(k)A T(k)} = — 1.
(A23)

We now construct the field

900 = (@ uCekato” + (kB (k)"
(A24a)

B0 = [@% B TCI0™ + b TR Tk ™),
(A24b)
where we introduced two sets of thermal doublet oscillators,
{a(k),d(k)} and {b(k),b(k)}. Note that the positive- and
negative-frequency parts of the fields ¥* and y* are trans-
formed separately under the tilde operation (2.4) if v, and 7,
in (A 16) are kept arbitrary. Therefore we choose v, and v, as
vo(k) = T,(k) = BT(k)7,B(k), (A25)

so that ## and ¥* have the definite transformation property
of the tilde conjugation:

[$(x)']~ = —¥(x)? (A26a)
[$(x)* ]~ =9(x)', (A26b)
[$(x)']~ =¢(x)? (A26¢)
[$x)?]" = — " (A26d)
The semifree field equations are

D*Y(t,—iV)D (t, —iV)¢¥(x) =0, (A27a)
#()D ~ (4,V)D * (1,i¥) =0, (A27b)

which read as
[02 +{w( —iV) —ik( —iV)A( —iV)}*]*¥(x)” =0,
(A28a)
Px)"[32 + {o(i¥) — ik(VIAGV)}2]™ =0.  (A28b)
These equations of motion can be derived from the Lagran-
gian density
Lo= —gx)*[3? +{o(—iV)

—ik(—VA(— V) P1*¢(x)". (A29)
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This gives the canonical conjugate momentum field of ¥ as
- _ds5
=20 (A30)

ot v
We can easily derive the following sum rules:

AT (x =X = fd 3k u(x,k)*u(x' k)",  (A3la)

AT (x =X = — fd 3k v(x,K)* 0 (x" kK)*, (A31b)

where
A*(x)
_ $iJ. d’k
(2m)’
ol T H{o(k) — i(k)AK)}1 Jexpl + kx]
Hw(k) —x(k)A(k)}
(A32)
The functions A+ have the following properties:
AT (—x)= — A (x), (A33a)
s 2 At (x) = —Lamsm, (A33b)
at 2

[02 4+ {o( —iV) —ik( —iV)A( —iV)}*]A% (x) =0.
(A33¢c)

The sum rules (A31) lead to the commutation relation

[P(x)*$(x')"] = iA(x ~ x')*, (A34)
where
AXxX)=AT(X) + A~ (x). (A35)

We call (A31) the canonical sum rules, since (A33b),
(A34), (A30), and (A24) give the equal-time canonical
commutation relation
()" 7 (x')"18(t —t') = i*6W(x — x'). (A36)
Thus we have explicitly constructed the canonical for-
malism for the semifree field of type 2 in the time-indepen-
dent thermal situation. Note that the parameter b, was nev-
er fixed in this formulation. This freedom includes the

freedom in choice of the & parameter which was discussed in
several previous papers.*’ We have not succeeded in extend-
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ing this formulation of type 2 semifree fields to a time-depen-
dent situation.
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There is no isolated p-p wave
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A theorem is presented that basically states that there are no nontrivial well-behaved, spatially
asymptotically flat space-times which are p-p waves at infinity.

I. INTRODUCTION

Space-times with a constant null vector (p-p waves)
have been studied extensively in the literature.! Almost al-
ways, these space-times are interpreted physically as infinite
plane gravitational waves. There are, however, attempts to
construct p-p waves to represent, instead of waves, particles
moving at the speed of light.* But any notion of isolated
particles would naturally restrict the space-times under con-
sideration to the class of spatially asymptotically flat space-
times. Of all the solutions proposed, only one® is clearly spa-
tially asymptotically flat (this solution is also vacuum and
axisymmetric). Perhaps, the most intriguing aspect of the
solution is that it has a vanishing ADM momentum, and yet
it is not flat. On closer examination, we see that it gets
around the positive mass theorem*” because it does not have
a complete spacelike surface. A natural question thus arises:
can one construct a p-p wave that is well behaved (spatially
complete) and spatially asymptotically flat? In this paper,
we present a theorem which basically states that a spatially
complete space-time satisfying the dominant energy condi-
tion and that is a p-p wave at least at infinity cannot be as-
ymptotically flat unless it is flat. Thus we see that no well-
behaved space-times based on the p-p waves can be con-
structed to represent an isolated particle.

In Sec. II we will briefly look at the solution proposed in
Ref. 3. Section III contains the precise statement and the
proof of the theorem mentioned above.

Il. A METRICAL SOLITON

The space-time (M,g,, ) of interest reported in Ref. 3,
representing a “metrical soliton,” has the metric in the fol-
lowing form:

2 dy/dz)?
ds* =—£—dp* + (0* + 1)d +[1——(L——— dz’
Fag T ¥ 20 10

/)
— 114+ s (dx
40’ + x)
1 a(al(/az)2 dz dx*, (1

2 '+

where (p,1,z,x*) are the standard cylindrical coordinates.
Here y is a compact supported function of (z + at), with
a = + 1. The basic facts concerning this metric (axisym-
metric, p-p wave) can be easily verified. Of special interest is
that the space-time admits a spatially asymptotically flat hy-
persurface X. In fact, the desired surface is given by x* = 0.

To see this more clearly, introduce on 2 = {x* = 0} the
usual rectangular coordinates (x,p,2) with x =p cos ¢,
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y = p sin 3. Then on 2 the components of the first and sec-
ond fundamental forms, 4; and 7;, respectively, in the rec-
tangular coordinates, have the following asymptotic proper-
ties:

hy =8, +0(1/r), m;=0(1/r).

Thus X is asymptotically flat. Moreover, since the fall-
offs are one power of 1/r faster than the standard ones, the
ADM four-momentum of M on % has to vanish.

To understand how the space-time can be reconciled
with the positive mass theorem, it suffices to examine the
induced metric 4, on Z. It has the form, in the (p,9,2) co-
ordinates,

2

p )d2+(2+ )d
i) e x)ay

+[1-
To ensure that X is spacelike, the conditions y>0 and
4(p*> + y)>(dx/3z)* must hold. Even with these provi-
sions, the spatial metric is degenerate at the line p = 0, unless
x =0, in which case the space-time metric is flat. To remove
this irregularity, one can, for example, cut out the linep =0
from X. But then X will be incomplete. In conclusion, it is

obvious that the only well-behaved (nondegenerate and
complete) space-time metric of the form (1) is flat.

spatial metric = (

2
(3,1;/62) dz
4(p" + x)

. THERE IS NO ISOLATED p-p WAVE

Of course it would be tempting to patch up the metric
(1) so that it becomes complete and still retains the p-p wave
nature of the solution. However, any attempt in this direc-
tion, without violating the dominant energy condition,
would be unsuccessful. The following theorem elucidates
this situation.

Theorem: Let (M,g,, ) be a spatially asymptotically flat
space-time with = as an asymptotically flat spacelike com-
plete surface. Suppose (a) there exists a covariantly constant
null vector £° in a neighborhood of (2 — K), where K is a
compact set of Z, and (b) the dominant energy condition
holds on 2; then (M,g,, ) is flat along 3.

The proof of the theorem follows easily from the follow-
ing two lemmas. The conditions in the theorem are assumed
in the following discussion.

Lemma: There exists a covariant constant spinor & in a
neighborhood of (£ — B), where B is a compact set of 3.

Proof: Consider the covariant null vector k%, in the
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theorem. Anticommuting second derivatives of k% leads to
R,,..k ¢ = 0,and by contracting, R,,k? = 0. The dominant
energy condition further implies that R, = fk, k, for some
/. Finally, it is easy to conclude that C,,.,k? = 0.

Now, let £ be the spinor such that £4£4" = k°. Here
V.k, = 0 implies (in a neighborhood of 2 — X)) that

va 5 B = iva § B>
where v, is a real vector field. Anticommuting second de-
rivatives gives

ViaVe 16c =V 8-
The left-hand side of the above equation actually vanishes.

To see this, consider the standard spinor representation of
the curvature tensors (see, €.g., Ref. 6),

Cobca = Yapcp€a'n-€c'pr +C.C,

Ry = —2®,p.4p + 6A€ 5 €45,
and

R = —24A.
Then

ViaVo ifc = ¥apc€an Ep + Papc€anép

+ A(€,c€5 + €5c€4)€4p Ep-

Since C,,.;k°* =0 and R,, = fk k,, the right-hand side of
the above equation vanishes. Thus

Viats, =0.

Now take a compact set B( 2 K) of Zsuchthat 2 — Bis
simply connected (for instance, take B to be the coordinate
R ball, B, for R sufficiently large). Therefore, v, =V, g, for
some g in = — B. Finally, the following rephasing of £:
&4 exp( —ig)€4, yieldsV, &5 =0in 2 — B. Q.ED.

The following definition (see also Refs. 5, 7, and 8) is
relevant for the second lemma.

Definition: A spinor field £ on 2 — B, where B is a
compact set of 3, is called asymptotically constant if

£ > é;‘ + O(1/r),

where r is the asymptotically flat radial coordinate of X, and
£“is a constant spinor as defined by a tetrad associated with

4]
the asymptotically fiat coordinates on =.

Lemma: A covariantly constant spinor is asymptotical-
ly constant.

Proof: Introduce a norm (see, e.g., Ref. 9) on the spinors
by (€4,9,) =&49*'t, ., wheret,,. is the unit normalto X.
Choose two constant spinors % 4and ZA at infinity such that

&4y =1, and they are orthonormal with respect to (, ).
0 0
Now
EA=af* + B!, for somea and S.
[} [}

For £* to be asymptotically constant, @ and B should have
the correct asymptotic properties, namely,
a—,. a,+0(1/r) and B—,_ By + O(1/r), with a,
and B, constant. We will first establish that the norm

64| = (£4E*)? = (aa + BB
has the right asymptotic properties.
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Taking a derivative and noting that V,£* = 0, give
Vol§4 2 =E461V,1,.

Projecting by 4 §, we obtain
D, |1 = 5*Ty,,

with s = A2k ®. Now let v® be any unit vector of = (with
respect to A, ); then

vbDb |§A |2 = SavbTrba,
oD, 16 4] | = Is.h 0" oa
<|s| o, s

where |m*|, for instance, is ( — h,,m*m®)'/? for any m® on
3. [Note that since the space-time metric has signature
(+,—,—,—) in accordance with the spinor convention
h,,, the induced metric on = is negative definite; hence the
negative sign in the above inner product for vectors on X.]
Now

k%, = £6 " 806 "E”
=EM (hyy +1,8,)E%EF
= — s>+ |£4]%
Since k° is null,
x?| = |€4]*.
Thus
[v*D, |64 <€ 4|2 |v7”).

By the assumption of asymptotic flatness, |[v* 7, | = O(1/
r*). Therefore, there exists positive constants C and r, such
that

[v’D, In|€4| |<C /P for r>r,. (2)

Now, suppose v® = r*, the vector (3 /dr)®. Though is
not strictly a unit vector, its norm differs from unity only by
terms of order (1/r) and higher. Therefore we can still use
the above inequality, which yields-

2 nig |
Upon integration, the above gives
C/r—C/re<In |E4(r,0,4)| — In|E4(r,,0,8)|
LC/ro—-C/r.
It is then clear that lim,_, _ In|&4 (7,6,4)| exists. Let

lim,_  In|£4(r,0,4)| =In N(6,4),

which implies lim,_, _ |£4 (7,6,4)| = N(0,¢). The above in-
equality further asserts

C
<—'5.

£4(r6)| = N(B)+0(/n).

The following argument establishes that N(8,4) is, in
fact, independent of 8 and ¢. Define M(r) > O such that

In M(r) = -“l-j In|€4(7,6,4)| sin 6 d6 dg.
T

Now,
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max|ln M(r) — In|é4(r,0,4)] |
<C'rmax|v"D, In|4(r,0,8)] |,

where C’ is a positive constant and v” is any unit vector on
the sphere S, ; and

max|ln M(r) — In|£4(r,6,4)| |<C "/r,
where C” is a positive constant. Consequently for sufficient-
ly large 7,

max|ln M(r) —In N(8,6)|<C"/r,
C " is a positive constant.

Now it is obvious that N(6,¢) is independent of (6,4)
up to order 1/r. Finally we conclude that

|§A(r90)¢)| nd N+0(1/r)a

where N is a constant.
Similar considerations lead to the desired results
a-,. . a,+0/r),and B, _Bo+0(1/r). QED.

The previous two lemmas can now be employed to es-
tablish the theorem. Consider the following integral:

S= f dns’a tbﬂBvanB’,
s2

with ds® the surface element of S 2, a sphere at infinity, #* the
unit normal to 2, and %* aspinor. If 7* is an asymptotically
constantspinor satisfying the Witten equation, D ,. 7*" =0,
where D, = h,,V,, then®’

S=KPopmNa Ma>
0% ¢

P4\ is the ADM four-momentum of (M,g,,, ) along 2, 2"

is the constant spinor to which 7, approaches, and « is a
constant. But by the previous lemmas, there exists outside a
compact set of 3, a covariantly constant spinor £&* (thus
satisfying the Witten equation), which is also an asymptoti-
cally constant spinor. Here S must vanish for this spinor £,
and thus

ADM §A 54' =0.
0" 0
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But since P4, is strictly timelike,!%!! it therefore van-

ishes. In conclusion, by the positive mass theorem, (M,g,, )
is flat along 2. Q.E.D.

IV. CONCLUSION

Thus we have shown that a truly well-behaved isolated
object which is a p-p wave at infinity cannot exist. We would
like to point out in closing that if one were to relax any of the
conditions in the theorem, one could easily obtain p-p waves
which are spatially asymptotically flat.> Thus the conditions
in the theorem are the weakest one can assume for the
theorem to hold.
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The Einstein field equations in the presence of a polytropic fluid performing self-similar
motion are reduced to a dynamical system. Qualitative properties of the dynamical system are
investigated in the case when the fluid motion is with shock waves.

I. INTRODUCTION

Solutions of Einstein’s equations with shock waves can
be relevant in several areas of astrophysics. In particular,
relativistic fluid motions with shocks occur in (1) nonlinear
evolution of an initial adiabatic perturbation in the radiation
dominated phase of the universe (in the standard scenario,
neglecting the presence of collisionless particles)'; (2) non-
linear collapse of an adiabatic perturbation in the matter
dominated phase'; (3) explosions in the intergalactic medi-
um and hydrodynamical models of galaxy formation?; and
(4) bubble growth in the phase transition assumed to occur
in some models of the early universe.?

The problem of the evolution of cosmic thin shells has
been tackled by using a general relativistic numerical code by
Sato and co-workers.*® A thin shell is to be distinguished
from a shock wave, because in the former there is a source of
energy-momentum within the surface layer (and this is
modeled as a §-function discontinuity in the energy-momen-
tum tensor). Thin shells could be reasonable models for
propagating detonation waves.

Here we shall limit ourselves to shock waves which cor-
respond to the approximation of neglecting the source of
energy-momentum within the surface layer compared to the
total explosion energy.

Cases (3) and (4) have been investigated by looking for
similarity solutions in the framework of Newtonian fluid dy-
namics>’® and special relativistic fluid dynamics, respec-
tively.?

From the mathematical point of view it is very difficult
to study general relativistic fluid motion without any sym-
metry. Therefore we choose to work in spherical symmetry
(which is a very good approximation in the case when the
source of the motion can be considered a point explosion).
Even with this limitation the resulting equations are partial
differential equations (PDE’s) and a full analysis is still very
difficult and in general one has PDE’s to resort to numerical
calculations.

In order to obtain a mathematically tractable problem
we restrict ourselves to self-similar motion (which should be
a good approximation asymptotically far from the source)
and in this way the system of PDE’s is reduced to a dynami-
cal system to which we can apply the qualitative theory.’ Ina
previous paper'® one of us talked about the problem of the
behavior of a self-similar shock wave in an expanding uni-
verse in the case of a barotropic fluid. In the present paper,
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among other things we also provide analytical proofs of
some features of the fluid motion which were discovered by
numerical integration.

The plane of the paper is the following: In Sec. II the
basic equations in the case of a polytropic state equation are
derived. In Sec. I1I the barotropic fluid case is revisited and a
Lyapunov function for the dynamical system is found. In
Sec. IV qualitative properties of the expanding self-similar
shock wave in a barotropic fluid are studied. In Sec. V con-
figurations with two expanding shock waves are analyzed.
In Sec. VI some qualitative properties of the dynamical sys-
tem in the politropic case are discussed. In Sec. VII still in
the polytropic case a numerical integration is performed for
an expanding shock wave in a Friedmann dust universe.

Il. BASIC EQUATIONS

In Ref. 11 it is shown that the most general self-similar
spherically symmetric space-time, in a fluid comoving refer-
ence frame, is

ds’ =2 dt? — e*¥ dR? — R *#*(2)d(V?,

dQ? =d0? + sin® 6 dy?,
where z = R /t, the fluid velocity is U? = (e ~%,0,0,0) and
the vector V“= (t,R,0,0) is a homothetic Killing vector,
thatis, L, g,, = 2g,,, where L, isthe Lie derivative along V.

In a reference frame adapted to the vector field V' the
metric (1) takes the following conformally static form®:

(D

ds* =" (e’ dr* —r" dr* — P d0?), (2)
and the vector fields U and ¥ become, respectively,
Ua — (e—r—v/Z/ [1 _ u!',
ue—‘r—'{/z/vl"—u9 0’ 0), (3)
Ve=1(1,0,0,0). 4)

where u = u(r) is the spatial velocity of the fluid with re-
spect to the hypersurfaces » = const.

In the following, the energy momentum tensor of a per-
fect fluid will be considered, that is,

Typ=(p+UU, —pga» (5)
where p and € denote, respectively, the pressure and the total
energy density, which by self-similarity have the following

form:
— 27

p(rr) =e~2p(r), e(ryr)=e 2 €(r). (6)
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Furthermore, it will be assumed the state equation
p=(y—1(e—cp), )]

wherep(7,r) = e ~*p(r) is the total density of matter, and y
and ¢ are constants such that 1 <y <2ande=0o0rc=1.In
the first case Eq. (6) is the barotropic state equation and in
the last one is the polytropic state equation.

In both cases the sound velocity a is given by

a*=yp/(p+e). (8)
From Eqgs. (7) and (8) it follows that

E=(y—-a)@+8/r, 9

p=a(@+e7/y, (10)
andifc =1,

p=—1-a>@+e/(y—1). (11)

Bylettingz=1Inr, =d/dz,Q=re*~"V? w=v=rdv/
dr, Einstein’s equations R% — R', = A(T% -~ T"',), R?%,
— iR = AT?,, the energy-momentum conservation laws
T4, =0, T% , =0, and the baryon number conservation
law (pU*),, = 0 give the following evolution equations:

Q=01 —w—0%—wQ(l + 4*)/(2u)), (12)
w= —w(l+w+Q>— (Q/u)((1+ (w/2))(1 + %)

+ (28°/7) (1 ~u?)), (13)
= — (1 —u®)(Qu®—3a>+2(a%/y) (1 —u?))

+ (w/2)u(l — a®) — 2ua®)/(4* — a%), (14)
a=aly—1—a>)((w/4)(1 —u?) —u> — (Q/u)
X (u? — (@%/y) (1 — u?)))/(u* — a?). (15)
By letting L = ¢, Einstein’s equation R', — IR = AT,
gives the constraint equation
L=14+w— Q%+ (wQ/u)(u’ + (a*/y)(1 —u?))>0,
(16)
and the equation R, = .£ T, gives
p+e= —wQ(l —u?)/(Arul). (17)
From Eqgs. (9)-(11) and (17) one obtains the functions p, €,

p when a solution of the dynamical system (12)-(15) is
known. Furthermore, Eq. (17) gives the constraint

(18)

The mass conservation law (pU )., = 0 may be written in
the following form:

(B/p) + (@/u) + (w/2) 4+ 2 + it/(u(1 — u?)) = 0.
(19)

By deriving the expression for p which follows from Egs.
(11) and (17), one obtains

w= — (p/p) + (w/w) — (Q/Q)
~2aa/(y —1—a*) — (1 +u®)i/(u(1 — u?)),

sgn(u) = — sgn(w).

(20)
and by Eqs. (14) and (15)
u/(u(l —u?))+2a/(a(y — 1 —a*))
= —2— (w/2) — 3(Q/u). 21)

From Eqgs. (19)—(21) one obtains
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442(p/p) — (Q/Q) + (i/u)

+ (w/w) —2(1 +a*)a/(la(y — 1 —a?)),
which gives the following first integral:
QwSG—Z/(r— ”(1 . u2)2(7,_ 1— a2)(37—2)/(r— ”/(uL 2)

(23)

(22)

=C]<0,

where ¢, is an integration constant.

The invariant manifold a>=y —1 (¢, =0) corre-
sponds to the barotropic case. On this invariant manifold
equation (15) is identically satisfied and the dynamical sys-
tem becomes®

0=0(1—w—Q?—wQ(1 +u»)/(2w)), (12
w= —w(l+w+Q0?— (Q/u)((1 + (w/2))(1+4?)
+2k(1 —u?)/(1 + k))), (13"
= —(1—-u®)((1 —k)u(w/2) —2ku+ Q
X (w1 — k) — k(1 + 3Kk))/(1 + k))/(u* — k),

(14"
with the constraint equations
L=14w-— Q%+ wQk+u*)/(u(l +k))>0, (16")
&€= —wQ(l —u?)/(A(1 + k)ur’L), (17")
sgn(u) = —sgn(w), (18")

where k =y — 1.

ill. COMMENTS ON THE BAROTROPIC CASE

The qualitative features of the dynamical system in the
barotropic case has been studied extensively in Ref. 9. Here,
after an outline of the behavior of the solutions, we prove a
new result. The main features of the dynamical system in the
region u <0 are pictured in Fig. 1 (in the region u > 0 there
are no physical solutions because they cannot be continued
until the center even if a discontinuity is introduced).

There are two kinds of solutions in the subsonic region
( — vk <u <0): solutions which cross the plane u = — \k
in a point of the line /, and solutions which arrive in the
region L " of the plane # = — k. These latter solutions can-
not be continued in the supersonic region (z < — yk ) be-
cause on L "the dynamical system change direction; the only
way to continue these solutions is to join them across a dis-
continuity (shock wave) to a solution in the supersonic re-
gion.

We recall that a shock wave is a timelike discontinuity
hypersurface such that the first and second fundamental
forms are continuous and such that the following continuity
conditions hold true:

[T°,N*]=0, [pU°N,]=0, (24)
where the brackets indicate the jump across the discontin-
uity. The continuity of the first and second fundamental
form is equivalent to the continuity of the variables Q, w, and
L, and these latter together with Eq. (16’) give the following
jump conditions®°:

[Q]=[w]=[(k+u®)/(u(l + k)] =0. (25)

The first of Eqs. (24) does not give further constraints, and
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FIG. 1. Phase space of the dynamical system (12')—(14") (barotropic state
equation).

the second is an identity in the barotropic case.

In the subsonic region the solutions in the interior of
phase space which start from some singular point are the
following.

(a) Solutions filling the two-dimensional separatrix Z
of the singular point Z, (it is possible to identify the separa-
trix Z in Fig. 1 by taking into account that it intersects the
component of the boundary u =0, w=0, and L =0, re-
spectively, in the line L,, L,, and L,).

(b) The limit line X of the separatrix Z which starts
from the singular point Z; and corresponds to the Oppenhei-
mer—Volkov solution. All other trajectories come from the
unphysical region u>0 across the line N (u=w=0,
2>0).

The behavior of the latter solutions has been studied in
Ref. 10 and it has been proved that it is necessary to join
them across a discontinuity at # = 0 to some solution of the
full spherically symmetric Einstein equations and if this lat-
ter solution contains the center of symmetry it must possess a
trapped surface and therefore a space-time singularity.

However, it is possible to avoid the singularity by mak-
ing a change in the topology of solution in such way that the
center of symmetry does not belong to the space-time. A
trivial example in which this last solution may be realized is
obtained by stopping the self-similar solution at # =0 and
then by continuing it with its mirror image.

The qualitative behavior of the solution obtained in Ref.
9 is based on the assumption that all solutions start (end)
from (to) some singular point or from the characteristic
planeu = — \/I? , that is, it is assumed that there are no com-
pact invariant manifolds near which solutions wind around.

Now we shall prove that there are no invariant compact
manifolds. Because on a compact manifold any continuous
function has a maximum, to prove the statement it is suffi-
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cient to show the existence of a Lyapunov function, that is a
C ' function F(Q,w,u) defined in the interior of the dynami-
cal system which is increasing on the solutions of Egs. (12')-
(14").

By Egs. (127, (13", (14"), and (16'),

L= —L(w+20%+wQ(1+ u*)/u). (26)
By deriving the function
F=Ll—kQ—1—kw3k—1u—2k(1_uZ)k—l>0 (27)

and by using Egs. (12), (13'), (14"), and (26), one obtains
F=(1—=k)(1+43k)FQ(1 —u®)/(u(l +k)), (28)

which is always positive in the region 4 >0 and negative in
the region u < 0. Therefore, Eq. (27) gives a Lyapunov func-
tion in the regions u > 0 and ¥ <O separately.

In particular, if K = 1 one obtains the first integral

w/(Qu) = ¢, <0. (29)

IV. EXPANDING SELF-SIMILAR SHOCK WAVE IN THE
FLAT FRIEDMANN UNIVERSE (BAROTROPIC CASE)

The exact solution F of the dynamical system (12')-
(14") corresponding to the flat Friedmann solution has the
form®

Q=u/(B—1-pBud,

w= ~2Bu*/(B—1—Bu),

u= (B— 1,

r(p) =Cp(l — (/_3— 1)2#2)1/(273—2)’

B=2/(3(1+k)).

This solution belongs to the separatrix Z and crosses the

plane L of nonextensibility of solutions (# = — k) in a
point F, of the line of singular points .

Proposition I: The intersection of the separatrix Z with
the plane L in the neighborhood of the point F, at 0 <k <
coincides with a segment on the line 7.

Proof: In coordinates a, 3, and parameter 7, such that

(30)

a=L, p=U-kw 2

() 2Q Q 31)
an_ __ @
dz w—k’

the eigenvalues of singular points of the segment 7 are®
Ay =VE (=R (— 14 (1 £2Z(1 — k)71,
A;=0,
with
Zy=(2k(1+3k)/(1 —k))a® — (Vk /(1 — k?))
X{((1+ k) +2k(3 + k?))a + 6k
+ 16k (1 + k) /((1 — k) (1 + k)?).
After substituting in Eqgs. (32) the value of parameter

a = (14 5k)/(3Jk (1 + k)), corresponding to the singular
point F, one obtains, in the case 0 < k <}, the formulas

Ao = =2k (1+ 3k —k)/(3(1+ k),
A_= —4k(1—Kk)/(3(1+K)).

(32)

(33)
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The corresponding eigenvectors are

V, = (1/3k, — 4/(3(1 + k)),1),

V_ = ((1+43k)/6k, —2(1 4+ 3k)/(3(1 + k)),1). (34)
From the formula (33) we have A, > A _, so the qualitative
behavior of the dynamical system near the singular point F;
islike in Fig. 2, where L , and L _ denote the invariant mani-
folds filled by the separatrix of the singular points of the
segment J.

By calculating the tangent to the trajectory F in the
point F, it is easily seen that F corresponds to the eigenvalue
A, so the trajectory F is tangent to the stable two-dimen-
sional invariant manifold L , filled with the separatrices of
singular points of the line I corresponding to the greatest
eigenvalues 4 .

Therefore all trajectories on the two-dimensional separ-
atrix Z, which are close to the trajectory F, are tangent to the
invariant manifold L . Hence all of them enter a segment I,
of the line 7 in a neighborhood of the point F,. This proves
the statement.

In the following we consider self-similar solutions with
an expanding shock wave such that in front of the shock
wave there is the Friedmann solution with state equation
P = ke and inside there is the solution, with state equation
P = kye (k; <k, <3), corresponding to the initial data deter-
mined by Egs. (25).

The initial data are not uniquely determined but depend
on the radial velocity - u, of the shock wave which respect
to the interior fluid. Therefore there is a line G in the phase
space such that the solutions defined previously (but with
different Mach numbers) arrive at different points of G be-
fore the jump.

FIG. 2. Qualitative behavior of the dynamical system (12’)—(14’) near the
singular point F,.
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The line G intersects the plane L of nonextensibility of
solutions ¥ = — vk, in some point G, in the region L,
which is at a finite distance from the segment ..

Because G, depends continuously on parameter k, and
tends to Z; when k, tends to k,, it follows that for k,~k,
there exists some segment G, on the line G (beginning from
the point G,;) which does not intersect the separatrix Z (see
Ref. 12). From this fact and from the presence of the Lya-
punov function, it follows that all trajectories of the dynami-
cal system (12')-(14’) starting from the line G,, with de-
creasing parameter z, arrive to the singular line N. This
proves the following.

Corollary: All self-similar solutions, which may be
matched with the Friedmann solution across a shock wave at
k, =k, and small enough Mach number, belong to the class
of solutions which come from the region « > 0 (see Sec. III).

This corollary gives an analytical proof of the numerical
results obtained in Ref. 10.

V. SELF-SIMILAR SOLUTIONS WITH TWO EXPANDING
SHOCK WAVES

The existence of self-similar solutions with two shock
waves in general relativity is connected with the presence of
segment /, of saddle singular points of the line /. For these
points there exists a two-dimensional separatrix L, filled
with the trajectories T passing through the segment 7, from
supersonic to subsonic domain (see Fig. 3).

We consider two points X, K, on such trajectory T, at
the point K, we have u < — vk, at the point k,, u> — Jk.
The points JK, and JK, correspond to the points X, K, by
means of jump conditions (25). We denote T, and T, the
trajectories passing through the points JK, and JK, for de-
creasing and increasing self-similar parameter 7, respective-
ly.2

The whole self-similar solution is described by three tra-
jectories T, T, T,, and has two shock waves, corresponding
to the jumps at the points JK, - K, and K, »JK,. In general

FIG. 3. Solutions with two expanding shock waves.
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the trajectory T, for decreasing values of parameter 7, tends
to some point on the segment NV and hence its behavior is
described like in the Sec. I11. But if the point JK, belongs to
the separatrix Z then the trajectory T, tends to the point Z,
for r—0 and the corresponding self-similar solution is con-
tinued to the center of symmetry without singularity. The
trajectory T, for increasing values of the parameter » tends to
some point on segment DE (see Fig. 1), then it may be con-
tinued without singularity in the domain # > — 1. This tra-
jectory describes the solutions in front of the first expanding
shock wave.

These solutions depend on six parameters: one param-
eter determines the position of the singular point on the seg-
ment I,, two parameters determine the positions of the
points X,, K, on the trajectory T, and three parameters &,
k,, k; determine the state equation p = ke for three trajector-
ies Ty, T, T,. By means of variations of these six parameters
one may try to obtain a self-similar solution with some extra
properties. Some of these extra properties may be that the
point JK, belongs to the Friedmann trajectory or to the Op-
penheimer—Volkov trajectory, and the point JK, belongs to
the separatrix Z.

The problem of the existence of the points JK, and JK,
with these properties may be solved by means of numerical
calculations or by analytic methods at small Mach numbers
M = 1. These new solutions with two expanding shock waves
are analogs of the known Landau solution with two shock
waves in classical gas dynamics."

VI. SOME QUALITATIVE REMARKS IN THE
POLYTROPIC CASE

In this section some qualitative results related to the
general dynamical system (12)—(15), which are helpful for
the investigation of the solutions described in the next sec-
tion, will be found. Because of Eqs. (16) and (23) the dy-
namical system is defined in the region — 1<u <1, @>0,
L>0,0<a<+y— 1, which may be divided in two regions
A: —l<u<Oand B:0<u <.

In region A4 we have the following results.

(i) Equation (16) can be written in the following form:

—w+ Q% — WQ /W + (/)1 —u?))<l  (16")
and Eq. (18) will give the following bounds for the region 4:

0<Q<«1l, —1l<w<0, O<u<l, O<a<y—1.

(ii) The dynamical system changes direction on the hy-
perplane u = a, in fact it is easily seen that the numerator of
the right-hand side of Eq. (14),

— (1 =) (Q? —a® + 2% (1 —u* — ) /)
+ (w/2)u(1l — a®) — 2ua?), (35)

is positive in the region u <a (i <0) and in a neighborhood
of the hyperplane u = a in the region # >a (i>0). There-
fore there are no solutions that cross the hyperplane ¥ = a
but all solutions exit in both sides of this hyperplane (Fig. 4).

(iii) It is easy to see that in the region u < a there are no
singular points and in the region u > a there are only saddle
singular points with separatrices belonging to the boundary
of phase space. This means that there are no interior solu-
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tions starting from some singular point, hence all interior
solutions start with a positive value of parameter  from the
hyperplane u = a.

From (ii) and (iii), as in the barotropic case, the follow-
ing holds.

Proposition: All trajectories lying in the interior of re-
gion u > 0 cannot be continued until the center even if a dis-
continuity (shock wave) is introduced.

Solutions starting from the hyperplane u = a in the side
u < a arrive to the region u <0 across the hyperplane 4 =0
with a finite value 7, of parameter 7, because in this hyper-
plane there are no singular points of the dynamical system.
For these solutions it must be w(r,) = a(#,) = 0. The first
equation follows immediately from Eq. (18), the second one
follows from the first and from Eq. (23) by taking into ac-
count that by Eq. (16) the function wQ /u cannot tend to
— oo when 7 tends to 7,

Following this section we will study the behavior of the
dynamical system in the neighborhood of the line N
(w = u = a = 0). Before making this study it is necessary to
regularize the dynamical system on N by taking the new
parameter z, such that dz/dz, = u(u? — a?).

In this way the points of N become singular points for
the new dynamical system, but unfortunately they are de-
generate (all eigenvalues are zero). This difficulty may be
avoided by considering the following new coordinates
x=(Q—a)/a,y=w/a, z=u/a, a in a neighborhood of
the singular point Q@ = a, w = u = a = 0. In these new co-
ordinates the dynamical system becomes

x= (22— 1)(xa+a)(z(l —ya — (xa + a)?)

— (/2)(xa + @) (1 + 2’a*)) — xF, /a, (12")

FIG. 4. Behavior of the dynamical system (12)—(15) near the hyperplane
u=a.

Anile, Moschetti, and Bogoyavlenski 2946



y= —y((Z = 1)(za(l +ya+ (xa + a)?
+ (xa + a)((1 + (ya/2))(1 + 2%a*)

+ (2d*/7)(1 — Z%a*)) + F,/a), (13")
z= —2((1 — 22a%) ((xa + a)(z® — 3 + (2/¥) (1 — F2a?))

+ (2/2)(1 — a*) — 2za) + F,/a), (14")
a=F,(x,y2a), (15")

where
F,=a(y~1-a*)((yz/4)(1 — 2%a*) — z%a
— (xa + a)(Z? — (1/7) (1 — Z%a?))).

The system (12")—(15") after linearization has the follow-
ing eigenvalues:

Ae=—aly—=1/y, 4,=a/y,

A, =ay—1)y, A, =a(y—1)/y.
This means that for any & and therefore for any point P of the
line N there exists a three-dimensional unstable separatrix
that is an invariant three-dimensional manifold filled by tra-
jectories exiting from P. Furthermore for r-r, u,
a®r—2/r=1 1,37 = 27 are infinitesimal of the same order.
From this and from Eqgs. (9), (10), and (17) it follows that
for such trajectories, for »—7,, the pressure tends to a posi-
tive constant and the density of energy tends to infinity. By
defining the total mass enclosed within the sphere of radius
e'ras

(36)

m(rr) =er(l+re "—e 1/2, 37)
it follows that the function
M(r) =2m/(er)
= (w+ (Qw/u)(t* + (a*/¥) (1 —u?)))/L (38)

must be negative on r, because the ratio wa?/u tends to a
negative constant. In Ref. 10 it has been proved that the
condition M(r,) <O implies the existence of a trapped hy-
persurface in the interior solution (0 <r <r,) holding the
center of symmetry.'*

Thus for trajectories coming from the region u >0 we
obtain the following conclusions.

(1) As in the barotropic case the only possibility of ob-
taining a complete solution is to join these solutions at r = r,
with non-self-similar solutions containing the center of sym-
metry, across a shock wave [contact discontinuity because
u(ry) = 0] or to change the topology of interior solution; in
the first case the interior solution possesses a trapped sur-
face.

(2) The behavior of these solutions near the contact
discontinuity at = r, is different from the corresponding
barotropic solutions,!! because in this case the density of
energy tends to infinity.

Vil. EXPANDING SELF-SIMILAR SHOCK WAVE IN THE
FLAT FRIEDMANN UNIVERSE (POLYTROPIC CASE)

In Sec. IV we have considered solutions of the dynami-
cal system (12')-(14’), which are matched with fiat Fried-
mann solution across a shock wave with a small Mach num-

2947 J. Math. Phys., Vol. 28, No. 12, December 1987

/

b e e e
-

~
-

FIG. 5. Behavior of energy density and pressure for the solution of the dy-
namical system (12)—(15) with ¥ = 4, matched to the Friedmann solution

with dust for u = — 0.3.

ber. In this section we will look for solutions of the general
dynamical system (12)—(15) which may be joined to the flat
Friedmann solution with dust (p = 0) across a shock wave,
without restriction on Mach number.

In the polytropic case the continuity of Q, w, and L give
the following jump conditions:

[Q0] = [w] = [u+d*(1 —u?)/(yu)] = 0. (39)

As in the barotropic case the first of Eqs. (24) does not give
further constraint, but the second becomes

FIG. 6. Like Fig. S withu = — 0.2
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0 >t
FIG. 7. Like Fig. 5 with u = — 0.05.
(y—1-a> A=)/ (y—1) =0. (40)

Equations (39) and (40) are the jump conditions on a shock
wave. The Friedmann solution with dust, is obtained from
Eqgs. (30) by letting k£ = O:

0. = 9ro w___4r_i_ v _ T
Fo902 122" "F 924272 F 30’

where o () is defined implicitly by the equation
0 = ;9% — )2 (42)

and ¢, is an integration constant.

By calculating the density of matter ( = density of ener-
gy) and by taking into account that a = 0 it follows that the
matching conditions (39) and (40) become

Q(ro) = Qp(ro), w(ro) = wp(ro)s (43)
u +a*(1 —u*)/(yu) = ug, (44)
(y=1—-J1 —d¥/(y—1) =1 —u2, (45)

where it is understood that the variable in Eqs. (44) and

(45) are calculated at r = r, (equation of shock wave).

By using the third equation of (41) and Eq. (42), Egs.
(44) and (495) give

@ =2y(y — Du¥/((y — D2+ 2y — DHu?), (46)
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ro= —u( —1-u))((y—1)*

+ 2y — D791 —u®)¥((y — 1)? — u?)?) (47)
and

up=u(P —14+3/((y — D*+ 2y — DHu?). (48)

Equations (43), (46), and (47) give the initial data for the
interior solution for any choice of u.

From Eq. (46) it follows that 0 <a® <y — 1 if and only
if u belongs to the interval (1 — ¥,0). And from Eq. (48) it
follows that — u, ( = velocity of the shock wave with re-
spect to the exterior fluid) is nonzero and less than the veloc-
ity of light ( = 1) if u is different from Oand 1 — .

Therefore solutions in the interior of the shock wave are
parametrized by the variable u belonging to the interior of
the interval (1 — ¢, 0). For some value of u in the previous
interval and for ¥ = 4, the corresponding numerical solu-
tions of the system (12)—(15) have been found. These solu-
tions come from the region # > 0, then qualitative analysis
made in the previous section may be used.

The numerical behavior of the pressure and energy den-
sity for any solution is pictured in Figs. 5-7.
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The gravitational field equations for a spherical symmetric perfect fluid are completely solved.
The general analytical solution obtained depends on an arbitrary function of the radial
coordinate. As illustrations of the proposed procedure the exterior and interior Schwarzschild

solutions are regained.

I. INTRODUCTION

In this paper we derive the whole set of exact spherically
symmetric solutions of Einstein gravitational field equations
(with cosmological constant) when a perfect fluid is as-
sumed to be the source of the gravitational field.

An extension of the solution to plane and hyperbolic
symmetries can easily be obtained and our previous result’
for the (exact solution of the) plane symmetric case is re-
gained.

In what follows we pose the mathematical problem and
then we mimic the procedure used in our recent work' to
reduce the problem to mere quadratures.

The line element considered here is

ds’> = g*(x)dt? — dx* — r*(x)[d8? + sin* 8 dp *], (1)
which represents the most general static line element admit-

ting spherical transformations.
Einstein field equations with cosmological constant are

G,uv =+ Ag,uv = Tyv (2)
with

G..=R,, —g.R. 3)
In Ref. 1 we proved that if the right-hand side of Eq. (2)
models a perfect fluid with pressure p and energy density p,

Tuv = (P +p)uyuv —ngw (4)
and whose flow lines are tangent to the unit vector
u* = (1/g)8}, the change of variable

P=p—A, p=p+A, (5)
transforms Eq. (2) into an equivalent system with A = 0.
Therefore, twirls can now be dropped keeping in mind that
the A0 case is already included. The field equations (2)
for the metric given by (1) are (see, for instance, Ref. 1)

27" fr+ /P — 1/ = —p,

rY/r 4 2rg/rg— 1/ =p, (6)

r'/r+g"/g+rg/rg=p,
and the equation of hydrostatic support (Bianchi identities)
is

*) Permanent address: Instituto de Fisica, Universidad Austral de Chile,
Casilla 567, Valdivia, Chile.
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(0 +p)(g'/8) +p' =0, o))
where the prime denotes x differentiation.

Il. INTEGRATION

The system of equations can be reaccommodated if the
first equation of (6) is multiplied by 77 and integrated over
x. Then

rr=1-2m(r)/r, (8)
where

dm 1

am _ R

dr 2 P )

Replacing Eqs. (7) and (8) in the second equation of (6)
one obtains

1 2dp 1) 1
~2m)| =25 __ _p4—.
=25 Parpip) T 7 (10)
Defining
=—(r—2m)/(p+ 1/ (11)
Eq. (10) becomes
PG(G—r’)—‘!E—+r3(G+P)(i§+r2)p
dr dr
+(G+P)(P+r%g—2G)=O. (12)

Equation (12) can be integrated at once for p(r) if G(r) isa
given function, in fact,

() = exp[f (G +7)(dG /dr + )

G —G)
X{p _ [ (G+P) (P +r(dG/dr) —2G)
0 PG(G —P)
[ (G+7r)(dG/dr+ 1) ] }
Xexp[ f G — 6 dridr}, (13)

where p,, is an integration constant.
The function p(7) can be obtained with the help of Eq.
(9) and the definition of G
1 ( dp , dG 2G | dG/dr
=—|gZ L 50, <Y
ORI N i mE i

+ 1), (14)
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where p(r) is given by Eq. (13). The metric coefficient g can
be found by direct integration of Eq. (7) and then using Eq.
(10) and the definition (11)

g =g exp( — 2f dp/dr dr)
p+p

([ 5)

To complete the integration we can recover the link
between the metric coefficient » and the original variable x.
From Eq. (8)

(15)

x= f——ﬂ——— (16)
V1 —2m/r
with m(r) constructed from Eq. (11).

As we have remarked in our previous work the crucial
step to get the general solutions (13)—(16) is the definition
(11) of the arbitrary function G(r). It is worthwhile to em-
phasize that any choice of G(r) does provide a solution to
field equations (6), (7) and no spurious solutions are intro-
duced anywhere as it can be straightforwardly shown by
replacing p, p, g, and r given, respectively, by expressions
(13), (14), (15), and (16) in the original field equations. It
is rather simple and illustrative to see how the prescription
works.

By using the plane symmetric version of the above-de-
picted procedure,’ the most general function G that pro-
duces a ¥ law equation of state was found.? Also, the asso-
ciated fluid pressure, energy density, and metric coefficients
were explicitly written down. In particular, after a change of
variables, the solutions given by Tabensky and Taub,? and by
Teixeira, Wolk, and Som* were reencountered.

lll. EXAMPLES
A. Exterior Schwarzschild solution

In the present case, choose for instance

G(r)= —FA(r—2M) (17)
(where M is a constant) and
Po=0. (18)
Under such conditions
r3+rﬁ—2G=0 (19)
dr
and consequently [see Eq. (13)]
p(r) =0, (20)
Equations (14), (19), and (20) imply
p(r)=0. (21)
Also, comparing Eq. (11) with Eq. (17)
m(r) =M. (22)
Thus, Eq. (16) can be written as
dx* = __dar . 23)
1-2M/r
Finally, from Eq. (15)
g=(1-=2M/r). (24)

As it can be readily recognized, Egs. (20), (21), (23), and
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(24) represent the well known exterior Schwarzschild solu-
tion.

It is perhaps worthwhile to notice that in this case
p +p=0and Eq. (10) seems to loose its meaning. How-
ever, by virtue of Eq. (7) the finiteness of the quotient p’/
(p + p) is ensured if we assume g'/g to be finite everywhere
(except for some 7).

B. Interior Schwarzschild solution

Now take’®

G— _p AN1—7/R* —B(1-r/R?)
AJT=P/R? —B(1—3”/R?)

where 4, B, and R are constants.
By choosing p, = 0 in the expression (13) for p(r), it is
found after a lengthy calculation that

1 3BJ1—F/R*—4

(25)

pr) = . (26)
R? 4 _BJT—F/R?
Also, from Eq. (14)
p(r) =3/R2 27
Finally Eqgs. (15) and (16) give
g (r) =gi(4 — BY1—7/R?)?, (28)
h2(r)= 1 1 (29)

1—-2m/r 1—r/R*
Equations (26)~(29) represent the interior Schwarzs-
child solution.5
As a final comment, let us say that any other solution
can be cast in the above scheme as well. In fact, given any
metric that solves Eqs. (6) and (7), the associated function
G can be obtained from Eq. (15) as
G=—r—F
(d/dr)(rg®)
The other relevant functions (p,0,h?) are related to G
through the above stated formulas.
In Ref. 5 the generating functions G leading to Tolman,
Einstein, Schwarzschild-de Sitter, many other known® and
some new explicit solutions are exhibited.

(30)
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A simple criterion for colliding gravitational plane waves is developed. This colliding wave
condition is preserved by a new realization of the Geroch group augmented by a Kramer—
Neugebauer involution. A three-parameter generalization of a two-parameter family of
solutions with noncollinear polarization discovered recently by Ferrari, Ibafiez, and Bruni is
presented, and two additional solutions are derived that demonstrate that much larger families

are likely to be constructed in the near future.

I. INTRODUCTION

In an earlier paper' we discussed the derivation of new
colliding wave solutions of the vacuum Einstein solutions
from old ones through the use of coordinate and Ehlers
transformations. As an example, we gave explicit results for
the metric and the curvature tensor of the first new solution
obtained by applying such transformations to the famous
Nutku—Halil solution.? In the collinear limit the new solu-
tion reduced to the n = 2 solution of the Ferrari-Ibafiez fam-
ily? of solutions. (The Kasner parameter n was defined in
paper 1.) In principle, additional coordinate and Ehlers
transformations would yield noncollinear generalizations of
all the even n Ferrari-Ibafez solutions. Similarly, starting
with the Chandrasekhar—Xanthopoulos # = 1 solution,* a
series of such transformations would in principle yield non-
collinear generalizations of all the odd » Ferrari-Ibafez so-
lutions.

As we were going to press we learned that Ferrari,
Ibafiez, and Bruni® had actually obtained closed form ex-
pressions for a two-parameter family of colliding wave solu-
tions with noncollinear polarization. Interestingly, for even
n their solutions agreed with ours, while for odd » their solu-
tions were distinct. In particular, their n = 1 solution was
not the Chandrasekhar-Xanthopoulos (Kerr) solution. We
soon discovered that the Ferrari-Ibafiez—Bruni family could
easily be extended to a three-parameter family such that all
the known solutions were special members of this family.
That resolved the mystery, for it became apparent that the
Ferrari-Ibafiez-Bruni n = 1 solution bears the same rela-
tion to the Schwarzschild-NUT solution as the Chandrasek-
har-Xanthopoulos n = 1 solution bears to the Kerr solu-
tion. In our three-parameter family the n =1 solution
corresponds to Kerr-NUT!

In Sec. I, Eq. (2.30) of this paper we shall describe a
simple criterion for distinguishing a colliding wave solution
from other solutions. That section will culminate in explicit
metrical expressions, Egs. (2.45)—(2.48), for our three-pa-
rameter generalization of the Ferrari-Ibafez-Bruni family
of solutions.

It is quite apparent that our three-parameter family of
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solutions can be further enlarged. In Sec. II we shall describe
a simpler realization G,(Z,) of a Geroch group® of transfor-
mations which transform one colliding wave solution into
another. That section will culminate in the description of a
new three-parameter # = 2 solution, Egs. (3.29)-(3.31),
obtained from the Nutku—Halil » = 0 solution by employing
transformations which are members of our realization of the
Geroch group. The new parameter in this solution is denoted
by A.

In principle, one should be able to extend the three-pa-
rameter family of solutions described in Sec. II to a four-
parameter family with the additional parameter A. For inte-
gral values of n one can proceed as follows. One can employ a
Kramer—-Neugebauer involution’ to obtain from the three-
parameter n = 2 solution a new three-parameter n = 3 solu-
tion. The augmentation of our realization of the Geroch
group by the Kramer—Neugebauer involution is formulated
in Sec. IV, which culminates in the new three-parameter
n = 3 solution, Egs. (4.12) and (4.13). Additional coordi-
nate and Ehlers transformations can, of course, be used to
derive analogous three-parameter solutions for arbitrary in-
teger values of 7.

It remains to find an effective way to construct the four-
parameter generalization (including A) of our own three-
parameter generalization of the Ferrari-Ibafiez-Bruni solu-
tions. In a subsequent paper we shall formulate a
homogeneous Hilbert problem, the solution of which may
bring this objective within our grasp.

il. A COLLIDING WAVE CONDITION

A. The set CW, of vacuum metrics

We shall be considering certain vacuum solutions of the
Einstein field equations for which there exist coordinates x’,
x2, u, v such that the line element has the form
8ap (1,0)dxdx® + 2g,, (uv)dudv (a,b=1,2), (2.1)

d/3x" and 3 /9dx* are Killing vectors, g,, has signature
+ +,8uw <0, and

pi=1811822— (812)2]1/2>0 (2.2)
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over the domain of the chart which consists of all (x!,x%,u,v)
such that (x!,x?)eR? and (u,v) is a member of a union of
four contiguous regions

IUITUIIIVUIYV,
where
I : = {(u,v)eR?%: u<0, v<0},
I :={(uv)eR* u<0, O<v<1}, (2.3)
I :={(u,v)eR* O<u<1, v<0},

IV ={(uw)eR%: 0<p(up)<1, 0<u, O<v}.

The intersection of these four regions of R? is the singlet set
whose element is the origin (#,0) = (0,0). The coordinates
x° have been scaled so that p(0,0) = 1.

One requires, of course, that the metric be continuous
over the entire domain. In region I, it is assumed that g, and
g., are uniform fields; i.e.,

gab (u,v) = gab (0,0),
plup) =p(0,0) =1

In other words, the space-time domain in which (u,v)elisa
closed subregion of Minkowski space whose boundary con-
sists of two null hypersurfaces that intersect at the Euclidean
two-surface # = v = 0. One can always subject the ignorable
coordinates x° to an SL(2,R) transformation and the null
coordinates u,v to a scaling transformation to make

8 (u0) =8,,(0,0),
for all (u,w)el.

for all (u,w)el.
(2.4)

gab(u!v) =5ab’ guu(u’v) = — l

This option will be kept open but not imposed now.

It is next assumed that the metric components in region
II depend only on », while the metric components in region
111 depend only on «. Thus

8o (0,0) = g,, (0,0),

8w (,0) =g,,(0p) for all (u,p)ell, (2.5)
and

&ap (U,0) = g, (1,0),

g, (uv) =g, (u0) for all (uv)elll. (2.6)

Thus regions II and III are each occupied by a p-p type N
gravitational field, i.e., a plane-fronted gravitational wave.
Consider the timelike coordinate t = §(u + v) and spacelike
coordinate s = }(# — v). One defines “the future” as being
in the direction of increasing ¢. For fixed ¢ <0, the two wave
frontsareats = tand ats = — ¢, respectively. As ¢ increases
and approaches 0, the spatial “interval” |2¢ | between the
wave fronts decreases until they collide at ¢ = 0.

We now introduce an assumption which holds only for a
restricted set of p-p type N waves in II and III. So far, we
have made no particular choice of the null coordinates u and
v. We now assume that if we define # and v by the equations

p(0w)=1—2* inII,

p(u,0) =1—4* in III,
then the metric components in these regions are C >-differen-
tiable® functions over the intervals O<v < 1 and O<u < 1, re-

spectively. We shall adhere to the choices (2.7) in this paper.
We now come to the region occupied by the scattered

(2.7)
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waves; viz., IV. The field equation which governs p is
_9%

 Qudv
Hence, from Eqgs. (2.7),

=0.

Puv’

(2.8)

We next seek a C >-differentiable solution in IV of the vacu-
um field equations for g, (#,v) and g, (#,v). This must sat-
isfy the continuity conditions for the metric at the bounding
null hypersurface at # = 0 and v = 0, respectively; i.e., the
solution must match the prescribed g, (0,2), g, (O,v) over
the interval O<v < 1 and the prescribed g, (#,0), g,, (#,0)
over 0<u < 1. Moreover, the solution must satisfy the re-
quirement g, (#,0) <0 at all (u,v) in IV. Such solutions do
not exist in all cases.

Definition: CW, will denote the set of all vacuum met-
rics that satisfy all of the conditions prescribed above in Sec.
IL

Our main interest in this paper will be the members of
CW, for which colliding wave polarizations are not collin-
ear. So far, every explicitly known vacuum metric regarded
as representing the collision of two plane-fronted gravita-
tional waves with noncollinear polarizations is a member of
CwW,.

p=1—u*—v* inlIV.

B. The field equations

The field equations governing the metrical components
Za» can be reduced to the Ernst equation

F(d+pdE) =pdE(*dE), 2.9)

where E is the complex potential
= e = —1 ;

ﬁ;fl;-el-El&j = (g22)" (p+i812), (2.10)
and * is a two-dimensional duality operator such that

*du=du, *dv= —dv. (2.11)
In terms of 4 and v, Eq. (2.9) becomes

F|E,—p "(uE,+vE,)] =E,E, (2.12)

over the region IV.
The only remaining independent field equations are
those that can be used to compute g, when E is given:

2T, =1—p|E,/2F 2,

2.13
v, =1—p|E,/2F|?, ( )
where I is the real field defined by
— (p)'’g,, = exp(2) . (2.14)

Equation (2.12) guarantees that the integrability condition
for Eqgs. (2.13) is satisfied. The solution of Egs. (2.13) in an
instructive form will be given later in Sec. II.

C. The field equations in terms of &

The Ernst potential
E=f+iy, f=Re&:= —gp (2.15)
may be defined in terms of E by the equations
fF=—p, f7ldy= —F 'sdo. (2.16)
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The Ernst equation (2.9) guarantees that the integrability
condition for the second Eq. (2.16) is satisfied. As is well
known, & is also a solution of the Ernst equation, and Egs.
(2.13) are expressible as

uy, =1—-p|®, /2,

wy, =1—p|&,/72f|*, 2.17)
where 7 is defined by
— 8228 = exp(z‘}’) . (2.18)

The reasons for introducing the potential & as well as the
potential E are to be found in various methods that have been
developed for transforming given solutions of the Ernst
equation into new solutions of the equation. In particular, as
we shall discuss in detail in Sec. ITI, new colliding wave solu-
tions with any desired finite number of parameters can be
constructed by alternately subjecting E and & to certain ra-
tional linear transformations. This is equivalent to a method
originally devised by Geroch.®

D. The determination of the colliding wave solution by
E(u,0) and £(0,v)

As is known from the theory of quasilinear hyperbolic
equations such as Eq. (2.12), the solution £ (u,v) in the scat-
tered wave region is uniquely determined by its values
E(u,0), E(0,v) on the respective null hypersurfaces which
constitute the interfaces between the colliding waves and the
scattered wave. In particular, the first partial derivatives on
the interfaces; viz., E,(u,0), E, (O,v) are uniquely deter-
mined by E(u#,0) and E(Q,v), respectively. Specific equa-
tions which give these first partial derivatives in terms of
E(u,0) and E(0,v) are of some interest and will now be de-
rived.

The derivations proceed by first setting v =0 in Eq.
(2.12). The result is an ordinary differential equation that
can be expressed in the form

d [ln[ UE, (u,0) ] _ iw, (1,0)
du F(u,0) F(u,0)
where the capital letters Uand V will be used to designate the
non-negative valued fields

U:=(1—u®)?, Vi=(1—-v")"2. (2.19)
By setting # = 0in Eq. (2.12) a similar ordinary differential

equation is obtained for E, (0,v). Integration of these ordi-
nary differential equations gives us our final resulits,

UE,(u,0) E,(0,0) [ J‘ [1 w,(a, 0)”

F(u,0) F(0,0) F(a,0) (2.20)
VE, (0,v) _Eu(0,0)[ J‘ [twb(O b)“

F(Op)  F(0,0) F(0,b)

Equations similar to the above hold for & ; these are simply
obtained by replacing E by &, F by fand @ by y in Egs.
(2.20). Moreover, from Eq. (2.16) one obtains

&, E, 2 &, E, 2
e 2 e o2 o
f F p’ f F
Therefore,
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gu (O,U)/f(o,v) = _Eu (O,U)/F(O,U) s
&, (14,0)/(u,0) = — E, *(u,0)/F(u,0) .

From Eqgs. (2.20) and (2.22) we obtain the following rela-
tions, which will be used later:

(2.22)

k: = |E, (0,0)/2F(0,0)|* = |UE, (4,0) /2F (u,0) |2
= |U%, (u,0)/2f(u,0)]?,
|VE, (0,0)/2F(0,0) |2
= |V&,(0,0)/2f(0v)|*.

(2.23)
I: = |E, (0,0)/2F(0,0)|> =

The particular case of colliding wave with collinear po-
larization is defined by the statement that there exists a
choice of the ignorable coordinates x* such that g,, vanishes
at all points. In this case, @ = 0 and one can select the arbi-
trary additive constants in y so that y =0 as well. Upon
introducing the real scalar field ¥ defined by

— & =g =exp(2¢), (2.24)

one finds that the Ernst equations for E and for & are each
equivalent to the single linear equation

¢uu -P_l(“'//u + v¢u) =0 (2.25)
Moreover, Egs. (2.23) become
k=[¢,(00)]*=[U¢,(»,0)]%,
[4.(00)]* = [U4. (40)] 226

I=[4,(00))>= [V, (00]>.

E. A necessary and sufficient condition for a solution of
the Ernst equation to yield a member of CW,

Let E by any solution of the Ernst equation over the
domain

{(uv)eR?®: 0<u® +v* <1, 0<u, 0<v},

such that E is of differentiable class C? and such that
F(u,w): = Re E(u,w) >0 for all (#,v) in the domain. From
the Ernst equation (2.12), one can readily prove that

2 pF B =vF BBt + E,0E,),
a“ (2.27)
™ (pF 2|E,|*) =uF "*(E,E,* + E,*E,) .
)
Now let us introduce the scalar field

Aup): =%fudaf db [F(a,b)]1~2[E, (a,b)E,*(a,h)
0 0

+ E,#(a,b)E, (a,b)] .

Then, from Eqgs. (2.23) and (2.27), we obtain
ypF 2|E, | — =0, ,
1pF|E, [P —k=uA, .

Substitution of the above into Egs. (2.13) yields
F,=(-=k/u—A,, T,=(10-D/w—A

Hence, from Egs. (2.14), one obtains the following result for
g uv :

fuw = — (const) (p) V2! —kyl —le =24

(2.28)

(2.29)
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The positive constant factor in g,, is arbitrary unless one
imposes an auxiliary condition to fix it.
It is apparent from Eq. (2.29) that not every E yields a
g., Which fits our definition of the class CW, of colliding
wave solutions. The following key theorem results.
Theorem: E determines a metric in CW, by the relation

E= (gzz)_l(p + ig2)
if and only if

k=Il=1. (2.30)

Let us consider examples.

F. Some old examples of Ernst potentials that yield
colliding wave solutions in CW, and other exampies
that fail in that respect

An Ernst potential which satisfies the conditions
k =1=11is the Kerr metric & which is given by

—#=0-H0+H7", (2.31)
where
= + iqy,
and where the real parameters g and p are related by
peg=tl. (2.33)

The colliding wave solution corresponding to this Ernst po-
tential wave analyzed in depth by Chandrasekhar and
Xanthopoulos.*

Another example is the Nutku-Halil solution,”> for
which Chandrasekhar and Ferrari® observed that

E=(1-5H0+87", (2.34)

which equals the Kerr — &* given by Eq. (2.31).

The potential given by Egs. (2.34) is one member of a
larger family of Ernst equation solutions called the Tomi-
matsu-Sato (TS) family*® and which involves an additional
real parameter 8. § = 0 yields Minkowski space; § = 1 yields
the potential (2.34); and § = — 1 yields (2.34) with £ re-
placed by — £. The fact is that the only members of the TS
family for which k = / = 1 are those for which §% = 1.

The TS family Ernst potentials are very complicated.
Let us, therefore, look at the Zipoy-Voorhees'"'? (ZV)
family, which is the collinear version of the TS family. For
the ZV family,

1+x r1/1=£1n1—y.

2.35
1—x 2 1—y ( )

)
=1
Y=
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A brief calculation employing Eqgs. (2.26) and (2.32) yields
k=1=68.

Thus the only members of the ZV family in CW, are the
Khan-Penrose!® (collinear specialization of Nutku—Halil)
and Schwarzschild solutions, for which

E=exp(2y) and & = —exp(2¢),

respectively, where ¢ is given by Egs. (2.35) withé = + 1.
As an example which does not satisfy the colliding wave
condition, consider the Kasner solutions, for which

E=—p'""= —gn.

It is clear that k = I = 0. In fact, any Ernst potential that is
expressible as a function of the Weyl canonical coordinates

z=u*=v%, p=1—u*-»* (2.36)
and is an analytic function of z and p in a neighborhood of
(z)p) = (0,1) satisfies k = | = 0 and cannot, therefore, yield
a member of CW ,. The reader can easily prove this assertion.

G. Recent examples of members of CW,: A new three-
parameter family of colliding wave solutions

The Nutku~Halil solution is itself a member of a two-
parameter family of noncollinear members of CW, which
has been obtained by Ferrari, Ibafiez, and Bruni.® In paper I
we reported our discovery of a three-parameter extension of
their family, the derivation of which will be given in a sequel
to the present paper. The Ernst potentials E and & of our
three—parameter family are given by

E(nyy')=p"T(n + 1V v)/T(n — 1,v,v), (2.37)
& (nv') =p' ~"[T(n—2,vv)/T(nvv)]*, (2.38)
where n, v, v' are any real numbers, where we let
:=COoS¥, g:=sinv,
pl ’ ql : ’ (2'39)
p =cosv, g:=sinv,
and where
l 1 —x n/2
T(nvv'): =—X[( + ')( )
2 pTp 1+x
, 1 n/2
+@—p )(——1 +x) ]
1 1 —y n/2
+—y[< +q (_—)
3 q9+q) T4y
n/2
+ (q—q’)(%l) ] , (2.40)
where x and y were defined by Egs. (2.32), and
X:=(1=-x)"2 Yi=(1-y)'2, (2.41)

When ¢’ =0 and p’ =1, i.e,, v' = 0, the above family re-
duces to the one found by Ferrari et al., except that we
should caution that their parameter p differs from ours.
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When n = 0in Eqgs. (2.37), (2.38), and (2.40), one ob-
tains the Nutku—Halil solution. The parameter v’ is not es-
sential for the Nutku—Halil solution, since it can be removed
by an SL(2,R) transformation of the coordinates x*. How-
ever, both v and ' are essential parameters for all »50.

When |n| =1 in Eqgs. (2.37), (2.38), and (2.40), one
obtains the Kerr—-NUT family, except that we should warn
the reader that it is v which is the NUT parameter in this case.
(Therefore the n = 1 member of the solutions of Ferrari et
al. is not the Kerr metric; it is the Schwarzschild-NUT met-
ric.)

Finally, when # = 2 and v/ = 0 in Egs. (2.37), (2.38),
and (2.40), one obtains a solution reported in paper I. When
n = 2, one obtains a specialized version of a three-parameter
family which we shall give in Sec. IV.

In evaluating the metric tensor it is convenient to ex-
press Eq. (2.37) in the form

E=AB !, (2.42)
where
A=p"" DT (n + 1V ),
P (2.43)

B=p""~YT(n—1¥'w),

and T'(n,v,v') is defined by Eq. (2.40).

The metric tensor components g,,, g,, are computed
from Eqgs. (3.7) and (3.9) in paper I. The components g,,,, in
region IV are there expressed in the form

81 =pK/N, g,=pL/N, gp=pM/N.
We obtain
N=Re (4B*)

+p")
=p" p+rp 1+ x

+(p—p) (1+i) ]+Y2[(q+q) (1+y)"

+ -]+ 2@ - g )

(2.44)

=pn2/2|T(n,v,vl)|2 ,

— IA |2 =p(n2/2)+n|T(n + l,V,,V)lz,

= IB lz =p(n’/Z) —an(n - l,v’,v)l2 ,
L=Im(4B*)

(2.45)
(2.46)
(2.47)

1 __x)n/Z
1+4x

+x)n/2

1 —

=p"’”—1— {(x —y)[(p +p (g +49) (

X

=
(5
=

n/2
) —(@—p) (g q)(

++

) ]+(x+y)[(p @G+
n/2 yn/z
) ( ) 4P —q)
1—x +y

<G) G5

To obtain the explicit expression for | T(n + 1,v',v)|?in Eq.
(2.46), simply replace n by » + 1 and interchange p with p’

X

(2.48)
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and ¢ with ¢’ in that expression for |T(n,v,v')|?, which is
given by Eq. (2.45). A like rule yields |T(n — 1,',»)|? in
Eq. (2.47).
The remaining metrical component g,,, is
8w=—p VN/(UV),
where N is given by Eq. (2.45).
Interesting relations between members of the family
corresponding to different » are given in Secs. III and IV.

(2.49)

lil. A REALIZATION OF A GEROCH GROUP

A. Objectives

Regarding the set of metrics CW , our ultimate goal is to
find an effective way of constructing an exact solution for the
metric in the scattered wave region IV when the metrics of
the two plane-fronted waves in regions II and III are given.
Equivalently, we would like to be able to obtain & (u,v)
when & (0,v) and & (u,0) are given.

If the polarizations of the p-p waves are collinear, a gen-
eral solution of this problem is obtained by applying Rie-
mann’s method to the hyperbolic linear equation (2.25), and
this has already been done under varying assumptions by
Szekeres'¢ and by Xanthopoulos.!” When the polarizations
are not collinear, the quasilinear Ernst equation cannot be
converted by any known way to an equivalent linear partial
differential equation involving only a finite number of de-
pendent and independent variables. One must seek a differ-
ent approach.

The approach which we are seeking is a generalization
of methods that several people, including two of the present
authors, have applied to stationary axisymmetric gravita-
tional fields in the Einstein theory. There, the problem is to
determine the Ernst potential & (z,0) when its values
& (2,0) on the axis are given.

In the particular method developed by Hauser and
Ernst,'® a 2 X 2 matrix function «(¢) of a complex variable ¢
is constructed by algebraic means from & (z,0). The func-
tion #(¢) is an element in a realization of a group central to
our entire discussion. This group was first effectively formu-
lated and applied by Kinnersley and Chitre'> and is an exten-
sion of one originally conceived by Geroch.®

The method continues with the use of #(#) to construct
the kernel of a Fredholm equation of the second kind or an
equivalent homogeneous Hilbert problem whose solution is
a 2X 2 matrix function F(t,z,p). The Ernst potential & (z,0)
is one of the matrix elements of dF /3¢ at ¢t = 0. [ Also, the
elements of the real part of F /3t at t = 0 are the negatives of
the metric components g, (z,0).]

Thus the problem of determining & (z,p) from & (z,0)
is reduced to the (not necessarily easy) problem of solving a
linear integral equation or homogeneous Hilbert problem.
This method may be described as a synthesis of a group theo-
retical theme of Geroch and a type of inverse scattering tech-
nique. We wish to formulate a similar synthesis for the col-
liding wave problem.

To approach the ultimate goal we have described above,
we must first go through several stages. In this section we
shall present the first stage which is fo provide a realization of
the original Geroch group, specifically one suitable for our
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present purposes. The Geroch group is infinite dimensional
and can be used to construct colliding wave solutions with
any desired finite number of parameters. In fact, we shall
give a simple example of the way in which the group realiza-
tion is used to build a new solution out of a given known one.
However, we stress that our central objective here is to provide
the first link in a conceptual chain. We are not concerned in
this paper with providing any effective modes of calculation;
that will come in sequels.

B. A realization of SL(2,R) that induces rational linear
transformations of £

The Geroch group is constructed by taking the free
product of two groups of transformations, both of which are
realizations of SL(2,R), and both of which transform a
vacuum metric with a line elment of the form (2.1) into the
same vacuum metric or into another one with a line element
of the form (2.1). In this subsection we shall describe one of
these realizations of SL(2,R).

We start by considering the group of SL(2,R) transfor-
mations of the ignorable coordinates, or, equivalently, the
set of transformations

4 9
IxY Ix!
g 1= w _8_ R (3.1)
ax* ox*
where w is any member of SL(2,R),
w=w*=(c; g), ad—By=1. 3.2)

Correspondingly, the metric component g, remains invar-
iant while the metric components g,, undergo the transfor-
mation into

h' =whw”, where h:= (g" g”) ) (3.3)
21 822
As a result, E as defined by Eq. (2.10) becomes
E'=i(aE+iB)(yE+i8)7", (3.4)

where

E'= (852)—1(/’ +igi) -
Thus we obtain, in general, a new solution of the Ernst equa-
tion, though, of course, the transformation has not changed
the physical field; i.e., the transformation has not altered the
value of the line element at any point of the manifold. It is the
same space-time.

What about the way & transforms under this group?
From the defining relations (2.6) between E nd &, one de-
duces that

&' (u) = — [p/F'(u0)] +iy'(0,0)
* [ (1—d*)w,(a0)
{4 [
+ l[,[; ¢ F'(a,0)?
v (1 —u* = b w} (u,b) ”
db , 3.5
+J<; F'(u,b)? G-3)
whereF' = Re E'andw’ = Im E'aregivenby Eq. (3.4) and
where y'(0,0) is arbitrary. Thus the transformation of & is
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nonlocal. Incidentally, we shall henceforth adopt the conven-
tion

x'(0,0) = y(0,0) (3.6)

in Eq. (3.5). [However, »'(0,0) does not generally equal
®(0,0) in Eq. (3.4).]

Before we proceed with our discussion of the group, let
us pause to introduce two helpful notations.

Definition: 3 will denote the set of all ordered pairs
(E,%) of C2-differentiable solutions of the Ernst equation
such that (1) region IV is the domain of E and &; (2)
F(u,w): =Re E(u,v) >0 and f(u,0): = Re & (u,v) <0 for
all (u,v) in IV; (3) the relations (2.6), where E = F + iw
and & = f+ iy, hold throughout IV.

For each (£,%) in X, there is exactly one metric (2.1)
such that

E= (822)_1(P +ig2) -

Definition: For eachwin SL(2,R), let y,(w) denote that
mapping whose domain is Z such that

Y(w)(E, &)= (E"&"), 3.7
where E’ is given by Egs. (3.2) and (3.4) and where &’ is
given by Egs. (3.5) and (3.6).

We shall also find it helpful to use the mnemonic
symbols

Yi{(w)E and y,(w)¥
to stand for the first member £’ and the second member &’
in the ordered pair (3.7).

Let us look at two examples of ¥, (w). A much used set
of generators of SL(2,R) consists of its elements

wA:=(10 Al) for all AeR!, (3.82)
0 1)
€= ( _1 o) (3.8b)

From the definition of 7,(w) given by Eqgs. (3.7), (3.4),
(3.2), (3.5), and (3.6), one can see that

71wy (E&) = (E+iAE), (3.9a)
71(€)(E,&)(E~L&"). (3.9b)

Asregards &' = y,(€) & in Egs. (3.9b), the expression for it
is not trivial and is not required here. Note, by the way, that

i.e., ¥, ( + I) is the identity mapping on 3.

In the following theorem, o denotes the mapping com-
position symbol, and the factors in a composition are read
from right to left.

Theorem: (1) ¥, (w) maps 2 onto X and is one-to-one.

(2) For all w and v in SL(2,R),

y1(w)o ¥, (v) = 7, (wv) .

(3) F~*(dE ® dE *) is invariant under y,(w). (3.11)

We shall not supply any details of the simple proof of the
above well-known statements. Equation (3.11) is most easi-
ly proved by showing that it is true for w = w, and €. Note
that |E, | and |E, |? are components of the tensor product in
Eq. (3.11). Therefore, the following corollary is implied by
Egs. (2.23) and (3.11).

(3.10)
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Corollary: The colliding wave condition k=/=1 is
preserved by y, (w).

y,(w) is our first realization of SL(2,R). We next con-
sider the second realization of SL(2,R) which will be used to
construct a realization of the Geroch group.

C. A realization of SL(2,A) that induces rational linear
transformations of &

Let us start by inspecting the simple transformation
- +iA. (3.12)

& + iA is also a solution of the Ernst equation. Note that
E - E under this transformation.
Next consider

&-&". (3.13)

The reader can easily verify that ' = & ~'is also a solution
of the Ernst equation such that Re &' <0. This is the trans-
Jformation which was applied to the Nutku—-Halil & potential
in paper I in order to construct a new solution. It is the first
transformation, among those explicitly considered so far in
Sec. II1, which actually changes the space time into a new one.
Repeated alternate applications of the transformations
(3.12) and (3.13), with different values of the parameters A,
generate the group of rational linear transformations

&-&" =i(a% +iBY(y€ +i6) !, (3.14)

where a8 — By = 1. It is apparent at this point that much of
what we did in Sec. III B is applicable when E and & are
interchanged. Therefore, we proceed onwards to a formal
development that parallels what we did in Sec. III B.

Definition: For eachwin SL(2,R), let y,(w) denote that
mapping whose domain is = such that

72(W)(E,&)=(E",&"),
where £ " is given by Eq. (3.14) and where

(3.15)

E"(up) = — [p/f"(u,v)] + iw(0,0)

“ [ (1—a*)yi(a0)
] d
e[} aa] T

v (l—uz—bz)xl’,'(u,b)”
db[ . 3.16
+J; f"(u,b)? (3.16)

f"=Re&" and y" =Im &" are given by Eq. (3.14).
We have fixed the constant of integration in £ " by the re-
quirement that

w” (0,0) =« (0,0) .

The reader should compare Eqgs. (3.14) and (3.16) with
Egs. (3.4)-(3.6) and with Eq. (3.7).

We shall find it helpful to use the mnemonic symbols
72(w)E and y,(w)& to stand for the first member £ " and
the second member & ” in the ordered pair (3.15).

The transformations (3.12) and (3.13) are now ex-
pressible as

2(wa) (E, &) = (E,& +iA), (3.17a)
rANEE)=(E",E7"), (3.17b)
which should be compared with Egs. (3.9). Furthermore,
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we have the following theorem and corollary corresponding
to the ones given in Sec. III B.
Theorem: (1) ¥,(w) maps X onto 2 and is one-to-one.
(2) For all w and v in SL(2,R),

Y2 (w) oy, (v) =y, (wr) .
(3)f~Xd¥ od%*)

is invariant under y,(w).

Corollary: The colliding wave condition k=/=1 is
preserved by y,(w).

We now have two realizations of SL(2,R); viz., ¥,(w)
and y,(w). The key idea of Geroch, when expressed in the
language of our SL(2,R) realizations, was to construct a
new group by alternate applications of ¥, (v) and y, (w) with
different choices of » and w in successive transformations.
This creates a nontrivial infinite-dimensional group.

(3.18)
(3.19)

D. The realizations Go(X) and Go(=4) of the Geroch
group

Definition: Let G,(Z) denote the set of all compositions
of the form

}/rm (wm )O o ’OYrI (wl)
for all choices of m>1, the SL(2,R) members w;,...,w,, and
the subscript values r,,7,,...,7,, =1 or 2 (taken in any or-
der).

The following theorem is an immediate consequence of
the ones presented in Secs. III B and III C.

Theorem: G,(2) is a group of one-to-one mappings of >
onto 2.

Definition: Let 2, denote the set of all members of = that
satisfy the colliding wave condition £ =/ =1 as defined by
Egs. (2.23).

Definition: Let G,(Z,) be the set of restrictions to X, of
all members of G,(2).

It follows from the preceding theorem and the corol-
laries in Secs. III B and III C that G,(X,) is a group of one-
to-one mappings of 2, onto X,.

E. An example of the generation of a new colliding wave
solution by employing members of Go(24)

We shall start with the Nutku—Halil solution. The Ernst
potential ENY = E, was given by Eq. (2.34) and &Y is
given by
&o=XY—-2(pY — igX —xY) (pX — igY) !, (3.20)
where x, y, X, Y are defined by Egs. (2.32) and (2.41). We
want to obtain

(Ex&2): =12(6) 0¥, (wy ) oy (w) (Ep, &), (3.21)

where w, and € are defined by Eqgs. (3.8), and w is any
member of SO(2,R), which we parametrize as follows:

cos(v'/2 sin(v'/2
W= ( — Sifl(j/;) cosiv’;Z))) ’ (3:22)
Let
(E5,85):=y1(w)(Ep, &) . (3.23)
Then Eqgs. (3.4), (3.7), and (3.22) yield
Ei=y(wE,=(1—-£)YA+£)71, (3.24)
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where

=0 —ig)§
and

pi=cosv, ¢:=sinv'. (3.25)
The corresponding & potential is

o =n(w)&,

=XY -2[pY —igX — (p'x — ig'y)Y ]
XX —igY)~!. (3.26)

We shall comment on the mode of calculation later.

Next, from Eq. (3.17a) we obtain

72(Wa ) (E5,85) = (B, &5 +id), (3.27)

where E | and & are given by Eqs. (3.24)-(3.26). It is easy
to see that y,(w, )E | = E | since adding an imaginary con-
stant to &} does not alter the metric components. That does
not mean, however, that this imaginary constant will not

show up in the metric after further transformations. In fact,
from Egs. (3.17b) and (3.18),

72(€)(EG, & +iA) = (y2(€)E (85 + i) ™)

- (E2:g2) 1) (3'28)

where we have combined (3.24), (3.27), and (3.28) to give
us (E,,%,) as defined by Eq. (3.21). The computation of
E, = y,(€)E is not trivial. The result is

E,=AB', (3.29)
where
B=(p'+iq') — (px +igy), (3.30)

A= —Bp*+2[(p' — 2px + p'x*)Y?
+i(q' — 29 + ¢'y)X?]
+ 2iA[py(x* — 2) + igx(y* — 2) + xy(p’ +ig')]
+ AP +ig' + px + igy) . (3.31)

When A =0, ¢ =0, and p’ = 1, the above result re-
duces to the solution given by Eqgs. (3.7)—(3.9) in paper 1.
When A = 0, the result reduces to the # = 2 solution given
by Eqgs. (2.37)-(2.41) in the present paper.

For A =0, ¢’ =0, and p’ = 1, we computed the results
given above by several means, including direct integration,
asin Eqs. (3.5) and (3.16). However, to obtain the solution
with all parameters, we employed a more powerful and effi-
cient method which involves solving a homogeneous Rie-
mann-Hilbert problem to effect the transformation
(Ep, &) — (E §,%¢). This method will be detailed in a sub-
sequent paper.

From the 4 and B given by Eqgs. (3.30) and (3.31), both
g, and g, can be computed by simple algebraic means with
the aid of equations given by Ernst.'® Also, one can employ
Egs. (3.7) and (3.9) in paper 1.

Of course, g,, can always be algebraically computed
from E by using the definition (2.10) of E.

As regards the computation of g,,,, we shall now see that
there is a striking shortcut that is generally applicable to the
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transformation of a metric induced by ¥, (w) for any w in
SL(2,R).

F. The transformations of g,,, induced by y(w) and
v2(W)

First consider y,(w). Since Eq. (3.11) implies that
|E, |*F ~% and |E, |F ~? are invariant under y,(w), Eqgs.
(2.13) and (2.14) imply that

8w = 8uw > (3.32)

where (E',&') = y,(w) (E,& ). This is to be expected, since
E-y,(w)E is equivalent to an SL(2,R) transformation of
the ignorable coordinates.

Considery,(w). Inthiscase, itis |E, |*f ~2and | &, |>f 2
that are invariant, since & —¥,(w)¥%. Hence, from Egs.
(2.17) and (2.18),

g£2 g:w =g22guv ’
where (E',&') = y,(w) (E,&).

(3.33)

G. Some interesting relations involving y(e) and yz(e)

For the Kasner metrics of index n,

E=E, =p", &=¢,=—p'~". (3.34)
Therefore

vi(€)(E,&,)=(E_,&_,),

72(6)(En’$n)=(E_,,+2,g_,,+2), (3.35)

v2(€)ov,(€)(E,,&,) = (En+2!gn+2) .

The interesting thing about the above relations is that they
essentially carry over to other families of metrics that are
obtained by applying a significant class of Kinnersley—
Chitre transformations to the Kasner metrics.

For example, consider the family given by Egs. (2.37)-
(2.41). From Egs. (2.39) and (2.40),

T(—nvy +7)=T(nvy'),

I'(nyvV +2m) =T(nvy'), (3.36)
Tnyv+ayv +m)= —T(nvy).
Therefore, from Egs. (2.37) and (2.38),
Y (ENE(nvV'), & (nv'))
=(E(—nv+7Vv),E(—nyv+mv')), (3.37a)
V2 (ENEnvV),& (nvy'))
=E(—-n+2vvV +7),E(—n+2yvV + 1)),
(3.37b)
Y2(€)o¥ (ENE(n,v,v'), & (')
=(E(n+2v¥'),& (n+2,v')). (3.37¢)

The general theory behind these remarkable results will be
given in a subsequent paper.

IV. AUGMENTATION OF THE GEROCH GROUP BY THE
KRAMER-NEUGEBAUER INVOLUTION

A. The augmented Geroch group realization G,(X)

The set G,(2) does not contain two obvious idempotent
mappings of 2 onto = which we shall denote by ¥, and yxy
and which are defined by
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Yoo (B, & )= (EX&Y),

Yun(E,&):=(—&* —E*).
Note that (¥..)> = (yxn )’ is the identity mapping on X,
and

Yeeo¥xn (EE) = (- &, - E).

Here yxy will be called the Kramer—Neugebauer involution
and it is central to the discussion in Sec. IV.

Definition: G,(X) will denote the group of all composi-
tions

fmo.“qfl’

for all m>1, such that f,,..., f,, are any members of
GO(Z) U{ycc’yKN} .

Since Egs. (2.2) imply that the colliding wave condition
k =1=1 is preserved by both y.. and yxy, We obtain the
following theorem.

Theorem: ¥, and yx, map X, onto £;;i.e., G,(Z,) isa
group of one-to-one mappings X, onto X,.

4.1)

B. The transformation of g, induced by v,

A relation we shall now derive supplies the new g, re-
sulting from a Kramer-Neugebauer involution in terms of
theold g,,and g, . Thus it resembles Eq. (3.33), which does
the same for the transformation y,(w).

We start with Egs. (2.21), from which we derive

L[l_plg“|2]=_l_[1_£|_E‘f'_2] _u_F
u u P ’

47 4F? F
(4.2)
From Egs. (2.17), (2.18), and (4.2) we obtain
(822 )z 8w = (gzz)llzguu ’ (4.3)

where (E',&') = yxn (E,%). However, g5, =p(8,) "
Therefore

8 =P80 80 »
which is our final result.

(44)

C. The effects of v,,, on the Kasner index n

From the expressions for E, and &, given by Eqgs.
(3.34) for the Kasner family and from Egs. (3.35),

YKN(En’gn) = (E_.n+19$_n+1) ’
YnoV1(€)(E, &) = (B, 1,&, 1) .

This effect on # carries over to other families which are ob-
tained from the Kasner one by Kinnersley—Chitre transfor-
mations. As an example, for the family given by Eqgs. (2.37)-
(2.41), with the aid of Egs. (3.36) and (3.37) one finds

YKN (E(n,v,v'),f(n,v,v'))
=E(—n+ 1y +m),E(—n+ lyvv + 7)),

4.5)

Yn oY1 (ENE(nvy'), & (n,v,')) (4.6)
=(E(n+ 1v¥),&(n + 1L,v,v')).

Note that, from Eq. (3.37c¢),
72(€)o¥1(€) = [yxno1(€)]?. 4.7)

The generalization of the above relations for arbitrary Kin-
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nersley—Chitre transformations will be proven in a subse-
quent paper.
D. A new n=3 solution

We shall now apply the transformation yxy o7,(€) to
the n = 2 solution of Egs. (3.28)-(3.31). We first compute

7’1(5)(E2yg2) = (E 2 ',1’1(6)32) , (4.8)
where E, was given explicitly by Eqgs. (3.29)-(3.31), and
&, = (&L +iN) ", (4.9)

where & was given explicitly by Eq. (3.26). The result for
¥1(€)& ,, i.e., for the second member of the right-hand side
of Eq. (4.8), was obtained from the solution of a homogen-
eous Riemann—Hilbert problem and is given by

ri(€)&,
= —42% —p> + (4 —idp)(p —iD)
+AB ~{[2(p —iA)}(pY + igX + p'xY + ig'yX)
+ 82p(p — iA) (P'yX + igx ) 1 (pX + igY) ™!
—42% — 4(p — iA)?}, (4.10)

where B and A4 are given explicitly by Egs. (3.30) and
(3.31), and

P+g=p?+q*=1.
Next we apply yxn to obtain

(E;,&3): = yxn oV (€) (E,E ), (4.11)
where

E,= — [7,(e)&,]*, (4.12)

3= —[4B']*; (4.13)

and ¥,(€) &, is given by Eq.(4.10), while 4 and B are given
by Egs. (3.31) and (3.30).

V. FUTURE DEVELOPMENTS

Even when other more elementary methods suffice in
principle, we have often found it convenient to solve a homo-
geneous Hilbert problem'* (HHP) instead. In the next pa-
per of this series we shall present the formulation of the HHP
that we have utilized in deriving new colliding wave solu-
tions. In particular, we shall provide a detailed derivation of
our three-parameter generalization of the Ferrari-Ibafiez~
Bruni two-parameter family of solutions. The HHP is cer-
tainly an important piece of artillery to have in one’s arsenal
as one attempts to enlarge further the family of known col-
liding wave solutions of the Einstein equations.
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The definition and some general properties of the generalized Weyl correspondence between
stochastic processes and operator-valued real functions on a Hilbert space plus a trace class
operator are given. The relation between the derivatives of an operator-valued function and the
derivative of the corresponding stochastic process are studied. When the operator-valued
function is the position (or momentum) in the Heisenberg picture, a condition for the
positivity of the joint distribution functions of the corresponding process is given, provided that
the evolution Hamiltonian be quadratic in the position and momentum. Finally, the case of an
arbitrary Hamiltonian evolution for the position operator is studied and the two-dimensional
density functions of the process is related to the Wigner function associated to some state g,
and a necessary condition for the positivity of the densities is given.

I. INTRODUCTION

The idea of a generalized Weyl correspondence (GWC)
has already been presented in previous papers.'~ This corre-
spondence shows a relation between random variables and
linear operators on a separable Hilbert space 5% as well as
between signed measures on a certain sample space and trace
class operators on 57°. We here recall its definition.

Let (X; ) ; be aset of real random variables and (X; ) ,
a set of linear operators on 5#°, where J is an arbitrary index
set. If there exists a trace class operator g such that for any
finite set of indices {j,...,j, } CJ and any real numbers

@y e esj,s
Elexp[i(e, X, + +a,x,)]}

=tr{pexp[ila; %, +  +a,%)]} (1)
holds, then we say that there exists a GWC between the
random variables and the operators. Here E{- - -} means ex-
pectation value. Each of the random variables acts on a sam-
ple space 2 which is endowed with a finite measure such that
1 (Q) = 1. Here u is not necessarily non-negative [i.e., there
may exist a measurable set ACQ such that u(4) <0].
Usually, Q will be the Cartesian product of the ranges of the
variables (X)), , and X; the projection of (2 on its jth coordi-
nate, although this construction of () is not always neces-
sary.

References 1-3 deal with the general properties of this
GWC as well as with particular examples. On the other
hand, it is a generalization of the classical Weyl correspon-
dence (CWC) which assigns a Hermitian operator to a real
function of the coordinates of the position @ and the momen-
tum P in phase space.*® Here @ and P have the role of the
random variables X;. The CWC also assigns a finite measure
on the phase space to any quantum state (positive operator
on 57 with trace 1). As in the general case, this measure is
not non-negative in general. Here, the index set J contains

2961 J. Math. Phys. 28 (12), December 1987

0022-2488/87/122961-12$02.50

2N elements, where N is the dimension of the configuration
space.

A stochastic process is a set of random variables.”
Usually, this set is indexed by an interval J of the real line
which eventually is the whole real line R. For any t€ J, we
have a random variable we call X (¢). Here X (r) is a measur-
able mapping from a certain sample space {2 into R.

To adapt the original definition of GWC to this particu-
lar case is now simple. Let % (¢) be a set of linear operators on
7, where t€ J. Here X(¢) and X(¢) are related through a
GWC if there exists a trace operator p on # and a signed
measure i on £ such that

E{exp[ilaX(t) + -+ + a,X(1,))]}
=J- exp[ila,X(t) + - +a,X(2,))]du
0

=tr{pexp[ilak(t,) + - +a,%(,))]} (2)

for any finite set of times {z,,...,/,} and whatever real
numbers of a,,...,a, , where n is also arbitrary.

We define a stochastic vector as an N-dimensional vec-
tor whose components are stochastic processes. For any t€ J,
(X,(2),....Xn (1)) is a measurable mapping from  onto a
subset of RV,

A stochastic field is a further generalization of a stochas-
tic process. Let 4 be any set. A stochastic field is a set of
stochastic proceses indexed by 4. In particular, a stochastic
vector is a stochastic field with 4 = {1,2,....N} and a sto-
chastic process is also a stochastic field with 4 = {¢} (or any
set containing one element only). The denomination of a
stochastic field is properly used when 4 C R *. Then the map-
ping a— X (t,a) assigns a stochastic processs to any point of
the region 4 which is the physical space in which the phe-
nomenon described by the stochastic field X(z,a), aed, oc-
curs.

For a stochastic process X(7), we define the finite-di-
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mensional distribution function as
F(xl’tl) = ,u'{X(tl)<x1}’

: (3)
F(xyty; - x,.t,) = p{X (1) <xy5..5X(8,)<x, },
for all ¢,,¢,,...,t, in J, and the joint densities as
P(xhtl) — M s
ox,
4)

A"F(x 5ty 5t,,t,)
dx,-dx, '

The partial derivatives in (4) should be understood in
the sense of the derivatives of distributions, which coincides
with the usual sense of the derivative when the finite-dimen-
sional distribution functions are absolutely continuous. If u
is a positive probability measure all the distribution functions
are non-negative.

The finite-dimensional distribution functions do not fix
the process X(¢) uniquely. There are many examples of two
different stochastic processes having the same finite-dimen-
sional distribution functions.

Let us go back to Eq. (2). It can be written as

PXptesX,,t,) =

j expli(a,x, + - +a,x,)}
N

Xp(xl)tl;"';xn’tn )dxl. .‘dxn
= tr{ p exp[ila,%(t,) + -+ + @, 2(1,))]1} (3)
whence

PXLEesX 0t )

1 ,
= (21r)"J "exp{ —i(aX, 4+ Fa,x,)}

xtr{p exp[ila,2(t)) + - + a,%(2,))]}
Xda, -da,. 6)
Equation (6) is a consequence of the properties of the
Fourier transform, and gives us the following information:
Since the finite-dimensional distribution functions and
hence their corresponding densities do not fix a process
uniquely, in general we shall have more than one process
associated to the set of operators X(¢) and p througha GWC.
If we have a stochastic vector, the measure u on 2 deter-
mines the following distribution functions:
F(X 115X 15k 13e03X 15509 X s ols )
= p{X, (1) <Xy Xy (1) <Xy 505X, (1)
Xpgyeens Xy () <Xy} N
and the corresponding densities:
PX e X 1 53X 153X s o5 )
B IV NF(x1 15Xy )
O, 0%y ’

The definition of GWC can also be used to associate
stochastic vectors to operator-valued real functions with N
components, as for example the position or momentum op-
erators on L2(R") in the Heisenberg picture. Let X(1)
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= (X,(£),-..Xy(t)) be a stochastic vector and X(f)
= (%,(2),...Xy (¢)) be an N-dimensional operator-valued
real function, where ¢ runs over an interval J of the real line.
Here X(z) and %(¢) are related through the GWC if there
exists a signed measure z on ) with £(0) = 1 and a trace
class operator p on 5 such that
E{exp[i(auX](tl) + - ay, X, (8)

4o a X () + o+ e Xy (2))]}

=J expi(a; Xy + -+ ani Xy
R

N Xs

+"'+a15x15+"'+a1vsx1vs)]y (8)
J-p(x“,...,x,v,,tl;...;x,s,...,xNS,ts)dx,,---des

=tr{ﬁ CXp[l'(all)?l(tl) + - +a1v1-£1v(t1)
+ & (1) + o Fanka ()]} (9

for any {t,,...,t,} CJ and any real numbers a,,...,2y,.
From (9), it follows that

1 6. TSI JUPIN SRS ST S

1
T stda“mda”s

xexp{ —i(a; %1, + = + ayeXy,)

+tr{p exp[ila, X, (¢) + - +ayXy(t N1}
(10)
The present paper contains three main sections. In Sec.
II, we study the relation between the derivative of the pro-
cess and the derivative of the operator-valued function X(¢).
Section III starts with a one-dimensional problem. Here,
X(¢) is the position operator of a particle on the Heisenberg
picture. The time evolution of %(¢) is controlled by a qua-
dratic time independent Hamiltonian. In this case, the den-
sity function of each of the random variables in the process
X (2) can be interpreted as the classical probability density of
finding the particle in the configuration space at the time ¢,
provided that all the joint densities of the process are posi-
tive. We give a sufficient condition for this positivity: The
Wigner function of p must be positive at £ = 0. This result is
easily generalized to the case of N dimensions. In Sec. IV, we
discuss a necessary condition for the positivity of z when p is
a pure state and we are in the situation described in Sec. I1.

Il. GENERAL CONSIDERATIONS

We start with the assumption of the existence of a GWC
for a stochastic process X(#) or a stochastic vector
(X,(8)5...,.X,, (). This means that Eqgs. (2) and (9) make
sense and, in particular, their right-hand sides are well de-
fined, which in (2) happens if explifa,%(¢;) + -

+ a,%(¢,))} is a bounded operator for all the ; and all the
values of the time parameter. There are two interesting situa-
tions in which this occurs: (1) all the () are bounded for
all reJ, and (2) all the operators of the form
ak(t) + - +a,%(t,) are essentially self-adjoint on a
common domain dense in 5. This occurs, in particular,
when X(2) = A(£)%(0) + g(£)p(0) + n(¢)I, where x(0)
and p(0) are, respectively, the position and momentum op-
erators in one dimension, 7 is the identity operator, and A (¢),
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g(2), and 7(¢) are real functions. This case and its general-
izations to N dimensions is studied in this paper.

In order to simplify our notation, we mainly deal here
with stochastic processes X(2). However, most of our results
are trivially extensible to stochastic vectors.

We can look at the random variable X (,) for each t,€ J
in two ways. First, X(#,) can be properly considered as
something which “transports” measure from € to R. Under
this point of view, what really matters of X(#;) is its prob-
ability distribution and its joint distributions with the other
random variables in the process. The other possibility is to
look at X(¢,) as a measurable function from ) into R. Both
points of view are quite different, since the first one depends
critically on the measure 2 on () while the second is indepen-
dent on . To visualize the difference, one can imagine a
situation in which X(¢) = X(0) VreJ in measure (this
means that u{w/[X(£)](w)#[X(0)])éw) for some
te J} = 0if u is positive; if u is not positive and pt = 1, —
is the Jordan decomposition of u, we have to require that
ww/[X(8))(w) #[X(0)] (w), for some te J} =0 with
i = 1,2) and the measurable functions are all different. Such
a process can be easily constructed.®

Henceforth, a stochastic process will be a set of measur-
able functions X (¢) on a sample space (); where ¢ belongs to
an open interval J of the real line; plus a bounded signed
measure g on {2 with () = 1 (a signed measure is bound-
edify = p, — u,, where £, and i, are positive and finite). If
U is a probability measure, we say that the process is verita-
ble. All the finite-dimensional distribution functions and
their corresponding densities are well defined provided the
boundedness of . A process is veritable if and only if all the
densities are positive (a.e. with respect to the Lebesgue mea-
sure).

The stochastic relation among the X(¢) can appear in
many other ways. An interesting case arises when the identi-
ty X(#) =h()X,+ -+ h, ()X, holds in measure,
where #1,(¢),...,h, () are real functions onJ and X,,....X, are
n random variables on 2. The interest of this kind of process
will be evident later.

For any t€ J, the GWC maps X (¢), considered as a mea-
surable function on ), into X(¢), provided that certain con-
ditions are satisfied.!”> Assume now that X(z) and %(¢) ad-
mit a derivative with respect to ¢ in some sense. Are these
derivatives related through a GWC? If the derivative for
X (¢) exists at some point, does it for X(¢) and vice versa? Our
next objective is to give an answer to these questions. In
order to make our procedures and results comprehensible to
a wide audience, we start with the basic definitions.

ill. DEFINITIONS

(1) Let X(¢) be a veritable stochastic process. If all the
second moments existed, we define a norm for the random
variables in the process as

172
X ={E{X*()}}"* = [f Xz(t)d,u] . (1)
[

If X(t) were not veritable, we still could define a norm
for each of the random variables X (¢), provided that their
second moments existed with respect to the measures u, and
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o wherey = ) — p,is the Jordan decomposition of . The
square of this norm is given by

| X(H])? =f X*(t)du, +f X2(t)du, (12)
(4] 93
and the second moment of X () with respect to u is
E{X?()} =f X*(t)du, — f X (t)du,
Q £9)
=f X*()d. (13)
Q

In the two cases considered here, we have that

E{X()X(t')} < o forany ,¢'e J and
2
Ex2(n} = — L E{e=ro}| _,. (14)
da?

(2) X(1) is continuous at ¢ = ¢, if | X(¢) — X(2,)|| -0
when ¢—¢,. Here X(¢) is continuous if it is so at any re J.

3 X admits a derivative at ¢, if there exists a ran-
dom variable X(t,) with finite second moment such that

lim(| (X (2, +5) — X(16)1/s — X (1) [| = 0.

If X(z) qdmits a derivative at any t€ J, we have a stochastic
process X(¢) that we call the derivative of X(¢).
Definitions (2) and (3) are independent of whether the
process is veritable or not.
(4) Let Y(z,5) be a collection of stochastic processes
indexed by a continuous real index s. A process X(¢) is the
limit of Y(#,s) when s goes to zero if

lim [ ¥(2,5) — X (1) = 0. (15)

If all the Y(z,s) are veritable, its limit X (¢) is also verita-
ble. In this case, the joint characteristic function

E{exp({a,Y(1,,8) + - + @, Y(2,,5)}H}

=@yt (al"":an) (16)
converges pointwise to the characteristic function
E{exp(i{a,X(2,) + - + a, X(1,)})}. an

This result is also true even if the ¥(z,5) were not veritable.

(5) Now assume that all the operators in the family % (7)
are defined in a common domain & dense in the Hilbert
space 5. Here %(t) admits a strong derivative or simply a
derivative at #,c Jif there exists a linear mapping %(,) from
& to 57 such that

lim [[{[2( +9) — 2(1)1/s = 2(p)}p | =0 (18)

Ve . In (18) we have used the standard Hilbert space
norm. If X(¢) admits a derivative at any 7€ J, we say that it is
derivable.

Wher} all the X(¢) are bounded and there is a bounded
operator X(,) such that in the norm operator sense

Lml[[2(2 + 5) ~ £(46)1/5 — 2(2o) || = 0, (19)
we say that £(z,) is the uniform derivative of x(t) at t,. The
existence of the uniform derivative implies that of the deriva-
tive but the converse is not true.
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Definitions (1)—(5) are standard and appear in the text-
books.* 12

Our next goal is to prove that, under certain conditions,
if X(¢) and X(¢) are related through a GWC so are their
derivatives. Henceforth, we shall assume that forany f€ J the
operators X(¢) and X(¢) and their linear combinations are

& a common core for them. If 4,, -4 for any peZ, then
"' — e, Ype ¥’ and VieR.

The proof can be seen in Ref. 12.

Corollary I: Assume that Vge 4,

{a 2t +5) + - +a,%(, +5)}p

essentia.IIy self-adjoint on a common domain Z densein 7. ~{a () + - +a,2()}e, (20)
In this case exp{t(a X))+ +a,%(2,))} and
explila,%(t,) + -+ + a,%(z,))} are well defined unitary  wherever s—0 YpeZ. Then
operato'rs on 7 for any real values of a,...,a,, .jmd a}rbltrary expli{la,2(t, +5) + a,3(t, + ) He
ty,..t, in J. For our purpose, we need to begin with some .. .
results in functional analysis. —exp(i{a(2) + - + a,2(,) Ne (21)
TheoremI: Let {4, } .y, 4 be self-adjoint operatorsand ~ Ve’ and any a,,...,a, in R.
[}
Corollary II:
. . .i(tl-l'-s)—'.i(tl) i(tn +s)_2(tn) . A A
lmé expl i{ o, . + o +a, @ =expli{a,x(t;)) + - +a,x(t,) He. (22)
5= s
Corollary III: Assume that p is a trace class normal operator (in particular 5 can be positive). Then
Nt _% (1, +5) —%(1,) N ;
lmgtf[/’ exp (z[a, [W@] + +ta, [——s—-— ])] =tr{pexp({ak(t) + -+ + @, 2N} (23)

Proof: Since p is normal, the following spectral decom-
position works'*:

o0

Z k%) (W,

(24)

where py, = A, ¥y, -1 |Ak] < 0, and ||#f; || = 1. Assume
that all the A, but a finite number are zero. Then, Corollary
III follows from Corollary II trivially. The proof in the gen-
eral case is a little more involved. In order to simplify the
notation, we shall here demonstrate (23) for n = 1. The case
of n# 1 does not require more sophistication.

Therefore consider

and used p(s) = [X(¢ +5) — x(2)]/s. Thus
tr{ pe >} = i A (e 1€ )
k=1
= 2 S, (26)
=1
[fi ()] = |Ai| [{t | €| )|
<|Ai| 9l e - @27
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Since J(s) is self-adjoint and « is a real number, e is
unitary. Thus | £, (s)|<|4,| and

r{pe=H< 3 [A®I< S Wil < 0. (28)
k=1 k=1

Hence the Weierstrass M criterion' says that the series
(26) converges uniformly in s. Since

(Y [ ) = (Wl |3,)

exists for any k£ = 1,2,..., the limit of the series exists for s— 0
and is tr{ 5 exp{iak(7)}}.

Theorem II: Assume the following.

(a) X(t) is a stochastic process on {2 and u is a bounded
signed measure on ).

(b) The derivative X(¢) exists at each te J.

(c) p is a normal trace class operator on 7.

(d) The operators X(¢) and their real linear combina-
tions are e.s.a. on a common domain D dense in 7.

(e) The derivative X(¢) exists for any tc J and any real
linear combination of these operators is e.s.a. on 57

(f) There existsa GWC relatlng X (€] tox(t)andpu top

Then, the GWC relates X(¢) and %(¢) with & and p
being the same.

Proof: After Corollary III, the following limit is well
defined:
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- x(t, +5) —x(t,)
lim tr 5 expi[a, x(t +9) = x(4) + - +a, . ]
s—0 S

=te{pexp {i[ag(t) + - +a,%(,)]}}

_ X -X
=limE[exp[il[X(t1+s) X(t1)+__.+an (t, +5) (t,.)]”’ (29)

5—0 s N

the derivative of X(#) exists by hypothesis. Thus after the comments in Definition 4, this limit is
(29) = E [exp[ila,X(t;) + - + a, X(t,))]]- (30)

The next question we want to answer is if the existence of 2(¢) says something about the existence of the derivative of
X (2). In the next theorem we do not assume the existence of the moments of X(¢).
Theorem III: Assumptions (c)—(f) in Theorem II are also valid here, but X(?) is veritable. Then the functions

_ Xt — X
limE[exp[i(a, X +9) =Xt ..y, X +s)s (”))” = @rn (@) (31)
s-0 S

are the characteristic functions of a certain process.
Proof: Since p is a normal operator, the limit (31) equals to

tr{ p explil@,2(2)) + - + @, 2(t,))}} = i AW lexplilax(t) + -+ + @, x(t,))] %), (32)
k=1

where the A, are the eigenvalues of g and the ¢, their corresponding eigenvectors. If we prove that (32) is continuous on
a = (a;,...,a, ), Theorem III would be proved.

The series in (32) converges uniformly on @. To show this assertion, we use the Weierstrass M criterion as we did it in the
proof of Corollary III. Furthermore, we know after the Stone theorem that

(W lexp{i{ak(t) + -+ + @, 2B )

is continuous on @. Therefore the series in (32) is continuous on @, since it is the limit of a sequence of continuous functions on
a converging uniformly on &.

This result cannot be extended to the case in which g is nonpositive. In this case the limit (31) could not be the difference
between two characteristic functions.

Obviously, if X (¢) is derivable, (31) are the joint characteristic functions of the derivative. However, we cannot claim that
we have proved the existence of the derivative of X(z).

Its existence requires a further assumption. We start the discussion with four lemmas.

Lemma I: Assume that we are in the conditions of Theorem III and that any real combination of the form
aX(t) + - +a,xt,) +Bx(t) + -+ + B,%(¢,) is self-adjoint. Then the limit

— X, +s5) —X(1,

lim £ [expi{a,X(tl) 1B XA —X@) .y g X +9) — X )” (33)
s~ s s
is well defined and represents the characteristic function of a stochastic vector with two components.

Proof: It is simple to realize that

% —% x(t, +5) —x(¢
lim tr [,aexp i[ ag(t) + 4, F0ED —R) | g X 49) Z HE) ”
50 A s
=tr {p exp ila,&(t,) +BA(1) + -+ + @, %(t,) +B,%(1,))} (34)

is continuous at zero function of (@, Bys..-s@,s B, ). .

If X(¢) admits a derivative, this stochastic vector is (X(#),X(¢)).

Remark: If (X (t),7(t)) is some stochastic vector having (33) as joint characteristic functions, we can write
E{exp(i{a, X (t) + By (1) + -+ + @, X(2,) + B,7(1,) N}

=te{pexp ak(t) +BE () + - +a,k(t,) +B.2(,)}} (35)
If for any te J, X(t), and 7 (¢) admitted moments of second order, we would have
_ 2
(N E[(M—ﬂ(t)) ], (36)
s
2 _ _ 2
=) | BIEF CE R I
a=0
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Lemma II: Let A be a self-adjoint operator and p a trace
class normal operator with p = Z7_ A, ¢, ) (¢, | with ¢,
€ (A), the domain of 4. If tr{ 5|4 |"} < oo,

iaA}la=O

Proof: See Appendix A.
Lemma III: Let p be as in Lemma II, with ¢, in the
domains of two self-adjoint operator A and B and By,

2" e {pe — () tr{pd ™). (38)
da"

eZ(A). If tr{pd*}<w and tr{pB?}<w, then
tr{ pAB} < .

Proof: See Appendix B.
Lemma IV: Under the conditions in Lemma I, if
tr{ p%%(2)} and tr{ p2*(¢) } are both finite and p is a normal

trace class operator, then
. o ] 2
tr[ﬁ[(x(t+S) L10)) _k(t)] ]
5

for any te J and s in a neighborhood of zero.

Proof: It is obvious after Lemmas IT and III.

Theorem IV: We are under the conditions of Theorem
I1I and the two following hypothesis: (a) X(¢) and 7(¢) (see
remark after Lemma I) have finite second moments Ve J;
and (b) either

ﬁ=élak|¢k><¢k|

with NV finite and the ¢, belong to proper domains so that
Lemmas II and III can be used, or the operators X(¢) and
%(¢) are bounded and the derivative exists in the norm oper-
ator sense.

Then, X(¢) = m(2).

Proof: A proper choice of the constants in (35) yields

E {exp(ta[X(t+s) X0 _ (t)])}

=tr {f) exp (ia[w —f(t)D] . (40)
s

If we take second derivatives on a at the point a =0, we
have

E [(X(t+s) —X() ﬂ_(t))z}
S
=tr [,‘) [-————’A‘(t+s) —*(®) —)"é(t)r] i
S

Hypothesis (b) implies that the lhs of (41) has a limit when
s—0 and that this limit is zero. Since the derivative of a pro-
cess is unique, Theorem IV follows.

Theorem V: We are under the conditions of Theorem
IV, but we ignore that 7(¢) have finite second moments.

Then, the derivative of X(¢) exists.

Proof: A sufficient condition for the existence of the de-
rivative is the existence of the limit*°

(39)

(41)

fim - {E [X(¢ + 9)X(t' + )] — E [X(t + 9)X(t")]

5,7—0 ST
—E[X(OX(@'+ D]+ E[X()X(")]1}

[X(t+s) - X)) X(t'+X)—X(t") } '
s T

= lim £

5,70

(42)
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The existence of a GWC between X (¢) and X(¢) implies
that

E{explia{a,X(t;) + a,X(1,) W}

= tr{ p explia{a,X(t,) + a,%(,)})}, (43)

where a, a;, and a, are arbitrary real numbers and ¢,, ¢,
belong to J.
Deriving twice with respect to « yields

E{(a,X(t;) + a,X(8,)/}
=alE(X%(t))) + 2a,a,E (X (1,)X(1,))
+ a3 E(X(1,))
=tr { pla,k(t;) + a2(2,))’}
=ajtr {ﬁ(i(tl))z} +aa;
xtr { pE()%(1) + %(1)2(2)))}
+ a3 tr { p(X(2,))*}.
The arbitrary character of @, and a, gives
E{X(1)X(1)} =y tr [B{R(1DE(8,) + 2(1)%(1)}].

(44)

(45)
From (45), one obtains

{ A[[:‘c(t+s) —x(8)
p e r——

(42) =4 lim tr
s

5,7—0

X[fc(t'+r)—fc(t’)
T

+ [:‘c(t' +7) —%(t) ][x(t+s) —x(1) ]”
- .
(45")

Under the stated conditions this limit exists and is

yir [p{R(DA(") + 223D} (46)

One may ask whether an operator-valued real function
X(t) can exist fulfilling all the required conditions. We have
already mentioned that if X and p are the position and mo-
mentum operators in one dimension, respectively, and %(¢)

= h()% +g(1)p + 1(1)I, where h(t), g(¢), and 5(¢) are
real functions, any real linear combination of the X(¢#) is
e.s.a. on the Schwartz space S(R).!* Furthermore, if 4(z),
g(#),and 7(¢) arederivable, £(¢) = A(t)% + g(2)p + ()]
and any real linear combination of the £(z) and the £(2) is
e.s.a. on S(R). Moreover, the X(¢) and the derivatives to all
orders (if they existed) leave S(R) invariant.

Remark: We know that the CWC in one dimension as-
signs top a signed measure 2 on the phase space R 2. Here R 2
can naturally be viewed as the Cartesian product of the
ranges of the measurable functions representing, respective-
ly, the position Q and the momentum P of a one-dimensional
classical free particle. Here i represents the quantum state of
the particle given by 5 in the Hilbert space formalism. If u
were positive definite, the quantum mechanical state 5
would be equivalent to the classical statistical state given by
4 on the phase space R 2. The CWC gives the following rela-
tion:
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E{ei(aQ+BP} — L e'aQ +BP)d#

— L e“"”"”’p(q,p)dq dp

= tr{ pe/* + AP}, 47)

The density p(g,p) is called the Wigner function® asso-
ciated to the operator p.

Assume now that X(¢) = h(2)% + g(£)p + n(#)I and
-take Y(2) = h(2)Q +g(¢)P + n(t).#, where .# maps R 2
into 1. Since we know p(g,p), the joint distribution functions
of the Y(¢) can be calculated, provided that u were bounded.
Let X (¢) be any stochastic process having the same distribu-
tion functions as Y(z). The X(¢) and %x(¢) are related
through a GWC.

The proof is based on the idea according to which the
joint distribution functions fix the joint characteristic func-
tions uniquely, if two stochastic processes have the same dis-
tribution functions, they have the same characteristic func-
tions. Hence

E{exp(i{a,X(t,) + -+ + a,X(1,)})}
= E{exp(i{a,[#(1,)Q + g(t)P+ () I ] + -+
+a, [h(1,)Q +g(t)P+7(2,)7 1)}
=tr{ p exp(i{a,[A(t,)% +8(t)p +n(t)I] + -
+ @, [h(t,)% +g(t,)p+ (1,1 11}

= tr{ p exp(i{a,2(#,) + -+ + @, %(2,)}}. (48)

IV. QUADRATIC HAMILTONIANS AND VERITABLE
PROCESSES

This section deals with a particular case. Here X(¢) rep-
resents the position operator in the Heisenberg picture. The
evolution from X(0) to %(#) is given by a time-independent
Hamiltonian H. We assume that H is a quadratic function of
the position and the momentum, i.e., H = ap®+ Bx°

+ 8(px + Gx) + ¥b + X + €. Here p is usually a positive
trace class operator on 77, although its positivity is not nec-
essarily required. The question we want to pose here is the
following: If %(¢) is related to a stochastic process X(¢)
through the GWC, when is this process veritable? The an-
swer obviously depends on g.

If X () were veritable, we could give a physical meaning
to it whenever p is positive. For any ¢e J, the distribution
function of X(#) would give the probability of finding a clas-
sical particle in some region of the configuration space. This
classical particle has at any f€ J the same expectation values
for the position as a quantum particle evolving under the
action of the Hamiltonian H and whose state in the Heisen-
berg picture is given by the positive trace class operator p.

If X(¢) were not veritable or p were not positive, we
could not give a physical meaning to X(z).

The process X (¢) is veritable if and only if its joint den-
sity functions are positive definite. We shall calculate these
joint densities for the case of a quadratic Hamiltonian. We
start with the most simple cases including those of the free
particle and the harmonic oscillator before solving the prob-
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lem in its full generality. We finally find a sufficient condi-
tion for these density functions to be positive.

In the case of N dimensions, the position operator has N
components (%,(¢),....X ()} and the condition for the posi-
tivity of the joint densities is the same as in the one-dimen-
sional case.

A. The one-dimensional case
1. Calculus of p(x,t)

In order to find the densities of the random variables in
the process X(t), we assume that j is posit.ive first asin (2).
Thus we have

p= kz A | ) (Y|
=1
with A, >0, and (2) gives

E{e¥} = J. €p(x,0)dx = tr{ pe™ "}

= 3 Llthe™ D). (49)
k=1
In the Schrodinger representation for states and obser-
vables, i, is a function in L >(R) and %(0) is the multiplica-
tion by the variable x. Furthermore, if we use the Schro-
dinger picture, we have that

(W |60} = f [ (50 2™ di.

— oo

(50)

Hence

f e“p(x,t)dx = i A"J‘
— ™ k=1

3

[¥ (x,8) | %€ dx.

(51)

Since 4, >0 and 27°_ 4, = 1, we can apply the monotonic
convergence theorem so as to find the following result:

j e“p(x,t)dx = f i Aw |t (x,t) |2 dx.
— — o k=1

(52)
Hence

pxD) = 3 Aelth (D2

k=1
Note that this result is independent on the evolution
Hamiltonian H. The case in which p is normal but not posi-
tive is not more involved and yields the same result. How-
ever, p(x,t) is positive if g is positive, as is clear from (53).

(53)

2. Calculus of the joint densities for the free particle

In the present case the Hamiltonian is H = p?/2m and
the position and the momentum operators in the Heisenberg
picture are

X(t) =%(0) +p(0)(¢/m), p(2) =p(0). (54)

To find the joint densities we make use of Eq. (6). Rela-
tions (54) give
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+a, %)}
.o +a" )i
a,t,)ph},

tr{ p expli{a,&(#,) + -+
= tr{ p exp(i{(a, +

+ (I/m)(at, + (55)

where £ = %(0) and p = p(0) for simplicity. If we write

n

a= 3y a, and B= L Y aik, (56)
K=" m =
then
(55) = tr{ p e’lex+ o}, (57)
Therefore, (6) yields
P(Xti5es Xnstn)
- f dat,,..da,
2m)" Jr»
xexp( — i(ax, + - + a,x, ))tr{ pe’e* + AP},
(58)

where 8 contains the dependence on ¢,,...,2,,
To perform the integration in (58), we have to change
variables:

ax, + - +a,x,
=aA+BB+a;C5+ - +a,C,
=ad+ - +a,d+ (at,/m)B+ -

+ (a,t,/m)B+a,C;+ - +«,C,. (59)

Since a,,...,a, are arbitrary real numbers, we obtain the
following equations: |

1
L iseeniXosl dp,,....dR3, exp( — i(B,S, +
P(XptysiX ) = )" |t2—t |J‘ Brs--,dB, exp( — i(B,S, +
1
(21r)2 |t2—t [

A+t B/m=x,
A+ t,B/m=x,,

A+ tB/m+Cy=x,, (60)
A+t,B/m+C, =x,,

from which we find the values of 4, B, and C; :
A=x,—t,{(x, —x))/(t, — 1)) ],
B=m[(xz—x1)/(t2—t1)]y (61)

Co=x,—x,— (t, — 1)
X[(x,—x)/(t,—1,)], k>2.

Here B is the mean value of the momentum of a classical
free particle with mass m moving from x, to x, in a time
interval ¢, — ¢, and 4 and C, represent positions of this
particle.

We relabel the variables as follows:

a =,31, B=ﬁ2’ as; =B3’ ey @y =ﬁn;

A=S,, B=S, C=8, ., C,=8§,.

In order to write the integral in (58) in terms of these
new variables, we first need to find the Jacobian correspond-
ing to the change of variables (62). The inverse of this Jaco-
bian is

(62)

1 1 1 1
t/m t,/m t;/m t,/m
0 0 1 0 | =—1t)m.
0 0 0 1
(63)
Hence

 +B,S, )l p expli(B,% + BP))}

f dB, dB, exp( — i(BS, + ByS)trl p expli(Bis + Bp))}

____f dﬁse—WJS;X...X_f dﬂn e“iBnS,.
_ 27 J -

1
(2';7')2 |t2 —1|
where

W, (S51,5:,0) = deﬂl dB, exp( — i(B,S, + B5,52))

xtr{ p expli(B,% + B.D))} (65)

is the Wigner function associated to the state p.

From (64) and (65) we conclude that the process X(¢)
is veritable if and only if the following propositions are ful-
filled:

(1) the Wigner function for p is positive at t =0, and
(2) the sum in (53) is positive.

This happens in particular if  is a Gaussian pure state.
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— L W,(5,5,0) 1'[ 8(S),

(64)
r
3. The case of the harmonic oscillator
Here H = p*/2m + (mw?/2)%* and
X(t) = X(0)cos wt + p(0) (sin wt)/mw, (66)

B(t) = — x(0)ymw sin wt + p(0)cos wt.

The procedures to find p(x,,¢,;...;x,,,2, ) are always the
same. After a more or less lengthy calculation, we find
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P (Xt Xnsty)

1 muw n
_— 6 S W. S ,0 ,
2m)? Jsin[w(t, — 1;)]] kI;[3 (Si) W, (51,5,,0)

(67)

which is well defined provided that w(z, — ¢,) # 7k with k
integer and also that the S; be well defined. We see again
that a sufficient condition for X (¢) to be veritable is the posi-
tivity of the Wigner function associated to g at ¢ = 0. Here,
the S; have the following form:

tan(wt,) }
)

—_ % [
! cos(wt,) |tan(wt,) — tan(wt,

X { tan(wt, ) }
cos(wt,) | tan(wt,) — tan(wt,) ’
_ mw [ x  x ]
2 tan(wt,) — tan(wt,) lcos(wtz) cos(wt,) ’
sin(wt, ) cos(wty) }
S, = — tan(wt.
=Xt [cos(wtl) cos(wt;) n(wt)

In this situation we arrive at

1 1

P(xit;.ix,,t,) =

where

[x, —h(t;)]1g(t,) — [x, — h(2,)]g(t,)

S, =
g(8,)f(t,) — g(t.)f(¢))

S, = [x, — h()1AL) — [x, — R()1/()
? g(t)f() — g)A(t)

b

1
tan(wt,) — tan(wt,)

[cos(wtk ) sin(wt, )
x, {————— tan(wt;) — ——
cos(wt,) cos(wt,)
L k2. (68)

tan(wt,) — tan(wt,)
If the Hamiltonian was of the form H =p*> —%? or
H = p? + a%, we would obtain a similar result. Thus we
could conjecture that if H were any quadratic Hamiltonian
we would arrive at the same conclusion. This conjecture is
true and we shall prove it in the following two subsections.

4. The general quadratic Hamiltonian in one dimension

Assume that H = ap® + B> + y(RD + px) + 6% + np
+ €. This Hamiltonian gives us a simple behavior for % (z).
After having solved the equations of motion, we obtain

X(1) =f(1)x(0) + g(1)B(0) + h(1)1, (69)

where f(¢), g(¢), and h(¢) are real functions on ¢, and I is the
identity on 7.

T (S W, (5,5,0), (70)
(2m)? |g()f(t)) — g(8,)f(1,)] kI=13 KRR

(71)

S, =x, —h(t,) —f1,) {[xz —h(5)1g(4) — [x, _h(tl)]g(tZ)} —g(t) { [x, —A(t) 1f(2,) — [x, — A(8;) 1£(¢) ] )

g(1)f(1) — g()f(1y)

Equation (70) leads to the same conclusion: if  is positive
and g(2,)f(t,) #g(t,)f(¢,), the finite-dimensional distribu-
tion functions are positive if and only if the Wigner function
for p is positive at t = 0 (n>2).

B. The N-dimensional case

Here we want to obtain the density given by formula
(10). First, we have to find a new expression for the trace,

tr{ﬁ exp{l'(a”fl(tl) + +aN_\-kN(ts))}}’ (72)
for which we need to write X, (¢) as a function of the coordi-
nates of the position (%,(0),...,%, (0)) and the momentum
(ﬁl(o))-"’ﬁn (0)) att = O'

The transition from X(0) to X(¢) is due to a dynamics
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g(t)f(1,) — g(5)f(1y)

given by a quadratic Hamiltonian whichis H = u'Bu + C'u
+ D, where

(0

Xn(0)
Pi(t)
pn(t)
Here Bisasymmetric 2N X 2N real matrix, Cisa2N X 1real

matrix, and D is a real function. The equations of the motion
are (fi=1)

B () = [Z(H), b)) =[pe(),H].  (73)
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Equations (73) yield the following linear system:

x,(8)

Xy (1)

74
pi(8) 9

Here M is a 2N X 2N real matrix and T'is a 2N X 1 real ma-
trix. The system in (74) can be easily integrated. Its solu-
tions are of the form )

[ 1€ TG JUPIN SIS SPNG JVRN ) |
/]

=—Jdr1"'drN, exp(—i(r1q1 + - +rquNx))

(Zﬂ)NXS

N
20 =Y {fu(ORA(0) +gu (B (OO} + A ()]

k=1
(75)
and (72) becomes
tr{ p exp(i{y,2,(0) + -+ + ¥y&x (0) + 6,5,(0)
+ 0+ 8xPy (0) 4+ £1D)), (76)

where 7,,...,¥x, 8;,...,0y, depend on ¢,,....t; and a,;,...,a ;.
This dependence is given by a suitable change of variables
transforming (10) into the following formula for the joint
densities:

X tr{ p exp(i{r;%,(0) + -+ + ry2y (0) + ry 1 51(0) + =+ + ryn P (0) + ron, 1 I3}

__W] e o _
= (2,”.)21\'6(1 —qiN+1 )k=§\f+2 5(9k)Wﬁ (198 4 15-39n9n + §30),
ri=v, i=1L.,N, rn=6_y k=N+1..2N, Fone1 =&, (77)
!

where
W,‘; (qudn 4 1598 9n + 530)
= f dys....dyydb,,....dby

Xexp{ —i(y1g; + *** + Snq2n))
xtr{ p exp(i{y,%,(0) + - +6xpn (OOH}  (78)

is the N-dimensional Wigner function at# = 0. Here |J | isthe
Jacobian of the change of the variables. It depends on ¢,,...,Z,
and on the Hamiltonian H as well as the g, .

A detailed calculation of the g, is not necessary to con-
clude that, after (77), the joint densities are positive if and
only if the N-dimensional Wigner function is positive at
t=0.

C. Joint densities in phase space

Assume that the stochastic vector (X(r),P(¢)) and
(%(2),p(2)) are related through a GWC, where X(2) and p(z)
are again the position and momentum, respectively, of a
quantum Hamiltonian. The stochastic vector (X (¢),P(t)) is
veritable if and only if the joint densities p (x,p,¢1;.-;X 1 P »
t,, ) are positive. Performing the same kind of calculations,
we find out that the positive of the densities is equivalent to
the positivity of the corresponding Wigner function at ¢ = 0.
This result is immediately extended to the N-dimensional
case.

V. TIME-INDEPENDENT HAMILTONIANS IN ONE
DIMENSION

So far, we have studied the case in which H is a quadratic
Hamiltonian. The objective of the present section is the
study of the situation produced by a general time-indepen-

2970 J. Math. Phys., Vol. 28, No. 12, December 1987

dent Hamiltonian in one dimension and of the form H = p?/
2m + V(x). Quantum mechanics gives us the time develop-
ment for the observable position as

%(2) = % (0)e . (79)

Assume that (0) and H have a common dense domain
2 stable under the action of these operators. From (79) we
conclude that X (¢) is strongly differentiable as a function of ¢
and the following equations make sense on Z:

&) = [%(0),H],

(80)
X(t+ Ar) =x(t) —i[x(t),H 1At + O(AY).
Since [%(t),H] = ip(t)/m, (80) yields
R(t+ A1) =%(1) + (At /m)p(t) + O(At). (81)

Now, we are seeking a necessary condition for X(#) to be
veritable. Equation (6) gives us the following equation:

plx,tx't + At)
1 . :
= Wj.dal da, exp{ — i(a\x + a,x"))
X tr{ p exp(i{a,%(t) + a,k(t + AD)})}
1 . .
= W f da,da, exp( — i(a;x + a,x"))

xtr{ p exp(i{ (a; + a;)%(1)
+ (@At /m)p(t) + O(ANH 1], (82)

where we have made use of (81). Now, we perform the

change of variables
B =a,(At/m), (83)

whose Jacobian is Az /m. Thus

a=a;+ a,
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p(x,tx',t + At)

= m_
(2m)? |Ar|
Xexp( — H{ax + B [(m/At) (x' —x)]})
xtr{p exp(i{ak(¢) + Bp(t) + O(At)})}. (84)
From a physical point of view, if X(z) is veritable,
p(x,t;x',t + At) is the joint probability density of finding the
corresponding classical particle at x at the time 7 and x’ at the
time ¢ 4 At. Therefore, the joint density p (x,#;,x',¢) does not
have physical meaning when x 7 x’. In addition, if Az >0 the
point x’ has to approach x, if we want to be consistent with
this physical interpretation. Thus p(At) = m(x’' — x)/At
goes to the classical momentum of the particle at x when
Ar-0.
Obviously, if p(x,%x’,t + At) has to be positive for any
values of ¢, At, x, and x’, it has also to be positive at the limit
when Ar—0. Hence

0<lim | dadp exp(—

At—0

x tr{ p exp(i{ax(t) + Bp(t) + O(An })}
_ fda dB exp( — i{ax + Bp})

i{ax + Bm/At(x' — x)})

xtr{ p expli{az () + Bp() })}

= W, (x,p;t). (85)

Thus a necessary condition for X(¢) to be veritable is

that the Wigner function for g be positive at any value of the
time.

When § is a pure state, Soto and Claverie'® have proved
the following statement: The positivity of the Wigner func-
tion at t = 0 guarantees its positivity at any t>0if His a
quadratic Hamiltonian of the type ap®+ Bg* + vg + 6.
Conversely, if H is not of this kind, the two-dimensional joint
functions are not positive definite for any value of time, and,
therefore, X (¢) cannot be veritable, if p is a pure state.

To close this section, we give here a new characteriza-
tion of the Wigner function. Consider the following func-
tion:

F(x,p,t) = lim dx'

Ar—-0* o

X’ + pAt/m
XJ dx" p(x',t;x",t + At)

= lim F,,(xp.t). (86)
A0+

Under sufficient regularity conditions, we can take on
F,, (x,p,t) partial derivatives with respect to the variables x
and p, so as to have

3%F,, (x,p,t
Trulpt) A, (x,t;x +p ﬁ £+ At)
dx dp m
f — i{ax + Bp}
(21r)2 |At|
xtr{ p exp(i{ak(¢) + Bp(¢) + O(Ar)})}.
(87)
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Therefore
IFy (xpt) 1

lim =
dx dp (2m)?

Ar—0*

W,‘i (-x’pyt)- (88)

Note that, if the two-dimensional joint densities are
positive, the Wigner function is also positive.
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APPENDIX A: PROOF OF LEMMA 11

Let us give the proof for » = 1. For higher values of n,
this proof does not involve new arguments. Thus assume
that

tr{ p|4 |} < . (A1)

Since A4 is self-adjoint, the spectral theorem gives a posi-
tive measure y, for each ¢, €% (4) such that

(Wl A,) = F Adu, (A2)
and o

Wel 1419 = [ 2 lds. (A3)

Let -

5 =§lzkl¢k><¢k|

with ¥, €% (A4) and assume first that 5 is positive. Then, we
have

wlpl = 3 4 [ Wi (A4)
k=1 — o0
Since 27_ 4, < 0, the Lebesgue theorem gives
a=[" | 3 dedu= [ 1aldu a5)
— k=1 -

wheredu = 27_ | A, du, is a finite measure on R. Now take

tr{ pe} = 2 Al )e™ )

= 2 '{"f e du, =j e“du.  (A6)

Our next goal is to obtain the derivative of (A6) with
respect to a at zero. This derivative can be introduced inside
the last integral in (A6) if

[ il <, (A7)
a ial 1
2) lae ’<f(/1)eL (du). (A8)
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Here (1) and (2) are fulfilled, since f(1) =4 and
52 . |Aldr < . Thus

d . . i
——tr pe
da P

-2 xaAdﬂ

a=0

=J iidu=li/1kf du, = itr{ pA}.
(A9)

If 5 were any normal trace class operator, the proce-
dures of the demonstration would be identical. The only pe-
culiarity to be noted in such a case is that # would then be a
complex bounded measure.

APPENDIX B: PROOF OF LEMMA Il
Assume that p is positive. Then,

tr{pd} = 3 A Wld) = 3 LdddE  (BD
k=1 k=1

w{pB?} = 3 AclBoIP, (B2)
tr{ pAB} = kz At |ABY, ) = 2 A (A, | By ),
(B3)
e paBH< 3 A,llad || 1BY. . (B4)
k=1

We want to find a upper bound for the rhs in (B4). This
can be easily done by noting that if @ and b are positive
numbers, we have

0<ab<i(a® +b?). (B5)
Thus,

0< 3 Auldwi| 1Bwi|

<LIS e + 15w]
=+{3 dbanir+ 3 adsnr). @6
k=1 k=1
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If p were not positive, we would have to assume that

3l lawl?

and

2 Akl 1By
k=1

are both finite.
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Effective potential determining one-dimensional Slater sum in independent-
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Hilton, March, and Curtis [ Proc. R. Soc. London Ser. A 300, 391 (1967) ] have earlier
focused on the utility of the effective potential U(r,) in determining the Slater sum

Z(r,B) = Zy(B)exp( — BU(rfB)). Here an explicit, though highly nonlinear, partial differential
equation is derived for determining the effective potential U(x,8) in one-dimensional
problems. Direct solution of this equation by power series expansion in 8 leads readily to
Husimi’s results obtained from off-diagonal density matrix calculations. Perturbation theory in
the potential is also developed, and thereby it is shown that an infinite subseries of the Husimi
expansion is readily summed, and that a scaling property is exhibited.

I. INTRODUCTION

This work is concerned with some formally exact results
for the effective potential' U(x,8) which determines the
one-dimensional Slater sum

Z(x,B) = Zy(B)exp( — BU(x,8)). (N

In terms of the eigenfunctions ¥, (x) and the corresponding
eigenvalues €, of the one-particle Hamiltonian

H= — (#/2m)V? + V(x), 2)
the Slater sum is defined by

Z(xB) =Y ¥ (x)¢y (x)exp( —Be;), B=(ksT) -

3)

Z,(B) in Eq. (1) being its free-particle value corresponding
to V(x) =0.

As was proved by March and Murray? in their treat-
ment of central field problems, which, of course, corre-
sponds to dealing with one-dimensional Schrodinger equa-
tions, the Bloch equation satisfied by the off-diagonal
density matrix C(x,x,,/3), defined by replacing ¥, (x) in Eq.
(3) by 'A‘ (x0),

me= 9% (4)

B’
can be expanded about its diagonal x, = x to yield the fol-
lowing partial differential equation for the Slater sum

Z(x,):

ﬁ_z"'__a_z__VZ'——;—V’Z=O. (5)

Though Eq. (5) is linear in Z, it has so far only proved
possible to solve it for specific potentials ¥ (x), e.g., the har-
monic oscillator with ¥(x) = § ma’x? in closed form. Since,
for many purposes, one must have recourse to approximate
methods, Ref. 1 will be followed here in seeking to determine
U(x,5). While in Ref. 1, and also in earlier work by Husimi,?
U(x,8) was calculated by expansions either in ¥ or in £, but
employing off-diagonal knowledge of C(x,x,,8), current in-
terests in density functional theory prompt the investigation
reported below of U(x,5) from a purely diagonal approach.
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Il. DIAGONAL DIFFERENTIAL EQUATION FOR THE
EFFECTIVE POTENTIAL

Returning to Eq. (1), and noting that the free-particle
Slater sum Z,(8) can be found by inserting free-particle
waves exp(ikx) and energies #°k 2/2m into Eq. (3) to yield

Zy(B) = (m/2m#?B) "2, (6)

one can insert Egs. (1) and (6) into Eq. (5) to obtain the
defining equation for U(x,f3) itself as
# au’ 1 1
—BU" —B—+—V' —=U'
8m o d aB 2 2
au
=BU'(V-U) -p*U'—
BU'( )-8 B
+3—ﬁ—2,82U’U"—f—B3U'3. (7)
8m 8m
This purely diagonal equation for the effective potential
U(x,B) can be viewed as the diagonal counterpart of the off-
diagonal equation derived by Husimi® from the Bloch equa-
tion (4), and solved by him via a power series expansion in

B.

lil. APPROXIMATE SERIES SOLUTIONS OF THE
DIAGONAL EQUATION FOR (x,B)

Notwithstanding the highly nonlinear character of Eq.
(7), let us first demonstrate, in establishing its usefulness,
that all of Husimi’s results are readily regained from it.

Writing

U(x,B) = uo(x) + Buy(x) +Bu(x) + -+, (8)
one finds immediately from the O(1) terms in Eq. (7) that
uy(x) =V'(x), )

showing that the Thomas—Fermi approximation U(x,5)
= V(x) is regained in this lowest-order treatment.
Proceeding to terms of O(/3), one finds similarly

(#/8m)V"™ — 3uj =0, (10)
which reproduces immediately Husimi’s first-order result
u,(x) = (#/12m) V" (x). (11
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Continuing to O(8?) one has
(F/8m)uy —5uy = —2V'u; + GH/8m)V'V" (12)

with solution, using Eq. (11) for 4, which is readily verified
to be

Uy = S (/M)W ™(x) — (#/24m){V' ()P, (13)

The next useful step is to note that the leading terms in
1y, Uy, and u,, etc., are all first order in the potential V. These
are readily summed to all orders in /3 by returning to the
diagonal equation (7) and noting that the right-hand side is
of second and higher order in ¥(x). Hence denoting the
solution to first order in ¥ by U, (x,8) one needs to solve

# au. 1
L RUY — 1+__V______U__'O
BUT —B ] 5 Ui
after inserting appropriate physical boundary conditions.
Taking the Fourier transform with respect to x, to yield
Uy ( ,B), one finds for potentials ¥ (x), which have a Fourier
transform V(p),

(14)

_#pB 7 av,
U, 1 V__,__ =
P - B — % + U, =0. (15)
Writing

U,(p8) = V() 0.8 (16)
yields

/A [ f’i]ui

aﬁ 25 5m f= B (17

Employing the integrating factor 8 '/ exp((#'p*/8m)p),
one finds the explicit form of f(p,) to be

Fep =" exp(:_@,zé.) JB_%_B 1/2

Xexp( 8p B)dﬁ (18)

In coordinate space, the product form (16) evidently corre-
sponds to a convolution,’

U, (x8) = r V(xf (%1 — xB)dx,, (19)

where f(x, — x,) can be found from Eq. (18) as

f(xy = xB) = [1/2BZy(B) Jerfc{\2|x, — x|/VB },

(20)

which, it is to be emphasized, has been derived by purely

diagonal arguments. This result (19), with fgiven by (20),

sums up the Husimi series in £ to infinite order, to first order
inV.

Evidently, returning to Eq. (7), one can determine the

“correction” U,of O(V ?) to U, in Eq. (19). The appropriate
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differential equation is
au;

2 1 U,
ap 2

=pU (V- U, —B?U;

# puy_p

8m

U, 3%

3/31+ B*U UY.
2n

This can, in fact, be solved, but the detail proliferates. The
only case, so far, in which a closed solution to Eq. (7) has
been achieved is for the harmonic oscillator example re-
ferred to above. Here it is readily verified that the form

2x8) = (2;5)1/2(@:)&?&@))1&

% exp( —x? Ln;? tanh(—;- ﬁfm))) , (22)

derived by Uhlenbeck and Gropper* by directly performing
the sum (3) using the known wave functions and energy
levels corresponds to

_ ma’x? 1 _
UexB) = T2 tanh(2 ﬁmﬁ)

%" (ahcnos)
28 sinh (#wp.
(23)

and that this is an exact solution of Eq. (7) toall ordersin V.

To summarize, Eq. (7) is the main result of the present
work: it establishes a diagonal method for generalizing the
Thomas-Fermi approximation U(x,8)=V{(x), which is
thereby demonstrated to be true in the limits of (a) suffi-
ciently small 8 from Egs. (8) and (9) for sufficiently slow
spatial variations in ¥(x) from Eq. (7). In thelatter connec-
tion, it is worth emphasizing that Eq. (13), with f given by
Eq. (14), shows that in the expression for U,, the combina-
tion ¥ > (x)B " always appears, with ¥ ‘"’ representing the
nth derivative of ¥(x). Presumably, similar scaling will be
derivable in each order of the perturbation series and this
may point to further progress in solving the nonlinear equa-
tion (7) for the effective potential.
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By taking the electron densities of semi-infinite electron gases in one and in three dimensions,
and forming the Slater sum by the Laplace transform, it is shown that the Slater sum is the
classical partition function in d dimensions, times a function independent of dimensionality.
The electron density is thereby calculated for general dimensionality, as is the kinetic energy
density. As a by-product, the dimensionality dependence of Friedel oscillations emerges in

general form.

I. INTRODUCTION

There is currently considerable interest in describing
many-electron systems by their electron density p. It
seemed, therefore, to be of interest to study the inhomogen-
eous semi-infinite electron gases as a functional of dimen-
sionality.

To introduce the study, consider the simplest wave me-
chanical problem: electrons moving freely within a one-di-
mensional box of length /, in the region 0 <z < /. Then with N
electrons singly filling the lowest levels, the electron density
is evidently

N
pl(z)=(%)zsin2i’liz—. )
1

One can calculate the sum exactly, and then pass to the semi-
infinite electron gas limit /— oo, N— 00, N /I-p,,, the bulk
electron gas number of electrons per unit length. Or one can
replace the summation over levels by an integration, and
writing the highest (or Fermi) energy E as k /2 one finds
readily

p1(z) = pyll — [sin(2kz)1/(2kz)]

=P10[1—']0(2k2)], P10=k/77's (2)

where j, (x) denotes the / th-order spherical Bessel function.

As utilized extensively by March and Murray,’ one can
construct the Slater sum, which weights the square of the
wave functions in Eq. (1) with the Boltzmann factor
exp( — Pe, ), by using the Laplace transform relation

Z(z,B) =Bf p(z,E)exp( — BE)dE. (3)
0

Inserting Eq. (2), and using the properties of Laplace trans-
forms set out below, one finds

Z,(2,8) = (27B) ~"/*(1 — exp( — 22°/B)). (4)

Next, let us turn to the three-dimensional case, in which
electrons are confined to the semi-infinite space 0 <z < o by
an infinite barrier in the (x, y) plane. This model was studied
by Bardeen,” as a description of the electron distribution at a
planar metal surface. His result for the electron density,
written for comparison with Eq. (2) in terms of singly filled
levels, is

P3(2) = pao(l — 3j1(2kz)/2kz), pso=k3/67%  (5)
Brown et al.? pointed out that, for this problem, the canoni-
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cal density matrix could be derived by solving the Bloch
equation and on the diagonal they obtained>*

Zy(28) = 2aB) " 'Z,(2,8). (6)

In fact, by taking the Bloch equation in 4 dimensions, it is
readily shown that

Z,(zp8) = 2mB)' ~V°Z,(2.8), )

confirming that one can write for the d-dimensional case a
factor related to the free-particle partition function per unit
volume times a factor independent of dimensionality.
Starting from the form (7), one can now invert the La-
place transform relation (3), using the following identities:

j—l(ﬂ-"—l/z)_-: ,”.—1/2 (_]i)n—l/z (8)
%%(n _ 5) 2
and
_ 22 3/2 i (2kz
= ex;;;(l+23fz)//9) _ (2;:2 kyﬂfz((ziz)z L9
One needs to find
pa(z) = [1/Q2m)“@ = D72 L1/ ¢+ 2] Z,(2,8),
(10)
and from Eqgs. (8) and (9) the result follows readily as
(z) = ke
Pa - zdﬂ_(d+1)/2%,%,..d/2
2\? 1 aJa—12(2kz)
B (7) (2m)472 k (2kz)@-D72 " (Ih

This result (11), valid for d odd, is easily shown to include
Eqgs. (2) and (5) for the special cases d = 1 and d = 3, re-
spectively.

The case of d even can similarly be handled; one merely
notes here the result

L (1/B)e ¥/ = K,(2kz), (12)

which enables p,(z), etc. to be calculated in terms of the
appropriate Bessel functions of a purely imaginary argu-
ment.

II. KINETIC ENERGY DENSITY IN d DIMENSIONS

Returning to the case of d odd, one can also calculate the
kinetic energy density. Using the Bloch equation, this is easi-
ly written for the case of classical statistics as
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FO) = — 9Z, _ _ 1 dZ,
aﬁ (21TB)(d_ 172 aﬁ
((1—d)/2)Z, (13)
(27)(d-1>/2’3 d+ 172"
Utilizing the expression for Z,/d8,
A
B 202m)1?2B312 (2m)'?
exp( —22%/B) . exp( — 22*/B)
X 55/2 2(277.)1/233/2 4 (14)

one can calculate the degenerate kinetic energy ¢, (z) corre-
sponding to the electron density (11) as the inverse Laplace
transform of ¢ §’ (z)/B. One then obtains

2(2ﬂ,)d/2 ﬂ(d+4)/2

_dexp(—27/B) 42> exp( — 22°/B)

B(d+4)/2 ﬂ(d—+—6)/2

1,(z) =

(15)

Again utilizing Eqs. (8) and (9), one finds, after a short
calculation,

ty(2) =

d (kZ)(d+2)/2
217_1/2(217.):1/2%.%. e (d+2)2 T
kd+2

Ja+12(2kz) 21y (2k2) (16)
(2kz) @+ D72 - (2kz)@— 172 ’
where use has been made of the relations®
4 [x 5] = —x"51 (x) (17)
dx
and
Jio(x) +j1+1(x)= (21+1)/X_]1(X) (18)

Equation (16) represents the d-dimensional kinetic energy
corresponding to the electron density (11). As a final step, it
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is worth substituting in Eq. (16) forj, _ ,,, (2kz) from Eq.
(11), to obtain the desired result

k2
t,(2) =ty +'-2_ [£a(2) —pao]

kd+? Jea+ 13,2 (2k2)
+ 217,2(277_) (d—3)/2 (2kz)(d+ 12 "

In Eq. (19), the first term on the right-hand side is the kinet-
ic energy density of the bulk electron gas. In the second term,
Pa(2) — pao, is the charge displaced in the electron gas by
the infinite barrier, p,, as usual being the bulk density. This
term is evidently reflecting the kinetic energy due to adding
$[Pa(2) — pao }d electrons at the Fermi energy k /2. The
final term in Eq. (19) is the physically interesting kinetic
energy change associated with the induced inhomogeneity of
the d-dimensional electron gas. In summary, Egs. (11) and
(17) for the electron density and the corresponding kinetic
energy are the main results of this work, both stemming di-
rectly from the form (7) of the d-dimensional Slater sum of
the noninteracting semi-infinite electron gas. As a by-prod-
uct of Eq. (11), use of the large z asymptotic form of the
spherical Bessel function shows immediately the dimension-
ality dependence of the long-range oscillations induced in
the electron gas by the “perturbing” barrier.

(19)
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The concepts of void and cluster for an arbitrary point distribution in a domain .& are defined
and characterized by some parameters such as volume, density, number of points belonging to
them, shape, etc. After assigning a weight to each void and cluster—which is a function of its
characteristics—the concept of distance between two point configurations S, and S, in & is
introduced, both with and without the help of a lattice in the domain .&. This defines a
topology for the point distributions in &7, which is different for the different characterizations

of the voids and clusters.

I. INTRODUCTION

The spatial distributions of points in one, two, or a high-
er number of dimensions (spatial processes, point processes,
spatial patterns, spatial point patterns) constitute a very in-
teresting field of research, not only in pure mathematical
statistics but also in its innumerable applications, which
range from biometrics to astrophysics and includes such di-
verse fields as agriculture, econometrics, ecology, traffic
problems, and medical sciences. In fact, such point distribu-
tions may correspond, for instance, to plants of a given spe-
cies, to cars along a road, to seeds in a field, to microorgan-
isms in a living body, or to stars—or even galaxies or clusters
of galaxies—in our Universe. An important mathematical
aspect of spatial processes is the study of the geometrical and
topological properties of point distributions.

Although in biometry the study of such distributions
has always been very popular during the last years—as can
be seen through the large number of research articles and
even books which have been issued,’ in the last couple of
months the interest about this field of research has grown
very rapidly, due in great part to the remarkable discoveries
of de Lapparent, Geller, and Huchra about the spatial distri-
bution of galaxies in our Universe.” These authors made an
optical red shift survey of all 1099 galaxies brighter than
magnitude 15.5 of a thin slice of sky and came to the conclu-
sion that galaxies are concentrated on the surfaces of contig-
uous bubble like structures with very large typical diameters
of about 25 h~' Mpc. The large void in Boétes of 60 h~'
Mpc, discovered in 1981 by Kirshner ez al.,® has been there-
by proved to be no peculiarity but a very common feature.
Too often, the analysis of the point distributions of galaxies,
with their voids and clusters, is done simply by looking at
pictures and plates with the naked eye, a very primitive pro-
cedure which in general is not that bad. Nevertheless, the
important discoveries we have just mentioned stress once
more the necessity for a more profound understanding of
spatial point distributions and, in particular, of the still un-
solved problem concerning the construction of a mathemat-
ical “measure” for quantifying how far away are two of such
point distributions (characterized by the number and mag-
nitude of the voids and clusters, their forms and spatial dis-
tribution, etc.).
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II. DEFINITIONS OF (SPHERICAL) VOID AND CLUSTER

The very large numbers of points one has to deal with
makes it almost a necessity to introduce definitions which
are suitable to be treated with a numerical algorithm. This
has been pointed out in several previous papers on the sub-
ject* and will be considered later in detail (Sec. VI). How-
ever, I do not think that discrete algorithms alone can solve
these problems satisfactorily, and it is much better to play at
a time both with discrete and with continuous concepts.

Let S'be a set of points in a given domain & of volume V'
in d-dimensional Euclidean space. Let N be the number of
points in S. For any point peZ and any positive real number
reR™, the density of points in a ball around p of radius  is
given by

Ppo(r) =n,(r)/V,(r), (2.1)
where n, (r) is the number of points of S inside the ball, and

V,(r) is the volume of the ball. By definition, there is a void
around p of radius bigger than r if the density p, (r) verifies

Pp(r) <AN/V, 22)

where A< 1 must be fixed (we may take, for instance, A = }).
The radius of the void around p is defined to be the value 7,
such that

P, (r,) =AN/V. (2.3)

In this way the density of any void will be the same. Alterna-
tively, one could define the radius of the void as the value of 7
at which the slope of p, () is maximum.

On the other hand, there exists, by definition, a cluster
around p if

Pp(r)>N/AV. (2.4)

The radius of the cluster may be defined to be the value 7,
such that

P (1r,) =N/AV. (2.5)
As before, one could alternatively define the radius of the
cluster as the value of r at which the slope of — pPp (1) is
maximum.

Until now we have studied only what happens at some
given place p. A global analysis has to distinguish between
the different voids and clusters, so that we do not count the
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same point of the distribution twice: as belonging to a void
(or cluster) and to another one which intersects the first.
Moreover, the preceding definitions are best suited for
spherical voids or clusters only and when p is the center of
them. These difficulties will be taken care of in the subse-
quent sections.

(il EFFICIENT SEARCH FOR VOIDS AND CLUSTERS

Let us now introduce a lattice . of lattice site @ in the
domain &. For a givenset of r, eR™, k = 1,2,...,m, select the
set S, of vertices of the lattice corresponding to the s smallest
andtotheh highest valuesofp, (7, ), for allk = 1,2,...,m, for
all lattice vertices p; on .Z". Improve now the set of points p,
in S, to a set S, coming from the s smallest and # highest
values of p, (7) for all k = 1,2,...,m, and for all g; of the
form

1/2m

p.-+z1[1'[p,,,,(rk)]' 2,
k=1

where A is a constant that we can adjust at will (for instance,
A =1 for voids and A = 2 for clusters), while & sweeps all
unitary directions of the form

I<iy <+ <4 <d,

3.1

él'l :t :téi,’
where &, is the unitary vector along the i axis of R?. Notice
that, in general, the points ¢, are not vertices of the lattice. In
fact, the vertices of the lattice serve only as starting points in
order to begin the search for the best centers of the voids and
clusters.

The procedure is then repeated until it stabilizes. In this
way we obtain the positions of the centers of a desired num-
ber of the less dense voids and of the more dense clusters in
the point distribution S.

(3.2)

IV. WEIGHTS OF THE INDIVIDUAL VOIDS AND
CLUSTERS

The weight of a spherical void of radius 7 and density p
with the center at the point p is given by the following expres-
sion:

W,=k,[V,(n)/p] =k,[V,(r?/n], (4.1)

where k,, is a constant (independent of the void), ¥, (7) the
volume of a sphere of radius r in d dimensions, and 7 is the
number of points of S inside the sphere. That this expression
is correct can be seen through the following argument. For a
given density p, increase of W, in (4.1) is proportional to the
volume of the void, while for fixed volume, increase of W, is
proportional to decrease of p;, as it should be by intuition.
Alternatively, at fixed n increase of W, is proportional to the
volume and also to the decrease of density, i.e., proportional
to the volume squared.

The weight of a spherical cluster of radius » and density
p centered at p is given by

W,=knnp=k [n/V, ()] =kp*V,(r), (4.2)
where k, is a constant independent of the cluster. Expression
(4.2) can be understood by reasoning as follows. At fixed n,
W, is proportional to increase of p (or to decrease of vol-
ume). At fixed p, W, is proportional to increase of n (or to
increase of volume). Alternatively, with full generality, in-
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crease of W is due both to increase of n (it would also be true
for fixed p, i.e., letting volume increase) and to increase of p.

V. THE SET OF ALL POINT DISTRIBUTIONS AS A
METRIC SPACE

Once the spherical voids and clusters have been con-
structed by the procedures described in Secs. IT and III, and
just before their individual weights (Sec. IV) are calculated,
one has to look for superpositions of them which may result
in nonspherical voids and clusters. The idea is very simple: to
consider as a unique void (resp. cluster) the union of all of
them which are connected by a chain of intersections (Fig.
1). In this way, the numbers of voids and clusters, s and A,
respectively, diminish and, at the same time, they are no
more spherical but acquire a form of the type depicted in Fig.
2. It is now immediate to modify the formulas (4.1) and
(4.2) accordingly: in both cases the volume V, (r) of a d-
dimensional sphere of radius r centered at p must be substi-
tuted by the volume of the void or cluster considered. Of
course, the density p and the number of points n will also
correspond now to the whole, nonspherical void or cluster.

Once all the voids and all the clusters have been con-
structed, the remaining region of the domain & is filled up
with a (under ideal conditions) sensibly uniform distribu-
tion of points of S with a density almost equal to p, = N /V.
In practice this must be checked a posteriori and if it were not
true, the free parameters introduced in the definitions and
construction of the voids and clusters (s, 4,...) ought to be
changed accordingly. For instance, if the density of the re-
maining region were smaller than p,, then the number s of
voids should be increased. On the other hand, if the homo-
geneity of the remaining region were not very good then both
s and A ought to be augmented.

Let us now consider the plane (¥,p) and the points
(V,p;) init, where the index i goes through all the different
voids and clusters, with one value of the index corresponding
to the intermediate, remaining region. Introduce a regular
lattice in this plane and denote the different cells by
(¥, p;), je# . Define now the function f(V;,p;) which as-

FIG. 1. Examples for distributions of spherical voids and clusters. They can
superpose in a variety of ways.
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FIG. 2. Voids and clusters constructed from the distributions of Fig. 1 in
order to avoid overcounting.

signs to each cell (¥},0;) the number of clusters plus the
number of voids which belong to this cell, each of them mul-
tiplied by the corresponding weight (4.2) and (4.1), respec-
tively, i.e.,
SVp) =n (Vo) W (V0;)

+n, (Vo )W, (Vip;), Jef. (5.1)
Here the intermediate region is to be counted as an addi-
tional void or cluster depending on its density p being p<p,
or p > p,, respectively. Notice that f(V],p;) is different from
zero only in a finite number of cells (¥},0;). The following
step is to construct with these points the minimal triangulat-
ed surface with vertices at these points. Thus, we get a con-
tinuous function f(¥,p) defined on the plane (¥,0). Now,
given another point configuration on the domain &, we de-

fine the distance between these two configurations .S, and .S,
by

d(S,5,) = f LA(Vp) — (V)P dVdp, (5.2)

where f] and f; are the functions corresponding to the point
configurations S, and S, respectively.

The problem we are dealing with is not so standard. No
wonder, therefore, that definition (5.2) is not a usual mea-
sure of the configuration space. However, it is important to
observe that d, as given by (5.2), can be easily implemented
to yield a true distance by the usual mathematical proce-
dures. Let us be completely rigorous.

The set which is going to turn into a metric space is
& = set of all finite point distributions in the domain <.
The “distance” defined by (5.2) is actually only a semidis-
tance. In fact, it satisfies (i) d(§,,5,) =0, (i)
d(5,8,) =d(S,S;), and (iii) d(S,5,)<d(S.,S5)

+ d(S;,S,), for any S,,5,,5;€.%. All we have to do is to
define the coset ¥ = ./ ~, where S, ~S, iff d(S},S,) =0,
in order to obtain a metric space . with the distance d given
by

d(5,,5,) = d(5,,8,), $,€8,, S,€S,. (5.3)
In fact, this is a consistent definition for, let us consider two
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other configurations S | €S, and S} €S,. Then, we have
d(S,,5,)<d(S5,,S ) +d(S,55) +d(53,8,).

But d(5,,57) =0 and d(S5,S;) =0, so that 4(S,,5,)
<d(S1,5};). Moreover,

d(51.85)<d(5{,8)) +4d(5,,5,) +d(S,S),

and we get d(S1,55)<d(S.,S;). Therefore, d(S1,55)
=d(S,,S,). Equation (5.3) defines a distance don.Z.In
fact, d satisfies the axioms (i)—(iii) above and, moveover,
the additional one, (i') d(S,,5,) = Oimplies S, = S,. Thisis
immediate from (5.3) and from the definition of the coset

Summing up, .% is a metric space endowed with the
distance d. This constructive procedure is very well known
to mathematicians, in fact, it is the standard way to proceed.
This allows one to be a little loosely in the notation and speak
of the metric space ¥ and of the distance d, as given by
(5.2). The alternative definitions of distance which will fol-
low have to be compared with (5.2). Actually all of them
ought to be submitted to the same procedure as given above
in order that they become true distances d.

A metric space is readily made into a topological space,
the topology being provided by the distance, much as in the
standard example of the metric space R". The neighbor-
hoods of the basis of this topology are open balls of the form
B,(S) ={S'e¥|d(S,5") <p}, p being any rational num-
ber peQ). Being again a little loosely with the notation we
may say that the set .~ of all finite point distributions in & is
a topological space, the topology being given through the
distance d in (5.2).

This is by no means the only possibility to define a dis-
tance between two point configurations. But the definition
which has just been given above is quite a sensible one. An
example of a different, more simple definition is the follow-
ing. Consider the weights (4.1) and (4.2) and place them at
the negative and positive semiaxis x, respectively (Fig. 3).
Then discretize this axis by considering intervals of a given
length /. For each interval of the x axis, on the y axis set the
number of voids (resp. clusters) with a value of W, (resp.
W_) which belongs to this interval. Now consider the seg-
ment-wise curve constructed with the resulting points (Fig.
3). Let us call this curve g(x). The distance between two
point configurations S, and S, can then by defined by

d(Sl,S2)2=J [g1(x) —g,(x)]%dx. (54)

Notice, however, that on taking the weights from the begin-
ning we have implicitly introduced in this last case an equiv-
alence relation among voids (and among clusters). In some
cases this can actually be convenient in order to simplify the
problem from the beginning, but in other situations a finer
definition such as the first one will have to be adopted.

VL. POINT DISTRIBUTIONS IN A DOMAIN WITH A
LATTICE

In order to treat all the preceding questions in a way
better suited for numerical manipulations, one can carry all
these definitions to a lattice . of certain site @ on the do-
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FIG. 3. Segment-wise curve g(x) constructed using a discretization of the weights corresponding to voids (negative x axis) and clusters (positive x axis). In
the y axis the numbers of voids and clusters that fall into each interval of x are represented.

main & . That is, a discretization of the methods which have
been elaborated above has to be developed.

One must start by counting the number of points of the
distribution §'in & that fall into each of the elementary cells
of the lattice. The voids will consist of all those cells whose
number of points does not reach a value n, fixed in advance,
while the clusters are made up of cells with a number of
points above a second number 7, also fixed in advance. Of
course, one must have

n,<N/N, <n,, (6.1)

where N, = V' /a? is the number of cells of the lattice .£.
(To begin with, we consider all cells equal and obviate the
small modifications in these definitions which had to be
made for cells touching the border of the domain &) In this
way, extended voids and clusters made up of cells will arise,
in general. A huge void (cluster) will consist of several con-
tiguous cells with a small (big) number of points. Figure 2
will be almost the same, only that the curved contour will be
substituted by a segment-wise one, with segments of longi-
tude proportional to a. Formulas (4.1) and (4.2) will re-
main unchanged: only ¥, () will be substituted by the vol-
ume ¥V, or V, of the void or cluster under consideration (a
volume always proportional to a, the volume of an elemen-
tary cell).

Notice that this procedure is less time consuming than
the former one when it is carried out in practice. However, it
is not so sensible to detect the voids and clusters with preci-
sion. In fact, once the lattice . has been fixed, a given cell
can participate at the same time of a void and of a cluster so
that the total number of points in it may compensate (Fig.
4), thus hiding this fact completely. Clearly, everything be-
comes better as g is made smaller (continuum limit). How-
ever, with a (discrete) point distribution this cannot be done
indefinitely: for a small enough every cell contains at most
one point only and for such small cells the whole procedure
ceases to be of much use (this was the difficulty with the
topology of discrete point distributions in the first place).

Once the weights (4.1) and (4.2) have been adapted to
the lattice voids and clusters, the definitions (5.2)—(5.4) for
the distance between two point configurations S, and S, go
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through immediately. Thus, we complete the treatment of
the lattice case and define a topology for point configura-
tions on the domain 2. One could think, in principle, that in
order to proceed in accordance with the discretization of &,
the plane (V,p) ought also to be discretized, i.e., divided into
rectangles of sidesa;, and a,, and the minimal triangulated
surfaces constructed using the vertices corresponding to the
centers of these cells. However, it must be pointed out that
this last discretization is completely independent from the
one of the domain <.

Finally, notice that in our definition only the volume
and the density (we may substitute one of these by the num-
ber of points inside) of the void or cluster have been taken
into account in the definition of the distance d(S,,S,). A
more elaborate definition should also include other param-
eters such as some characterizing the shape of the void or
cluster (for instance, a combination of the diameters along
each of the axes, as the sum or the product of these diame-
ters). The function f(¥,p) given in (5.1) and the distance
(5.2) have to be redefined accordingly. That is (we drop the
subindex j for convenience)

e0ccee|oe oo
eee o |oessesoe
- o eooce|e o o
. oo osvjees o o
eesccofe o o
eee eoloeee o
o o o "o °
secsoe ofoe o o
. eevoele ossee
esooeo|® e0cee
. osejle s0cee
XXX
. eo|oecssee
®e 000
. .
. .
. . . .
. .
. [

FIG. 4. Some cells (here the one in the middle) of a lattice in 2 may partici-
pate both from some void and from some cluster. They may compensate and
give a deceptive mean density approximately equal to p, = N /V.
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FIG. 5. A huge void or cluster (the points have not been depicted) display-
ing the gradient of density: p, is the density of the most inner cell; p, that of
the surrounding crown of cells (here 12 cells); p, is the density of the most
exterior crown (here 24 cells).

SVpk) =n (Vp,K) W, (Vpk)
—n, (Vo k)W, (Vpk),

where k is the new parameter, and

(6.2)

d(SpSz)2=U [ fi(Vip,k) — f,(Vip,k) 1 dV dp dk,

(6.3)
respectively. In an analogous way, we may introduce other
parameters, such as the gradient of density for large voids or
clusters, as one proceeds from inside to the border (Fig. 5).
We may define, for instance,

h= [(Pz “P1)2+(P3 —P2)2+"']”2 (6.4)
and include 4 besides k as a new parameter. All these param-
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eters and others one may think of improve the definition of
the topology (6.3) and may be introduced at ease into our
formalism in the way we have just shown.

Vil. OUTLOOK

The procedures introduced here for the first time (to
our knowledge) are currently being applied to the point dis-
tributions that correspond to the analysis of galaxies of de
Lapparent et al.” and also to other related results. Moreover,
simulation methods are being developed with the purpose of
checking the reliability of the distance between point distri-
butions as defined here compared with the only one which is
presently available, namely, the “distance” that our naked
eye would grosso modo assign to them. The investigation is in
progress. Its partial results are pretty good and will be pub-
lished elsewhere with a detailed account of the analysis in-
volved.
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Comment on “On a property of a classical solution of the nonlinear mass
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A mechanism of smoothing due to evaporation condensation of the roughly perturbed surface
of a solid is formulated as a Cauchy problem in the real line R’ for the equation u, = u,, /1

+ u, %, which describes the evolution of the profile u(x,t) of the surface. In the preceding
paper [A. Kitada and H. Umehara, J. Math. Phys. 28, 536 (1987) ], it was demonstrated that,
if the solution u(x,t) of the Cauchy problem is obtained in the classical sense with an
additional restriction #eC *R" X (0, )), each peak in the surface decreases in height with time
in the strict sense. In the present paper, by modifying the proof, it is shown that the additional

restriction to the classical solution is excessive.

I. INTRODUCTION

In the preceding paper,' using the maximum principle
due to Nierenberg,” well known in the theory of linear para-
bolic equations, we obtained the estimate (1),
u(xypty) <u(xyty), (x,1)eC (i=12), <t (1)
describing the strictly monotone decrease with time ¢, due to
evaporation condensation, in the height of a peak in a rough-
ly perturbed surface of solid. In the estimate (1), u(x,t) is

such a classical solution® that ueC 3(R* X (0, 0 )) (Ref. 4) of
the Mullins’ model (P) (Ref. 5) in the real line R,

u, =u,/t+u2 (x)eR'X(0,0),

xeR!, (F)

u(x,0) = a(x),
and C is a trajectory in the (x,?) plane drawn by the migra-
tion with time of a peak top in a(x); that is, the set C is
characterized by

C={(x,0);x=g(1),geC' ([0, ]}, (2a)

u (xt) =0, u,(xt)<0, (xt)C. (2b)

In the present paper, we show that the estimate (1)
holds for the ordinary classical solution of the problem (P)

without the additional restriction ueC *(R' X (0, w0 )); that is,
the restriction ueC (R’ X (0, 0 )) is shown to be excessive.

Il. ADEMONSTRATION OF THE STRICTLY MONOTONE
DECREASE IN HEIGHT OF A PEAK IN THE CLASSICAL
SOLUTION

We will make general discussions on the following
Cauchy problem (P*) which is a generalization of the Mul-
lins’ model (P):

u, =Flu,u,),

[FeC'(R?), F,(p.q) >0 (Ref. 6), F(0,0) =0],
(x,0)eR* X (0,00) ,

xeR.

(P*)
u(xro) = a(x),

As is pointed out in our previous paper,’ the solution of
(P*) must satisfy the following problem (LP):
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1
U, — Uy, f F, (hu, (x,t),hu,, (x,t))dh
(1]

1
—u, J- F,(hu, (x,t),hu,, (x,t))dh =0,
o (LP)
(x,1)eR' X (0,0 ) ,
u(x,0) = a(x), xR},

where the function F(p,q) is what is given in the problem
(P*). In the preceding paper,' we showed that if the maxi-
mum principle due to Nierenberg is applicable to the prob-
lem (LP), the estimate (1) holds, and in order for the maxi-
mum principle to be applicable to (LP), it is sufficient that
all the coefficients of the linear equation in (LP) are contin-
uous at any point of the set R' X (0, ). In the preceding
paper,’ we used the mean value theorem in the differential
calculus to show the continuity of the coefficients

1
j F,(hu, (x,t),hu,, (x,t))dh
(V]
and
1
J F,(hu, (x,t),hu,, (x,t))dh.
0

In this context, the additional restriction ueC 3R’ X (0, «0 ))
was required.® In the present paper, we replace the proce-
dure of the demonstration by the following one which does
not require this restriction.

Proof of the continuity of the coefficients: We will show
the continuity of the coefficient of u,,,

1
j F,(hu, (x,t),hu,, (x,t))dh,
0

at the arbitrarily fixed point (x,,75)eR* X (0,00 ). Let 1 be a
bounded open convex set in the real plane R, for example,
an open disk, which contains two points (pg,q,) and (0,0).
Here, py = u, (x0,t,) and g, = u,, (x4,%,). Since the closure
of 2, 0, is compact and the function F,(p,q) iscontinucus as
isindicated in (P*), F, (p,q) is uniformly continuous on Q.
Therefore, for any € > 0, there exists § > O such that

|F, (hp,hq) — F,(hp',hq')|
<€[0<h<Y, (0,9)€, (p'.g")e0],
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whenever |p —p’| <6 and |g — ¢'| <. As both functions
u, (x,t) and u_, (x,t) are continuous at the point (x4,%,), for
the above 6 > 0, there exists 7 > 0 such that

qu (xxt) - ux (XOJO)I <89 qux (xyt) - uxx (x();to) I <5’

whenever |x —xo| <n and |t —1,] <n. Combining the
above two estimates, we have

1
f F,(hu, (x,2),hu, . (x,t))dh
(1]
1
— f F (hu, (X0,t0) htd . (x0:20) )dh
0

1
<f |F, (e, (x,8),hu,, (x,t))
(]

— F(hu, (xo,t0) ,hu,, (x,10))|dh <€,

for any (x,#) such that |[x — x,| <7 and |t — 5| <7. This
means the continuity of the coefficient of u,, at the point
(xq,to). As the same is true for the coefficient of »,, all the
coefficients of the linear equation in (LP) are continuous. O
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We can conclude that the estimate (1) holds for the
classical solution without the restriction ueC*(R! X (0, o0 )).
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Matrix elements with respect to a discrete “Sturmian” basis set of the operator 7'/%gr'/?, where
g is the Coulomb Green’s function of the “second-order” Dirac equation, are investigated.
Closed expressions, involving Gaussian hypergeometric functions, can be obtained for the
matrix elements. This calculation illustrates contour integration techniques capable of yielding
closed expressions for a number of overlap integrals associated with the relativistic Kepler

problem.

I. INTRODUCTION

Discrete Coulomb Sturmian basis sets have been used
successfully for some time in nonrelativistic atomic calcula-
tions.! One of the first examples of a Sturmian basis set ap-
peared in a discrete expansion of the nonrelativistic Cou-
lomb Green’s function in momentum space due to
Schwinger.? Sturmian functions in this discrete expansion
entered as a set of four-dimensional spherical harmnics con-
nected with the O(4) symmetry of the nonrelativistic Kepler
problem. A coordinate space form of Schwinger’s expansion
was investigated in which the Sturmian functions arose in a
different way as “coupling constant eigenfunctions.”* Subse-
quently, it was found that the coupling constant eigenfunc-
tion concept could yield a discrete expansion also for the
relativistic Coulomb Green’s functions. The Coulomb
Green’s functions for both the “second-order” Dirac equa-
tion* (defined below) and the conventional linear Dirac
equation® have been studied from this point of view.

The Sturmian basis sets seem convenient for atomic cal-
culations, since through the use of the Sturmian basis sets
one can avoid the introduction of continuum states, and this
without sacrificing completeness. In perturbation calcula-
tions using a Coulomb Sturmian basis set there will in gen-
eral be a need for Sturmian matrix elements of the Coulomb
Green’s function. Such matrix elements will be investigated
here for the second-order Dirac equation,

{I- (1 +io)-I + m*}P =0,

1.1
N,=—id, —ed (-

1734

in which the wave function ® is a 2 X 1 Pauli spinor, and o,,,,
is a self-dual Lorentz spin tensor, defined by the equation

0 o3 —0, | oy
—0o 0 g o
0, = 3 ! 2 s (1.2)
o, — 0o, 0 o3
-0, -0, —o03]|0
01,3 being the ordinary 2 X 2 Pauli spin matricei.ts]_:‘.lcéuation

(1.1) has been discussed by a number of authors and is
known to be equivalent to the usual linear Dirac equation.
The second-order Dirac equation (1.1) brings out a close
parallel between the quantum theory of a Dirac particle and
the quantum theory of a simple scalar particle. For this rea-
son, and because of the small dimension of the matrices in-
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volved, calculations in quantum electrodynamics are expect-
ed to simplify when the second-order form of the Dirac
equation is used. These expectations have been borne outin a
recent study of the mass operator for an electron in an exter-
nal Coulomb potential.'®

To carry the study of the mass operator referred to
above further and turn it into a new Lamb shift calculation,
matrix elements with respect to a Sturmian basis set of the
Coulomb Green’s function of the second-order Dirac equa-
tion are required. Since these matrix elements will be useful,
in general, for a variety of perturbation calculations, it was
decided to publish the investigation of the matrix elements of
the Green’s function separately. The results presented here
generalize known results for the nonrelativistic Coulomb
Green’s function.?® Also, this calculation illustrates contour
integration techniques capable of yielding closed expressions
for a number of overlap integrals associated with the relativ-
istic Kepler problem.

In Sec. II the relativistic Coulomb Sturmian basis sets
are discussed and the derivation of the overlap integral
between two different such basis sets is indicated. Although
this material is not especially new, the derivation of the over-
lap integral is considered because some intermediate steps in
the derivation provide a point of departure for the later work
with the Coulomb Green’s function. The Coulomb Green’s
function material is presented in Sec. III. Armed with the
contour integration technique used for the overlap integral,
it is shown how to obtain a closed analytic expression, in-
volving Gaussian hypergeometric functions, for the opera-
tor r'/2gr'/2, where g is the Coulomb Green’s function of the
second-order Dirac equation. The factors #!/? supplied on
each side of the Green’s function before taking matrix ele-
ments are essential to obtain this relatively simple result.
Because of these factors, the most difficult integrals encoun-
tered in Sec. III are of the Gaussian hypergeometric type.

Sturmian basis sets and the Coulomb Green’s function
of the second-order Dirac equation are discussed in detail in
the literature cited above. In the interest of brevity the reader
is referred to this earlier work, especially Ref. 4, for back-
ground material.

il. COULOMB STURMIAN BASIS SETS

The reader will find a more heuristic introduction to
Sturmian basis sets in the literature cited above. Here a pure-
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ly mathematical approach seems best. Relativistic Coulomb
Sturmian functions will be defined as the eigenfunctions of
the self-adjoint operator

172 a
0=
[ ] r2 3r or

e 1—<2y+1) H ] @D

acting on the space of spinor functions ® (r). Here 7 > Oisan
arbitrary real constant, and ¥ is a self-adjoint operator acting
on only the angular and spin degrees of freedom of $(r) and
having the eigenvalues ¥ =((J+1)*— (Za)’)"/? if
L=J+}andy=((J+1)?— (Za))'* - 1ifL=J—}
The corresponding eigenfunctions (r|7,n,L,J,M ) form adis-
crete basis. These eigenfunctions are proportional to the
spinor spherical harmonics Y, ;,, (r):

(r|17,n,L,J,M) == <r| I779n;LyJ>YLJM (l’) » (22)

J

(rl InmLJ ) = (29)°" [(n — DV (n + 29)1]'2

X (2qr)Y— e =L 2+ (2pp) .
(2.3)

The corresponding eigenvalues of Qare O’ = n(y + n).
The double bar notation {r| [5,nL,J ) is used to signify the
radial part of the wave function of the particle. The radial
function (7| [n,n,L,J ) is without spinor structure.The angu-
lar momentum quantum numbers L, J, M are the familiar
ones, and # runs over the range 1,2,3,..., independently of the
other quantum numbers. The Sturmian functions (2.2) obey
the orthogonality and completeness relations (7,4 |3,B )

=68,45,1=2,|n4)(nA4|. Here and subsequently when
convenient the shorthand notation 4, B, etc. is used to sig-
nify the whole set of quantum numbers n, L, J, M.

In applications the Coulomb Sturmian functions (2.2)
are needed sometimes with one, sometimes with another val-
ue of 7. Accordingly, the overlap integral'®

(oA | [1.B) = (1,8 o4 )= f " Pdrned | P 17.B)

(=1 (n, +29) (n_ + 2;/)!]‘/2 (28 —¢Hr+! £y
(n, =1} (n_—1)! 2y + 1!
XFi(=(no = D2y + 140 2y + 220 — %), (2.4)
. r 2
is sometimes encountered. In Eq. (2.4) n_ =min(n, 1 du (1 +u)ret?
= No,Ng =n), n, =max(n,,ng), and { is the parameter 2miJo ) u™
£=210/(n + 7o) (2.5) L g, QW 1

The contour integration technique needed in Sec. III will be 27 Joo+) w” (w—w,)*?
illustrated here in a simpler context by indicating the d’erivz.i- _ 4.+ uln, 28)
tion of the overlap integral (2.4). Also, the first steps in this w,= — m — .

derivation provide the starting point for the more involved
calculation of Sec. IT1. As noted in the Introduction, the final
result, Eq. (2.4), of this section is not new.

Proceeding with the derivation of the overlap integral
(2.4), the Laguerre polynomials under the integral sign are
replaced using the integral representation®!

n+p
L“(z):i dte _'z_(_l_+_t)____'

2mi Joo+)

(2.6)

" +1
The r integral then goes over into a special case of the formu-
la

I'(v)

- -]
f drr—le-or="""21
o a¥

Re(v) >0, Re(a)>0,

larc(e)| <m/2. 2.7

At this point the formula

(n0:10] |7,10)
[21]0]”+‘ [(n0 — D2y + 1)!]"2
(ny + 2p)!
x[ (n—DIQy + 1)!]1/2
(n+2p)!
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is obtained. In order to obtain the formula (2.8) the conver-
gence condition 7 + 1, + 277, Re(u) + 297 Re(w) > 0, cor-
responding to Re(a)>0 in Eq. (2.7), is requried to allow
performing the r integral first. Since 7 4 77, > O, this inequal-
ity can be arranged simply by taking the loop (0 4 ) about
the origins in the # and w planes sufficiently small. The con-
vergence condition then implies that 7+ 7,
+ 299 Re(u) > — 2 Re(w), — (9 + 75+ 2779 Re(u))
<27 Re(w), or Re(w, ) < Re(w) for all w on the contour of
integration. If follows that the singular point w, in the inte-
grand of the w integral in Eq. (2.8) lies outside the integra-
tion contour, when the contours are chosen so as to permit
performing the r integral first.

The next step is to perform the w integral. This is facili-
tated by the fact that the sum of the exponents in the inte-
grand is equal to minus two, (n-42y)+ (—n)

+ (— (2y + 2)) = — 2. Such an integral is said to be of the
Gaussian hypergeometric type. For an integral of the Gaus-
sian hypergeometric type a linear transformation
w= (At + B)/(Ct + D) can be performed and the trans-
formed integral will have the same general structure as the
original integral, having the same number of factors, each of
which has the same exponent as before the transformation.”
For example, to the factor (w — w,) ~ ?*? of the original

Levere Hostler 2985



integral, there will correspond a factor proportional to
(¢ —1,)?"*? in the transformed integral, where ¢, is the
image of w, . It is true that powers of a new factor (Ct + D)
are introduced by the transformation, but for an integral of
the Gaussian hypergeometric type the sum of all powers of
(Ct + D) that are introduced by the transformation just
cancels a corresponding contribution from the Jacobian dw/
dt. This “covariance” property of a Gaussian hypergeome-
tric integral under linear transformations can be used to
eliminate a particular factor of the integrand, thereby greatly
simplifying the integral. This is accomplished for the factor
(w—w,)~?*? in Eq. (2.8) by mapping the point w,
onto the point at infinity, ¢, = o . The linear transformation
needed for this is

w=tw,/(t+14+w,). (2.9)

The ¢ plane is mapped into the w plane in such a way that the
points 0, — 1, w, in the w plane go over into corresponding
points in the ¢ plane as follows:

‘w=0 w= —1 w=w, (2.10)
t=0 t=—-1 t=w
Accordingly, the w integral takes the form
_1— dw(1+w)n+2‘y 1
2mi Jo+) w" (w—w,)+?
o w1
(—w,)"*¥+! 2mi
><3§ g L0
©+) t"
— (1 (1+w,)""! 2!
(—w,)" ¥+ (n—DIQ2y+ 1!
(2.11)

when transformed into the 7 plane. The final ¢ integral in Eq.
(2.11) was evaluated by use of the following integral repre-
sentation of a binomial coefficient:

(n+2p)!
(n—DIy+ 1)1
(2.1

(2m‘)“3€dt(1 PR LS Bk

When the final result (2.11) for the w integral is substi-
tuted into the expression (2.8) for the overlap integral and
the factors ( — w, ) and (1 4 w), ) are written out in terms of
u, the overlap integral (7,,n,| |77,n) goes over into the form

(Nomol |1,m)
(ng— DI VV2[ (n+29)! ]2
= (4 )‘r+1[ Q ] ]
o'l (1o + 27)! (n—1)
S PCE hild
2mwi Jo+) u'

(o — 71 +2ume)" "

(170 + 1 + 2umg)" 27!
Notice that the final « integral is again of the Gaussian hy-
pergeometric type. Accordingly one final linear transforma-
tion is all that is needed to evaluate the overlap integral. This

(2.13)
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time the transformation is chosen to map
u, = — (1o +17)/(2n,) into the point at infinity, while
leaving =0 and u= —1 invariant. The factor
(70 + 17 + 2umy)" * 2+ ! is thereby eliminated from the in-
tegrand. The factor (79, — 7 4+ 2u7,)" ! that remains is ex-
panded by the binomial theorem, and the integral performed
term by term using Eq. (2.12). The result is the expression
(2.4) for the overlap integral. These final steps in the deriva-
tion need not be presented here in detail, since the results
needed for the Green’s function calculation of Sec. III are
already in place: the representation (2.13) of the overlap
integral forms the starting point for the Green’s function
calculation of Sec. ITI.

11l. STURMIAN REPRESENTATION OF THE COULOMB
GREEN'’S FUNCTION

The discrete representation
172 172
g=S[L] 3 |17,nLJM)(1],nLJM|[L] s-1,
2 we (y+myn—EZa 12
S=cosh (6/2) + io*?sinh (8/2),
9=tanh~(Za/K), K=oL+1,

(3.1)

of the Coulomb Green’s function of the second-order Dirac
equation has been derived earlier.* The derivation exploits
the Coulomb Sturmian basis set (2.2), with
n=(m? — E?)"2. The energy is for the moment assumed to
be a real number lying in the range |E | < Eyound state - This
restriction can be lifted later by means of an analytic con-
tinuation argument.

As indicated in the Introduction, Coulomb Sturmian
matrix elements will be investigated not for g itself, but for
r'/2grt/2, Accordingly, Eq. (3.1) is rewritten as

r2gr 2= (rSHg(rS 1),
g= RS |7,nLIM ){n,nLJM |
2 L (y+n) —EZa/y

3.2)

and the matrix elements of 7S, »S ~', and g will be sought.
The calculation of the matrix elements of 7S and 7S ~!is of a
rather trivial nature, and is discussed in the Appendix. Here
a closed expression for (1,n,.L,J.M |glnen,LJ,.M}, in
terms of Gaussian hypergeometric functions, will be ob-
tained. Note that, due to the diagonal nature of g in the
angular momentum quantum numbers, the matrix elements
(MosnpLJ M |glosn,,L,J,M ) aretheonly nonzeroones. The
real parameter 7, > 0 can be quite arbitrary. From Eq. (3.2)
the desired matrix element can be written in terms of the
radial parts of the Sturmian functions as

(non,LIM |g|non,LIM )

- v _1 (gonLJ| |gnLJ ) (qnLJ | |non,LJ )
=1 27 y+n—«
x=EZa/7 . (3.3)

Next, the overlap integrals in Eq. (3.3) are represented by
contour integrals according to Eq. (2.13),
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(nonLIM |8|770”1LJM)

_ (47 m”” [(”2— D2y + 1)!]*/2 [(n, - DIy + 1>‘]"’ 1 ff“’ (14u)m+2 !
(ny +2y)! (n, +2p)! 27i u™ (Mo + 1 + 2uny) 27 +2
§d (1 +wym+% 1 i (n+2y)! =Zn-1
2m w™ (Mo + 7+ 2wne) 7+ 5 (n—DIQy+1)! y+n—«’
g = (o — 1 + 2u10) (10 — 7 + 2w7o) (3.4)

(0 + 1 + 2umno) (10 + 1 + 2w1,) -
The infinite series in Eq. (3.4) can be summed by means of the binomial expansion

_ > (v—1+n)!
1—-2)""v= -_ " z|< 1. 3.5)
( ) o (v— 1! d (
In order to achieve this, the identity f,'dt#"+*~'~*=1/(n+ y —«) is employed to replace the denominator 1/
(n + ¥ — x) by a power. There is an assumption # + ¥ — « >0 needed here to ensure convergence of the ¢ integral. This
convergence condition is obeyed under the restriction noted above that |E | < E,,,una stare - When these changes are incorporat-

ed the matrix element takes the form
(non,LIM |g|non,LIM )

172 . 172 ! 4+ 2
—(217)2”‘[(”2_1)'(2”“)!] [(”‘ ”!(2”“)!] fdtzH-Z%ffdu————(H:i " (o + 1+ 2umy) ~ 72

(nz + 2?’)' (n1 -+ 27’)'
X[l__tno—”-'-zuno _27—2_1__ ” (1+w)"|+2’}’ (w w )—2‘)/—2
Mo + 1 + 2un, 2mri wh i ’
-1
w,= — Tty [To= 77+2m70] ”[ 17+2u770” (3.6)
270 Mo+ 7+ 2une liln, + 7 no+77+2u770

The w integral encountered in Eq. (3.6) is of the Gaussian hypergeometric type, and is in fact identical to the integral (2.11)
already evaluated, aside from the different meaning of w, . Using Eq. (2.11), and writing out all terms involving w, in terms of
u, gives

2y+2 — 1y 112 17172 "y +2
ClonaLM gl LM ) = (— 1y =+ SIS (= DLW R IR (g, oo L § g 2222
2y (ny + 2! (n,— 1! 0 2 "

[0 + 7 + 2u70) (19 — 1) — (o — 7 + 2un0) (o + )2 ]™ " (3.7)
[ (70 + 7+ 2umo) (o + 1) — (1 — 7 + 2uno) (570 — )2 1" +27 +!

The u integral in Eq. (3.7) is again of the hypergeometric type. The evaluation of the u integral begins with the linear
transformation

su, 11—t 2

= — u .= — = ’ 3'8)
s+l4u,’ * L 1+t1+0’ Mo+ 7 (
which has the effect of eliminating the factor
[(m0 + 7+ 2umo) (190 + 1) — (199 — 1 + 2un) (g — )2 ] ~ 2+ D
from the integrand, while preserving the general structure
u——nz(l +u)n2+21/.
The result of the linear transformation to the complex s plane is
(non.LIM |g|non,LIM )
1 o243 2y +1 ny,—n (”2—1)!]"2 (n1+27’)!]1/2j1 —x (l1—nm=-"
=—§ -0 a-=-50m"" drt?
5 5 (n, +29)! (n,— ! o (1—2(1 =¢)2)ym+m+2r
1 +S)"’+ 2 2 2 2, — 1
2m ds ———— [(1 =51 - +1s£2(2 -0 1"~ (3.9)

The result of the s 1ntegratlon is a hypergeometric function that breaks off to form a polynomial of order min(n,n,):
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(non,LIM |g|non,LIM )
1

___;274—3(2 ;)27+1(1

Jdt tr—x —
(l—t(l

;)n,—1+n.-—l

@y+ 1)
ZFI(—(nz_l)r‘—(nl_l)’27/+2;A)7 A=

)n2—1+n,—l

;)2)"2+ ny+ 2y

(n2+2,y)!]1/2 (n1+27,)!]1/2
(n, — 1)

(n,— 1)
t §2(2_§)2
(1-0% (1=07

(3.10)

It is now an easy step to complete the calculation and obtain a closed expression for the matrix element. The hypergeometric
polynomial ,F,( — (#n, — 1), — (n, — 1),2y + 2;A) is expanded in a series, and the integral over ¢ is performed term by term,

with the result
{non,LIM |g|non,LIM )

e temo1 1 (ny + 20172 [ (1, + 212
— 27+32 )27+1 l )2 1+n—1 2 ] [ 1 ]
—2%§ (2-¢ (1-¢ Qy+ DL (ny— 1) (n, — )
x"i‘ (== D)= —=1), [£22-OY/N -2 T (y+p+1—x)(n,+n,—2—2p)!
=% 2y +2), P! '(y+n,+n,—p—«)

X Fyny+n,+ 2y y+p+1—ky+n,+n,

—p—x(1=-5)%).

(3.11)

The result (3.11) has been confirmed by an independent calculation in which the matrix elements are derived from the

coordinate space representation of the Coulomb Green’s function,??

special functions.?*
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APPENDIX: MATRIX ELEMENTS OF THE FACTORS rS
ANDrs—1

Matrix elements of the operators

rS = rcosh(@/2) + rio-Fsinh(6 /2)
and

rS ~'=rcosh(8/2) — ric-#sinh(8/2) ,

f=tanh~'(Za/K),K=oL + 1,

will be considered briefly. The fact that @ is diagonal in the
angular momentum quantum numbers L, J, M makes the
calculation relatively easy: {7o,7,,L,J,M |r|no,n,LJ.M ) is
the key matrix element needed for the cosh (8 /2) terms of rS
and rS ~. The result

(nonLIM 2957 |on, LIM )
=2(y +ny)6,,,
— (ny(n, + 1+ 27’))1/25n,+ L,
—((ny =D (ny + 27’))1/25,.2‘ Ln,
for this matrix element incorporates the identities®
xLh(x) =@+ 14+2n)L5(x) —(n+p)Lh_,(x)
—(n+DL%, | (x) (A4)

(A1)

(A2)

(A3)

and®®
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and using integral representations from the theory of

—
f dx xte=* LB (x)LE (x) = B 5
0 n

' n,m °

(AS5)

Similar results can be obtained for the terms of rS and
rS ~linvolvingsinh(6 /2). This time the operator is diagonal
in J and M, but not in L. The identity o#Y,,,, (F)

= Y, ;5 (P), where L + L' = 2J, provides selection rules
according to which the key nonzero matrix elements needed
are now of the type

(Mosnan] — §IM 2907 |0n oT + 4, IM ),
or
(Mosnad + 5,IM | 2907|1000 — L,IM ).
The equation
(osnpLy =J — LIM |294r|m0,n,,L, = J + L,JM )
=8, [ (1) +27)) (0 + 29, — ]2
— 28, 0,1 [ny(ny + 27’1)]1/2
+ 5n2,n. palm(ny + 1)]1/2
and the analogous equation for
(Nosnad + LJIM 2007 (0601 ] — L IM )
can be obtained using the identity?®’
L3N x) =L7H (%) = 2L 7R (x) + LK (),
(A7)

(A6)

and Eq. (AS).

'A. Magquet, Phys. Rev. A 15, 1088 (1977).

2], Schwinger, J. Math. Phys. 5, 1606 (1964).

3L. Hostler, J. Math. Phys. 11, 2966 (1970).

“L. C. Hostler, J. Math. Phys. 24, 2366 (1983).

5N. L. Manakov, L. P. Rapoport, and S. A. Zapryagaev, Phys. Lett. A 43,
139 (1973); N. L. Manakov, L. P. Rapoport, and S. A. Zapryagaev, J.
Phys. B 7, 1076 (1974); Ya. 1. Granovskii and V. 1. Nechet, Teor. Mat.

Levere Hostler 2088



Fiz. 18,262 (1974); A. 1. Mil’shtein and V. M. Strakhovenko, Phys. Lett.
A 90, 447 (1982).

0. Laporte and G. E. Uhlenbeck, Phys. Rev. 37, 1380 (1931).

"R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).

8. M. Brown, Phys. Rev. 111, 957 (1958).

°M. Tonin, Nuovo Cimento 14, 1108 (1959).

10W. R. Theis, Fortschr. Phys. 7, 559 (1959).

''H, Pietschmann, Acta Phys. Austriaca 14, 63 (1961).

121, M. Brown, “Two-component fermion theory,” in Lectures in Theoreti-
cal Physics (Interscience, New York, 1962), Vol. IV.

131.. M Brown, Quantum electrodynamics at high energy,” in Topics in
Theoretical Physics, Proceedings of the Liperi Summer School in Theoreti-
cal Physics 1967, edited by C. Cronstrom (Gordon and Breach, New
York, 1969), p. 113.

41 C. Hostler, J. Math. Phys. 23, 1179 (1982).

151.. C. Hostler, J. Math. Phys. 26, 124 (1985).

11, C. Hostler, J. Math. Phys. 26, 1348 (1985); 27, 2208(E) (1986).

L. C. Hostler, J. Math. Phys. 27, 2423 (1986).

8], C. Biedenharn and L. P. Horwitz, Found. Phys. 14, 953 (1984).

191.. C. Hostler, J. Math. Phys. 28, 720 (1987).

2989 J. Math. Phys., Vol. 28, No. 12, December 1987

20R. N. Hill and B. D. Huxtable, J. Math. Phys. 23, 2365 (1982).

2H. Buchholz, Die Konfluente Hypergeometrische Function (Springer,
Berlin, 1953), p. 135, Eq (2).

2F, Klein, Vorlesungen ueber die Hypergeometrische Funktion {Springer,
Berlin, 1933).

BSee Ref. 4, Eq. (2.21).

24 An integral representation for a product of two Whittaker functions with
different arguments is needed [Ref. 21, Eq. (5¢), p. 86; the condition
Re(y) > Ostated in Buchholz is a misprint, and should read Re(#) > 0]; as
well as an integral representation for the Bessel function, I, (z) [G. N.
Watson, A Treatise on the Theory of Bessel Functions (Cambridge U. P.,
London, 1962), 2nd ed., p. 177, Eq. (8), and the relation on p. 77:
I(2) =e~ "] (ze™?), — w<arc(z)<n/2].

2See Ref. 21. p. 137, Eq. (10b).

%6See Ref. 21, p. 136, Eq. (9).

Z"See Ref. 21, p. 137, Eq. (10g) implies the relationship nL*(x)
—(@+mLs_ ((x)= —pLix)+ (u+mLi~'(x), or L%(x)
—L¥%_ (x) = L% '(x). This last identity used two times leads to Eq.
(A7) in the Appendix.

Levere Hostler 2089



A note on the electron self-energy
Alireza Abbasabadi and Wayne W. Repko

Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
(Received 1 October 1986; accepted for publication 30 July 1987)

Using dimensional regularization, the lowest-order electron self-energy function in an arbitrary
covariant gauge is derived. For off-mass-shell electrons, the usual expression for the finite
portion 2 , of the self-energy as the number of space-time dimensions 7 approaches 4 is
recovered. In the case of on-mass-shell electrons, the condition (§ — m)Z ,—0 as p—m, which
is necessary to make the usual separation of the renormalization constant unambiguous,
requires that # approach 4 from above, i.e., n—4 . This necessary condition on X , is not
satisfied by the off-mass-shell expression in the limit p> - m? due to a branch point in the self-

energy operator.

I. INTRODUCTION

The separation of renormalization constants from finite
quantities in renormalizable field theories is a time-honored
process which is facilitated by the use of regularization tech-
niques.’~® In quantum electrodynamics, the necessity for a
regularization scheme to respect gauge invariance was em-
phasized by Gupta.? Consistency with gauge invariance to-
gether with ease of implementation makes the dimensional
regularization technique® a particularly attractive alterna-
tive to regulator schemes involving covariant cutoffs. While
applying dimensional regularization for certain radiative
corrections to positronium energy levels and decays,* we en-
countered a question, which may be of general interest,
about how the renormalization constant associated with the
electron self-energy 2 (p) is separated from the finite part.

Recall that regardless of the method one may use for
regularization, it is convenient to express the regularized
2(p) as

S(p)=4 4+ @ -—mB+ @ —m)’Z(p), ()

where 4 and B are independent of the electron four-momen-
tum p, and

B—mZ 4 (P) | pom =0, ()

in order to have a unique decomposition in Eq. (1).

Evaluation of 4 is straightforward, whereas for B and
2 ;, some care must be exercised.” We should mention that
the 2 ,, which is usually found in literature,® does not satisfy
the condition given in Eq. (2).

In this paper we calculate the 2(p) in an arbitrary co-
variant gauge using dimensional regularization and express
it in the form of Eq. (1). Assuming that the electron is off-
mass-shell, we recover the usual expression for = , as the
number of dimensions n — 4. For an on-mass-shell electron,
our general expression for X | satisfies Eq. (2) if we assume
that the dimension of space-time is larger than 4 (n—4 ).

Throughout our paper, we use the notation and conven-
tions of Bjorken and Drell.” We also use the natural units
fi=c=1.

Il. ELECTRON SELF-ENERGY

Using dimensional regularization, the lowest-order
electron self-energy in an arbitrary covariant gauge can be
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written as®

d"k > 1

Qm?* p—k—m+in
1

Xy”——(g +ek” k”). 3)
k2 a4 k2

2(p)= —

Employing Feynman parametrization and performing the
integrals on k, we find

2(p) = (a/4m)T( —a)l,(p)
— (ae/4m)m T (1 —a)L(p) , (4)
where
Lo = 3 5o’ [anxero(1-=Ls),
P
Lpp) = Z hg (p)p" ! (5)
B=0
1 _ 1 a—1
Xf dxx"“”'(l -—E——x) ,
o P
with

p=(—p +m?)/m* —in
a=n/2—-2 (a#0,12,.),

(7>0), 6)

and we disregarded any overall multiplicative constant of
the form C°. The coefficients gz and s, are

g8p)=—2+e+2a+ea)p+ (4+2¢+2a+ea)m,
g,\(p)=(2—2¢+2a)p— (2¢ +ea)m, 7
g:(p) = (Be+ea)p,
and
ho(p) =p°p+p’m,
h(p) = —2p°p—p’m, (8)
h(p)=pp.

The integrals in 7, and 7, can be performed and ex-
pressed in terms of hypergeometric functions (Ref. 9, Eq.
3.194 1),
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a

I __.__
1(P) = a+B+1

Z 8s(p)

xF(—a,a +B+ La +B+2;p;l),
P

-1 €))

L(p) = 2 hﬂ(p)_-l-_ﬂﬁ

xF(—a+ La+B+2a+8+ 3;ﬂ),
P

with a# — 2, —3,..., and we have used the notation
F=,F,.

By using the analytic continuation of hypergeometric
functions for the region [p| < 1, and expanding them in terms
of a (see the Appendix), we obtain

2
ILi(p)= z gp(P)/lp(P) ’
=%

(10)

2
L(p) = z hﬂ YAz (p),
B=0

where, for 0 < |e| <} and |p| <1,
Ao(p) =1—=2a+ (p* — 1) [p/2(1 —p)]
X{—=1+[2+In(1 —p)]a} +0(a%),

1, 2=
2(1—)

><{1+[—2—

Ap) = a+ (p**—1)

4(1—p)2
In(1 —p)la} +0@@*, (11)
1, =13 +1lp—4
Ay(p) = —
3

29 _ 1 _r
+ (p )6(1_}0)3

x{—1+[1—63+1n<1—p)]a]+0(a2>,

and
)_P___
2(1 —p)?

[——l—ln(l—p)]+0(a),

2

Ao(p) = 1—1—- + (p* —

3P 2a __ P
2(1 7+ (e )2(1 —p)3

3
X___....
[ a+2

A](P)
(12)

+In(1 —p)] +0(a),

11p> —7p + 2 2 P’
Apy=E=TP+2 ()P
2P ==y T 2(1—p)*

[i__l_l._l (l—p)]+0(a)-

By inserting these expansions into Eq. (4) and rearrang-
ing terms, we find

=(p) =‘—’f4-’1rﬁr( —a)(3 —4a) +%r( —a)(p—m)
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x(ﬁ—m)(z_e—2+%e +3(p),
(13)
where
2(;,):.1.[()5_ )(6“2+2_2€)_M
4 1—p
r 1_ L 2a_1 P
XT( a)+4ﬂ_(p )—————2(1_/))
X{—(2+6)m+[(1+6)(2—p)[’
1—p
—(4+e)m”—%+l+ln(1—p)”
xT'(1 —a). (14)

The term 1/a reflects the infrared divergence, while the fac-
tor (p —m) in the second term of Eq. (13) comes from
(# — m) dependence of gs (p), and its coefficient gives the
ultraviolet divergence.

We write Eq. (13) in the following compact form:

3(p) =4 + (@ —m)B+ (B —m)’Z ,(p), (15)
where
= (am/4m)I'( —a)(3 — 4a), (16)
is the (gauge independent) self-mass,

B=2T(-a)(—1—€+4a)
47

+%I‘(l—a)2 (17)

a

is related to the wave function renormalization constant, and
we have used the following definition:

Ep)=@-mZ,(p) . (18)
Using the identities
B—m)=[—@F+m)/m’pl(p—m)? (19)
1=[(28 — mp +2m)/m*p*1 (p — m)?,
and Eqgs. (14) and (18), we find
14¢€
S.(0) =-2-T(1— [
r(P) o (1-a) - +Q2+e6C
+ (e_2+3p)p_1’+_’" €-2
mp a
+i’i__3_)ﬂ+ (4 +2¢)C
1—p
+Re—4+ @ —-2p+ (1 +e)p2)D” ,
20
where
C=(p* — 1)/2(1 —p), 1)

D=[(p*-1)2(1-p)’1[l/a—1—In(1—-p)]. (22)

Henceforth, we restrict the values of @ to 0 <a <} [thisis a
necessary condition in order to satisfy Eq. (2), see Eq.
(25)].

A. Abbasabadi and W. W. Repko 2991



The expression for 2 ((p) can be simplified (in terms of
a) if we write it in two separate forms, one for p = 0, and the
other for 0 < |p| < 1. In the following we use the notation

2"f(P)l}’:mEEon! (23)
Z0) | pum =2F . (24)
For p =0 (p = m), we have lim p** -0, and find
p—-0

a
o @ re_3 1
7 41Tm[( +3€)/a+ (1+¢)

P (2e—4)/a+8)IT(1—a).  (25)

For O<lp|<1 (p#m), we use the expansion
p*? =1+ 2anp, and find

soff )y — & [1+€ 3p+€—21
7P 4rml1—p (1—p)? ne
_Btm[(e—3)p+4
mp l—p
2 — —
" (1+e)p+ (4 26)2p+(2e 4) Inp
(1-p)
+€_2”I‘(1—a). (26)
a

Notice that lim, _,,,, ( — m)Z2"(p) -0 (this is not true for
2}"'). This relation assures that our decomposition of 2 (p)
in Eq. (15) is unique. It also guarantees that after mass re-
normalization, the electron propagator (near-mass-shell)
will be modified, due to the self-energy correction, by a mul-
tiplicative factor. We can extend the domain of 2¢¥ by ana-
lytic continuation. It will have the same form for |p|>1.

If we are not interested in a single expression for £ (p)
for whole region |p| < 1, we can find 22" by keeping only
those terms in expansions of hypergeometric functions [see
Eq. (A3)] which are up to the second order in p. For 2}“, it
is much easier to use the original Eq. (9), which can be
expanded in terms of p in region Re(p) > 1, and by analytic
continuation it can be shown that it has the same form for all
p (exceptatp =0).

llil. SUMMARY AND CONCLUSIONS

Our main objective for representing = -(p) by a single
expression is to show, in a clear way, that the inequality
lim,_, 29M(p)+ 2" is due to the use of the expansion
p* =1+ 2alnp in finding 3%, which is justified only for
p#0.

For one-loop corrections, the difference between 32"
and lim, _ ,, 2}“ does not present a problem since p is a non-
vanishing constant in these cases. However, when dealing
with multiloop corrections, some thought must be given to
the values of the integration variable encountered in expres-
sions containing 2 . In such circumstances, it is entirely
possible that the surface p = 0 could make a significant con-
tribution which is sensitive to the difference between =2"
and lim,_,,, =97, If this is the case, then one should employ
Eq. (20) for 2 ;(p), which is correct for all values of p.
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APPENDIX: REDUCTION OF /4(p) AND /5(p)

The analytic continuation of F (a,b;b + 1;(p — 1)/p) to
the region |p| < 1 can be found by the relation®

F(a,b;b F1; E_—l)
p

= bp* Fla,l;a—b+ 1;p)
—a
F(b+1)F(a—b)( P )” Al
+ @ T—p , (Al)

with condition |arg(1/p)| <, which can be satisfied [even
for real values of four-momentum p, since p = ( — p?
+ m?)/m? — i, 9> 0].

In this Appendix we work out F(—a+ l,a+2;
a + 3;(p — 1)/p); the other F’s can be found in a similar
way.

From Eq. (A1) we obtain

F(l—a,a+2;a+3;£;1—)
p

(@a+2)p' ¢
=272  F(l-—a,l;—2a;
2yl Tu—a #)
Fa@+3)I(—-1-2a)( p )““
+ . A2
L(l—a) \1-p (A2)
Using the formula
I'(c) & T'(a+m)
Fa,l;c. )=_ —_— < m’ 1,
@heo) =5 oy 2o Texm ” " PI<
(A3)
we find
F(—a+1,1;—2ap)
—14 1 T(—2a+1)
—2a I'(—a+1)
& I'(—a+4+14m)
X ", A4
m=1 T(—2a+m) (A

Notice that in the closed region of an annular ring which
is bounded by two concentric circles centered at origin of the
a plane, with radii €, and ] — €, (¢, and &, are positive but
much smaller than 1), '(—2¢+4+1)/T(~a+1) and
I'(—a+ 14+ m)/T'( —2a + m) are analytic functions of
a, and the series in Eq. (A4) is uniformly convergent
(|pl < 1) and consequently its sum is an analytic function of
a. Therefore F( — a + 1,1; — 2a;p) itself is an analytic func-
tion of ¢ and we can expand it about @ =0,
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F(—a+1,1; - 2ap)
1 < & d[(=2a+1)
=1 +——[ mp™ +a —_—
—2a ,,;1 P mz-_—l dalT(—a+1)
'(—a+1+m)
I'(—2a+m) la=
_ 2—3,02 L P
2(1—p) 2(1—-p)
—p 1
—— — 4+ 0(a).
+ 2—p) a (a)
In derivation of Eq. (A5) we have used the following formu-
las (Ref. 9. Egs. 8.36 and 1.513 6):

I'm+1) ') _ &1

P+ 0(a2)]
1]

7 In(1 —p)

(AS5)

—_, =1,2,3,..., A6

Tm+D T &k (A8)
o0 m 1 __1

Y me In(1 —p), A7

mzz,(k; o 7=, =) (AD

S = (A8)

P
with their derivatives with respect to p (after multiplying by
appropriate powers of p).

For the second term of F(—a+ l,a+ 2;a+3;
(p — 1)/p)in Eq. (A2), we obtain

m=0

T@+3)(—22—1)( p )M
I(—a+1) \l1—p
1 T(a+3)T(—2a+1)

T(2a—D(—2a) T(—a+1)

pa+2
x——)—zll—aln(l—p)+0(a2)]

(1—p
a+2
=-(—l’f7[%—%—ln(1—p>]+0(a), (A9)

2993 J. Math. Phys., Vol. 28, No. 12, December 1987

where we have used the expansion

(1—p) *=1—aln(l—p) +0(a?), |p|<l!.

(A10)
Therefore, combining (A2), (A5), and (A9), we find, for
lol <1,

F(——a+ 1,a+2;a+3;&1)
p

Ikl U ST ] £
(1-p)la 2 n(l=p) +(1—p)2
X[_L_i+l+1n(1-p)]+0(a).

a 2 p
(Al1lD)
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Chiral symmetry breakdown. lli. Delbourgo’s gauge technique

D. Atkinson, A. Hulsebos, and P. W. Johnson®
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The quark propagator in massless quantum chromodynamics (QCD) is analyzed using the
gauge technique. In both the Feynman and Landau gauges with a Pauli-Villars cutoff, a
chirally symmetric solution is found, while a nonsymmetric solution appears at a critical
coupling 4. > 0. As the cutoff is removed, A tends to O but the nonsymmetric solution
vanishes in the continuum limit, so that chiral symmetry is then restored.

I. INTRODUCTION

Spontaneous dynamical breakdown of chiral symmetry
represents an interesting and potentially important means
through which particles become massive at a certain critical
coupling strength because of interactions with the quantum
field.! In QCD, this phenomenon provides a mechanism for
quarks to acquire constituent masses in a formally massless
theory through nonperturbative effects. The occurrence of
dynamical symmetry breaking is investigated by analysis of
Dyson-Schwinger equations for the fermion propagator.
Such analyses are hampered by a degree of arbitrariness, in
that the effect of unavoidable truncation of Dyson-
Schwinger equations is difficult to assess.

Some time ago Maskawa and Nakajima showed that, in
the context of quantum electrodynamics (QED), when the
fermion—fermion—photon vertex function and the photon
propagator are replaced by their free values, the solutions of
the Dyson—-Schwinger equation exhibit spontaneous chiral
symmetry breaking.? In a recent paper we demonstrated that
this spontaneous symmetry breaking occurs when one intro-
duces both an infrared and an ultraviolet cutoff.® In a more
detailed analysis of the problem, this truncation procedure
was found to be unacceptably gauge dependent. We showed
that chiral symmetry was indeed broken in the theory with
cutoffs present, but that the symmetry was restored in the
continuum limit in certain gauges.* It was found that chiral
symmetry breaking was very sensitive to the infrared and
ultraviolet behavior of the gauge-dependent free photon pro-
pagator. Furthermore, we showed that this sensitivity to
choice of gauge remained even when the truncation proce-
dure was modified to maintain consistency with the “trans-
versality” constraint coming from gauge invariance in the
ultraviolet.” It is our conclusion that the free vertex approxi-
mation cannot provide a reliable indication as to the occur-
rence of spontaneous chiral symmetry breaking, and that
other truncation schemes should be explored.

Truncation of Dyson-Schwinger equations is certainly
an ad hoc procedure based primarily upon expediency, but
one must make use of physically motivated conditions or
requirements whenever possible. Several authors have cho-
sen the quark—quark—gluon vertex in QCD to decrease as 1/
log ¢° at large ¢?, in correspondence with the ultraviolet be-
havior imposed by asymptotic freedom.*® We have shown

® Permanent address: Physics Department, Illinois Institute of Technolo-
gy, Chicago, Illinois 60616.
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in Ref. 4 that chiral symmetry remains unbroken in certain
gauges in the continuum limit in this case as well, because of
formal divergence of the loop integral in the Dyson~
Schwinger equation. We conclude that this truncation
scheme has essentially the same difficulties as the free vertex
approximation, and thus that one must look further to ob-
tain a resolution of the ambiguity associated with gauge-
dependent results.

The free vertex truncation, as well as its renormaliza-
tion-group-improved counterpart discussed in Ref. 4, is not
consistent with the Slavnov-Taylor identity, and therefore
stands in direct conflict with the requirements of gauge in-
variance. The gauge dependence of the results on chiral sym-
metry breaking is a manifestation of the gauge dependence of
the truncation scheme. By contrast, in the truncation
scheme proposed some time ago by Salam and Delbourgo,’
and studied by a number of people,'®'! one maintains consis-
tency with the Slavnov-Taylor identity for the vertex func-
tion, and thus the effects of gauge dependence should be
reduced.

Here we will study chiral symmetry breaking in the Sa-
lam-Delbourgo scheme, which is based upon spectral 4An-
sdtze for the propagator and vertex functions. We replace the
gluon propagator by a free massive one, and discuss both
Feynmann and Landau gauges in the Dyson-Schwinger
equation in Sec. II. The formal divergence of the loop inte-
gral is removed by introducing a Pauli-Villars cutoff; and
the Dyson—Schwinger equation reduces to a homogeneous
linear equation for the spectral density function, which has
nontrivial solutions.

We find that when the cutoff is present, only a chirally
symmetric solution occurs below a critical coupling A, >0,
whereas above A, nonsymmetric solutions are also present.
In the continuum limit as the cutoff is removed, A, goes
formally to 0. However, in both gauges only the chirally
symmetric solution survives. Therefore in the Salam-Del-
bourgo formalism chiral symmetry is restored in the contin-
vum limit.

Il. SALAM-DELBOURGO ANSATZ

The Dyson-Schwinger equation for the quark propaga-
tor S';(p) can be written

BSE(P) —2Z(P)Sr(p) =1, (2.1
where the self-energy is given by
© 1987 American institute of Physics 2994



(;f’:)Jm 1,80 — )T, (p — kp)D #(K),
(2.2)

where T, is the gluon-quark vertex function and D ; the
gluon propagator. Here g is proportional to the SU(3) cou-
pling constant.
The Lehmann representation for the quark propagator
can be written
p(w')

S = ) dw' ,
7P f_w v p—w +iee(w')

where e(w') = sgn(w'), and p is an unknown spectral func-
tion. If p(w) is even in w, S (p) has the form p times a
function of p?, and so chiral symmetry is then unbroken. The
Salam-Delbourgo Ansatz assumes that

Srp—k)L,(p—kp)SE(p)
1

* . 1
J_wdw”(w) P k—w " p—w
where the iee(w') is to be understood in both denominators.
It is easy to see that (2.4) is consistent with the Slavnov—
Taylor identity for I, .
With this Ansatz, the Dyson—-Schwinger equation (2.1)
can be rewritten in the form

2(p) =

(2.3)

, 2.4)

| dw'p(w’)[ﬁ—z(t—w')]p_l =1, @5
where

2 ’/= lgz fd4k —1—‘—VD’#vk.

(pw) (27)4 ‘yvp_k_w,y F ( )

(2.6)

In this paper, we propose to consider the Feynman and the
Landau gauges. Moreover, we shall remove the divergence
of the loop integral (2.6) by introducing a Pauli-Villars cut-
off. We write

D # (k) = D#¥(km) — D*(k,A), (2.7)

where the cutoff A is much greater than m, the gluon mass,
and where, in the Feynman gauge,

D* (km) = — g /(k* — m? + ie), (2.8a)
and in the Landau gauge,
k*k” 1
Dty = [ g+ £ .
(korm) g k*+ielk?—m?>+ie
(2.8b)

The corresponding expressions for 2 can be calculated:
Qww',m) — Q(w,w',A)

S (') =/1f°° dw

pP—w
(2.9)
Here A = g*/(167*) and
Q(w,w',m)
= [e(w)/w*]0(|jw]| — |w'| — m)
X [w? — 4ww’ + w'? — m?]
X{[w? — (W' + m)*]{w? — (W' — m)?}}/?
(2.10a)

in the Feynman gauge, and
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Q(w,w',m)
=3j[e(w)/w*10(|w| — [w'| — m)[(w — w')* — m?]
X{[w? — W' +m)*][w? — (w' — m)*|}/?
(2.10b)
in the Landau gauge. The expression (2.9) for 2 (p) involves
a convergent integral in both gauges, because of the Pauli—
Villars cutoff.

In each gauge we substitute (2.9) into (2.5) and partial-
ly fractionate, obtaining

® ' N
= dw' p(w')
f_w A

—AJ dw' p(w')

XJ‘ dw" Qw",w'm) — Q(w" w,A)

—w

w' —uw
X[ L - 1 ] (2.11)
p_wll p—w’
The imaginary part of this equation is
B(w)p(w) =/1f dw' pw')
” Q(w,w',m) — Q(ww',A) L (212)

w—uw
where

Qw',w,m) — Q(w',w,A)
w—w '

d(w)=w +/1J‘°° dw’
o (2.13)

The function ¢(w) may be calculated in closed form for ei-
ther gauge. Equation (2.12) will be analyzed, in these
gauges, in the next section.

i1l. ANALYSIS OF THE EQUATION
Equation (2.12) can be written

d(w)p(w)
{w] —m ,
=20l —m) [ dw pun) 20m)

— |wl+m _

lw| — A ,
— A6(|w| —A)J s p QA
—lwl+A w—w
3.1)

The 8 functions are already implied by those in (2.10), they
are included explicitly above to emphasize that the right-
hand side of (3.1) vanishes when |w| < m.

First note that the denominator w — w' never vanishes,
and that the kernel in continuous. The function ¢ (w) is also
bounded and continuous, and we may write

where
M dw
Pwm) =2 f W b, m?)
lw| +m LU'3
X{[w’z _ (w + m)Z] [wrz _ (w _ m)2]}1/2
(3.3)
with
P(w?uw?m?) =3 + Quw? +m?)/(w? —w?) (3.4a)
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in the Feynman gauge, and

P(w?w?m?) = (1 + m*/(w™ — u?)) (3.4b)
in the Landau gauge. It is possible to express ¥ (w,m) in
terms of elementary functions in both gauges. We have intro-
duced a cutoff parameter M in the integral (3.3), which
must be taken to infinity in (3.2). The integral in (3.3) di-
verges logarithmically as M — «, but the function ¢(w) in
(3.2) is well defined in this limit. In particular,

d(w)/w—1—bA log(A/m) 3.5)

as w—0, where b = 6 in Feynman gauge and b = 3 in Lan-
dau gauge. In both gauges, ¢(w)/w is monotonically in-
creasing for w> 0 and

$(w)/w-1

asw— + co.
The odd function ¢(w) is zero at w = 0. In addition,
under the condition

A>A.(A) = [blog(A/m)]~},

(3.6)

(3.7)

it has a pair of zeros at w = + w,, where w; is positive by
convention. The function ¢(w) has no positive zero for
A <A.. Note that the critical coupling 4. (A) goes to O as the
Pauli-Villars cutoff parameter tends to infinity.

Let us consider Eq. (3.1). We know that any solution
p(w) vanishes for |w| <m. Furthermore, for m<|w| <2m,
the values of w' in the integrals on the right-hand side of
(3.1) satisfy |w’| <m, for which p(w') is 0. Consequently,
p(w) actually vanishes for |w| < 2m. In fact, one may iterate
this procedure to show that p(w) vanishes for all w. The
conclusion is unavoidable if one requires the spectral density
p(w) to be a bounded continuous function. However, it is
also possible for p(w) to have delta distributions at those
values of w for which ¢(w) is 0; ¢ (w)p(w) and the integrals
in (3.1) would then be ordinary functions.'? Therefore, loca-
tion of the zeros of p(w) is a crucial ingredient in solving
3.1).

Let us set the mass scale by taking m = 1, and define the
function

/10(w01A) = ['p(w(),l) - ¢(w0)A)]—'l' (3'8)

For coupling strength A = A,(w,,A) with cutoff A, the func-
tion ¢( 4+ w,) is O, provided that A, is greater than the criti-
cal coupling 4. (A); cf. Eq. (3.2). We find that A,(w,,A) is
monotonically decreasing in w, for fixed A. The function
Ao(wg,A) is plotted against w, in Figs. 1(a) (Feynman
gauge) and 1(b) (Landau gauge). Note that w, goes to 0 as
A approaches the critical coupling 4. (A) from above.

In Figs. 2(a) (Feynman gauge) and 2(b) (Landau
gauge), w, is plotted against the cutoff parameter A for var-
ious choices of coupling strength A,. There is an approxi-
mate linear relation between A and w,, which can be under-
stood by examining the integral (3.3) in the parameter
regime M 2> A%> w2 »m? = 1, to obtain

Y(we,1) — P(we,A) =6 log(A/w,) + 2 (3.9a)
in Feynman gauge, and
P(we1) — Yp(wp,A) =3 log(A/wp) — § (3.9b)

in Landau gauge. Correspondingly, we get
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FIG. 1. A, vs w, for various values of the cutoff A: (a) Feynman gauge, (b)
Landau gauge.

9—2b
12
where b is 6 in Feynman gauge and 3 in Landau gauge, as in
Eq. (3.5) above. These relations are valid to within a few
percent for both gauges. Note, in particular, that for fixed 4,
w, tends to infinity with A.
Let us look for solutions of Eq. (3.1) of the form

, (3.10)

A=~w, exp[bL/l +
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FIG. 2. w, versus cutoff parameter A for various values of coupling
strength: (a) Feynman gauge, (b) Landau gauge.

p(w) =A5(w — wy) + BS(w + wo) + o(w), (3.11)
for constants 4 and B chosen arbitrarily, with the function
o(w) to be determined. We obtain
O (w,wy,m)

$(w)o(w) = A6(|w|

—m—wy)|A4
w— wp

Q(w’ - wam)
W+ Wy

+ B

[w} —m

+ A0(|w| — m)f dw'

lw| +m
Q(w,w ,m)
w._

Xo(w') — [m-A].
(3.12)

The terms involving A and B vanish when (w| < m + w,, and
soo(w) = Ofor |w| < m + w,, by the argument given before.
Hence we may replace 8(|jw| —m) in Eq. (3.12) by
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0(lw| —m — w,). Indeed, it may be sharpened to
8(jw| — 2m — wy), since |w'| can exceed m + w, only when
|w| >2m + w,. Now o(w) may be evaluated in successive
steps of width m; for m + w, < |w| < 2m + wy, it is given by
just the first line of Eq. (3.12), for 2m + we|w| <3m + w,
the integral contributes, but it involves only the domain
m+ wy< |w| <2m +wp, for which o(w') is already
known, and so on. In short, Eq. (3.12) is not a true equation
for o(w); it is rather a progressive algorithm for evaluating
o(w) to arbitrarily large w values, and the existence of a
solution, parametrized by A and B, is assured.

The solution implies the following Lehmann represen-
tation for the quark propagator:

(4+ B)p+ (4 — B)w,

2 2
D — Wy

Srp) =

—m — wy)o(w')

p—uw

(3.13)

There is a pole in the quark propagator at p*> = w3, but chiral
symmetry actually remains unbroken when A = B. To verify
the latter point, note that ¢(w) is odd, the inhomogeneous
term in (3.12) is an odd function of w when 4 = B, and the
solution o(w) comes out as an even function of w. Thus the
quark propagator (3.13) is proportional to # and chiral sym-
metry is preserved. The choice 4 # B leads to a propagator
that breaks chiral symmetry.

In the continuum limit (A — o ), the pole in the quark
propagator at p> = wj disappears to infinity. However, the
parameters A and B can also be taken to depend upon A. In
the continuum limit, the spectral density o vanishes, and the
renormalized quark propagator is of the form

Sr(p)=ap+b. (3.14)

The subtraction constants ¢ and b, while not determined in
the Salam-Delbourgo formalism, must be set to 0 on phys-
ical grounds. Consequently, only the trivial solution
S »(p) = O survives in the continuum limit.

Finally, we turn to the zero of é(w) at w = 0. There is
another solution of (3.1) of the form

pw) =8(w) + o(w), (3.19)

where o(w) satisfies Eq. (3.12) with replacements w, =0
and 4 + B = 1. The inhomogeneous term in (3.12) is pro-
portional to

AO(|w| — m)e(w) (1 — m*/w?)? (3.16)

in both gauges, and the solution o(w) is an even function of
w. Consequently, the quark propagator becomes

+2’5J dw' a(w)

The quark propagator has a pole at p*> = 0, and chiral sym-
metry remains unbroken at finite A, as well as in the contin-
uum limit.

In summary, we have found two classes of solutions: in
one class there may be a breaking of chiral symmetry with a
cutoff present, but such solutions trivialize in the continuum
limit; whereas the other class corresponds to unbroken
chiral symmetry. Chiral symmetry thus remains unbroken

Srp) = (3.17)
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in the continuum limit in the Salam-Delbourgo formalism.
These conclusions, which are established here in both Feyn-
man and Landau gauges, are shown in Ref. 13 to apply also
in the “Landau-like” gauge proposed by Maskawa and Na-
kajima in Ref. 2 and treated by us in Ref. 4.
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It is shown that streamfunctions g'*’, k = 1,2, can be defined to describe the two ionic states of
a weakly dissociated electrolyte in the presence of a uniform applied electric field. These states
comprise the dissociated state and the associated state and the g'*’ are shown to be governed

by a second-order partial differential equation. By consideration of characteristic numbers
describing the two ionic states this equation is solved using similarity solutions. The association
rate constant and relative increase in the dissociation constant due to the applied electric field
are shown to have simple expressions in terms of the g*). It is suggested that the
streamfunctions are more natural functions with which to describe the mathematical

properties of a weak electrolyte than the corresponding distribution functions. Some important
mathematical properties of the streamfunctions are discussed.

I. INTRODUCTION

Existing mathematical theories of the association and
dissociation of a weak electrolyte in the presence of a uni-
form applied electric field X (Refs. 1 and 2), i.e., of the so-
called Wien effect, are in terms of the distribution functions
f®(r,0), k= 1,2, describing oppositely charged pairs of
ions (7, j pairs), where 7 is the distance of separation of the
ions in a pair and 8 is the angle between r and X. The super-
scripts refer to the two ionic states that exist in weak electro-
lytes. These are the state of complete dissociation denoted by
superscript 1 and the associated state denoted by superscript
2. In these theories solutions for the ¥’ are sought from

divfPy® =0 (1.

that are the equations of continuity in the steady state of
ionic flux, where v'*’ is the mean relative velocity of an i ion
relative to the j ion of an i, j pair.

In Sec. II we discuss how the above-mentioned theories
donot take full advantage of Eq. (1.1) by showing how these
equations permit the introduction of the concept of stream-
functions g‘¥ (,8) to describe the two ionic states of the
weak electrolyte. Simple expressions for the association rate
constant 4 and the relative increase in the dissociation con-
stant K (X)/K (0) are deduced in terms of the g©>. We derive
the partial differential equation governing these streamfunc-
tions in Sec. III and in Sec. IV we deduce possible character-
istic numbers for the two ionic states of the weak electrolyte.
These numbers are employed in Sec. V in solving by similar-
ity solutions the governing partial differential equation for
the g'®. Finally both 4 and K(X)/K(0) are evaluated.

The originality of this work lies in the concept of the g*’
to describe the mathematical properties of a weak electro-
lyte, in the introduction of their governing partial differen-
tial equation, and in the solutions of this equation employing
numbers characteristic of the weak electrolyte.

Il. STREAMFUNCTIONS AND STREAMLINES

The law of mass action gives the equation for the time
rate of change of associated ions in a weak electrolyte as
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dv;
7 =dn;n, — KAv;,

(2.1)

where v; is the concentration of associated ions and »;, n ;
are the concentrations of dissociated ions. For a weak elec-
trolyte n;,n; £v;, which implies, that although #,, n; are
functions of the applied field intensity X, v, is independent of
X

In the steady state dv;/dr = 0 and the equation of con-
tinuity of ionic flux leads to Eq. (1.1).> The mean relative
velocity of an i ion relative to aj ion is given by

v = —grad® — (1/f®)gradf¥, k=12, (2.2)
where
b= —1/r—2ercos @ (2.3)
is the total electric potential of an i, j pair, € = 28q,
5= (w;6; — w;¢;)X L g= — ee; S0,
2kT (0, + w;) 2DkT

where w;, ; are the mobility coefficients of the i, j ions,
e;, e, their charges, k is Boltzmann’s constant, T is absolute
temperature, and D is the dielectric constant of the medium.
To be specific we take e; >0 and ¢; <0 so that 8> 0 and we
take the origin at the position of the jion of an /, j pair. In Eq.
(2.3) the coordinate » and potential @ have been nondimen-
sionalized by division by the characteristic length 2¢ and by
the characteristic potential kT, respectively. The /, j ions are
assumed to be point ions and we further assume that the
screening effects of the ionic atmospheres can be neglected in
the region of interest which is the innermost region of the
field of the ions. This is a valid assumption if 7, and »; are
sufficiently small to ensure that x~!>¢, where

k' ={DKT /4m(n,e} + n;e?)}'’. 2.4

Here «~! is the Debye-Hiickel radius of the ionic atmo-

spheres and ¢ is the Bjerrum association distance.

Since the flow pattern of ions in a weak electrolyte is
clearly axisymmetric about the direction of X we suppose
that there are functions g'®, k = 1,2, such that
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ag(k) ag(k)

or
(2.5)

Evidently Eq. (1.1) is satisfied by this set and we call the
g%*(r,0) the streamfunctions. Similarly to the well-known
definition of a streamfunction from fluid mechanics, g has
the following definition as a physical quantity: join a point Q,
not coincident with the origin O, situated on the axis of sym-
metry Z 'OZ to a point P whose cordiantes are r,6 by a curve
that lies in the plane of P and the axis. (See Fig. 1). In the
steady state, the value of 27g®’ (7,8) at Pis defined to be the
average flux measured relative to O per unit time of / ions
flowing across the surface of revolution generated by rotat-
ing the curve QP about Z 'OZ. The positive direction of the
flux is away from the axis.

The functions g'*’ are clearly independent of the choice
of the axial curve connecting Q to P and hence are functions
of positions only. Furthermore, there is no average flux of /
ions across the axis of symmetry and therefore the g**’ are
independent of the position of Q on Z 'OZ. When P coincides
with Q the average flux of i ions relative to O will vanish and
therefore

g(@) =0. (2.6)

We will choose Q tobeon the ray 8 = 7, r > 0and since there
is no average flux of / ions across this ray, the g/* are con-
stant along & = 7 and therefore from Eq. (2.6),

Psin 0f o = — , rsin@f v =

2.7

The streamfunctions lead naturally to the concept of
streamlines for dissociated ions and associated ions: a
streamline is a line in an axial plane that at any instant is
everywhere parallel to the average relative velocity vector
v®. The average flux of / ions across a streamline therefore
vanishes and so along a streamline g**’ (r,8) can at most be a
function of time. For a steady state this function of time must
be a constant and the equation of a streamline reduces to

g*(r0) =const, k=1,2. (2.8)
In the steady state the average flow field is the same for all
time and a streamline defined by Eq. (2.8) therefore coin-
cides with the average trajectory of an i ion relative to ajion
at O. The surface of revolution generated by a streamline
rotated about the axis of symmetry is called a streamsurface.

On a streamsurface, g’ = const. It is readily shown from
Eq. (2.5) that

v®-gradg® =0, k=12, 2.9)

which confirms that the flow field lies on the streamsurface.

g®(rm) =0, O<r<co.

yix

FIG. 1. Streamfunctions in a weak electrolyte.
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The associaton rate constant and relative increase in the
dissociation constant due to the applied electric field have
very simple interpretations in terms of the streamfunctions.
From Eq. (2.1),

An,(X)n;(X) = —f SOyV.g8, (2.10)
S

where §' is any closed surface completely surrounding the j
ion at the origin. But the distribution function describing
dissociated ions is the constant distribution’ f(,8)
= n,;(X)n;(X) so on normalizing with respect to the char-
acteristic distribution #,(X)n;(X), f"(7,6) =1 and Eq.
(2.10) gives

A= —fv“’-dS. 2.11)
S

The association constant is independent of the choice of §.3*
If we therefore choose for S a closed surface of revolution
generated by any axial curve joining any point Q not coinci-
dent with O on the ray @ = 7 and any point P(7,0) with r> 0
on the ray = 0, it follows immediately from the definition
of gV that

A= —21g"(r0). (2.12)

Again from Eq. (2.1) on normalizing f?(r,8) by divid-
ing by the constant distribution function #, (0)#, (0),

K(X) =—1—ff(2’v(2)-dS,
K0y A4Js

where S is any closed surface surounding the origin. From
Eq. (1.1) it follows that K(X)/K(0) is independent of the
choice of S. We choose for S the closed surface of revolution
chosen above for the association process. It follows from the
definition of streamfunction that

K(X)/K(0) = (2m/4)g?(r,0). (2.14)
The simplicity of both Egs. (2.12) and (2.14) lends
strength to the view that the natural functions to describe the
mathematical properties of the Wien effect on weak electro-

lytes are the streamfunctions g'*’ rather than the distribu-
tion functions.

(2.13)

lll. THE GOVERNING PARTIAL DIFFERENTIAL
EQUATIONS

We next derive the partial differential equation govern-
ing g (r,6) k = 1,2. From Eqgs. (2.2), (2.3), and (2.5)

(k) (k)
rzsinai———ag—+ sin (1 — 2¢e7 cos )% =0,
or a0
(3.1)
. af® ag® . 2
sin @ —— + —=— + 2ersin®’ 1% =0. 3.2
a6 + ar + 2ersin” 01 (3-2)
On eliminating /¥’ from these equations we obtain
3%g® 92 dg®
1 —2¢er? cos
ar T agr S s =5
Jg®
+ (2ersin @ — cot 8) P =0, k=12 (3.3)
The boundary conditions for dissociated ions are
e =1, (3.4)
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g (rm) =0, (3.5)
from Eq. (2.7) and for associated ions

lime= " f2(r,0) =1, (3.6)

r—0

lim f@(r,8) =0, (3.7)

g(Z)(r’ﬁ) = O’ (3.8)

from Eq. (2.7). Equation (3.6) is a manifestation of the
Maxwell-Boltzmann equilibrium distribution at the dis-
tance of closest approach of an i, j pair and Eq. (3.7) repre-
sents the requirement that an i, j pair must be separated to
infinity for complete dissociation.

{V. CHARACTERISTIC NUMBERS FOR WEAK
ELECTROLYTES

The total electrical potential of an 7, j pair is the sum of
the Coulomb potential and the potential due to the applied
electric field and is given by Eq. (2.3) that has the reference
direction, 6,, for potential, 6, = #/2. For given values of €
and 6, ® will attain a maximum valueat » = r,,,, , say, which
is given by r,,, = (2¢ cos 8) ~'/% The length r,,,, is finite
0«6 < /2 but is complex for 7/2 < 8< and would there-
fore not lead to a satisfactory characteristic length for the
weak electrolyte.

This difficulty may be overcome by introducing an ef-
fective potential ®, given by

®,(r,0)= — 1/r—er(cos @ + 1), (4.1)

which has the same value as ® at 8 = 0 and has a maximum
value for given values of € and 8 at r = r,,,,, where

Fonax 2(€(cos 8 + 1)) V2, (4.2)

The reference direction for ®, is &, = #, which, unlike the
reference direction for ®, has the virtue that it corresponds
to a streamline for both associated and dissociated ions.
With this definition 7, is finite for 0<@ < 7 having the min-
imum value of (2¢) ~'/? at @ = 0 and increases monotonical-
ly as @ increases from 0. Thus Eq. (4.2) may lead to a suit-
able radial characteristic length 2gr,,. for the weak
electrolyte. Accordingly we next transform the r coordinate

FEr/F e = r(ep)'?, (4.3)

where y21 4 cos 6.

For associated ions we shall find that the function to
work with is not g?(7,8) but is that obtained from this func-
tion by removing the factor expley(y — 2)]. We therefore
define G(r,p) such that

G(ry)2g?(r,0)exp| —er(y — 2)). (4.4)
If we similarly define

F(ry)& fo(r,0)expl —er(y — 2], (4.5)
then from Eq. (2.2)

v? = —grad ®, — (1/F)grad F, (4.6)

which shows that F(r,y) is the distribution function asso-
ciated with the potential ®,. Furthermore, from the first of
Egs. (2.5),
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1 3G

aQe + a_F . —€

ar ar  r Py
If we make the assumption that Fis an equilibrium distribu-
tion Focexp( — @, ), and Eq. (4.7) gives 3G /dy = — G/
(y/€)"? when r = r,,,, . This implies that a suitable charac-
teristic number for the y coordinate may be

Yeu = (p/€)'? (4.8)

and thus for dissociating ions we obtain a coordinate com-
panion to ¥ as

FE y/yg, = (ep)'2

F 4.7)

(4.9)

V. SOLUTIONS FOR THE STREAMFUNCTIONS
On setting g (7,0) = h ®(r,y), Eq. (3.3) becomes

aZh (k) aZ (k) ah (k)
I 2— 1—2er(y— 1)) T—
57 +y(2—y) £ + er'(y — 1)) o
ok ©
—2ery(2—y) =0, k=1.2. (5.1)

A. Dissociated ions
The boundary conditions (3.4) and (3.5) become
e =1, (5.2)
hP(r,0) =0. (5.3)

Weshallsolve Eq. (5.1) for 2 (r,y) using the similarity
transformation indicated by Eq. (4.3). By writing

hO(ry) =HY(Fy), (5.4)
Eq. (5.1) gives
(24 3y) 92HD
4y ar
—F(2—-y) 1201 P )3Hm
+(———-——-4y + @ -m)
_ 32 (1) aZH(l)
2 - 22—
+F(2—y) EE +y2—yp) Y
(1)
oH (5.5)

—2(ep)F (2 —y) —— =0.
dy

This equation is similar to the example discussed by Han-
sen’: if we set

HYFy)=FF 2 —y),
Eq. (5.5) gives
(2 + 3y F" 4+ ( —7(2 + 3y) + (€y)1/2(1 —7'2))F'

4y 4y

+ 2ey)VFF =0, (5.7)
which possesses only one solution, F(F) = 1 — 7, analytic at
the irregular singular point 7=0. Thus HY(Fy)

= (1 —7)(2—y) is a solution of Eq. (5.5) and the re-
quired solution of this equation is therefore

HY(Fy)=B,(1-7)(2—y) + B, (3.8)

where B, and B, are constants. The corresponding solution
of Eq. (5.1) is

hO(ry) =B (1 —ery)(2—p) +B,.

(5.6)

(5.9)
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The boundary condition (5.3) requires that B, = — 2B,,
and from Eq. (3.1) or (3.2) and Eq. (5.2) we find that
B,=1andso

B =1 —erfp)(2—y) =2
and
gM(r0) = — (1 4+ cos O)(1 + er*(1 —cos 0)) (5.11)

is the streamfunction describing dissociated ions.

Next consider the way in which association depends on
the angle of association. From the definition, 27g'"(,0) is
the averge flux of / ions in a direction away from the axis of
symmetry across the surface of revolution generated by any
axial curve joining the reference point Q on the ray 8 = 7 to
the point P(7,8). This flux depends on r and 8 since the
surface is not closed. Let us constrain P to vary only along a
streamline that intersects the origin. Then since g'” is con-
stant along a streamline g(7,0) = g'V(0,a), where a is the
angle which the streamline makes with X at 7 = 0, O<a<.
If we define 4 (a) to be the average association flux across
the surface of revolution generated by any axial curve joining
Q to any point P on the streamline making angle @ with X at
r =0, then

from Egs. (2.12) and (5.11). Here A(a) increases mono-
tonically as  decreases from 7 to 0, which is consistent with
the existence of a sink singularity at » = 0. We note that
A(a) is independent of €, which is a generalization of Lange-
vin’s theorem* that states that the association constant A is
independent of €. From Egs. (2.12) and (5.11), or Eq.
(5.12),

A=40) =

(5.10)

—27mg?(0,@) = 27(1 + cos a)

(5.13)

B. Associated ions

We have to solve Eq. (5.1) with k = 2 subject to bound-
ary conditions (3.6), (3.7), and Eq. (3.8) becomes

A®(r0) =0. (5.14)
We first observe that if we define p(r,y) by
hP(ry) =p(ry)expler(y — 1)], (5.15)
Eq. (5.1) is rendered in separable form,
2% dp
=L —ér
or t o or P
2
= —y2-»ZL _ey—1yp, (5.16)
dy
which on setting p(r,y) = R(r)Y(y) gives
ﬁ‘firf d —(@P+ )R =0,
i (5.17)
~1)+A)Y=0,
where A is the separation constant. Thus
d’R 1 dR
—_— —€€R=0 as r- oo, 5.18
@ Far S e -18)
from which
R~Cie"+Ce™ as r-o, (5.19)
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where C, and C, are constants. But lim,_  rf?(r,0)
= expler(cos @ — 1)] (Ref. 6) and so from Eq. (3.2) C,
must be 0 giving

hP(ry)~expler(y —2)] as r— oo. (5.20)

Since this function depends explicitly on € when we trans-
form to the coordinates 7, y defined by Egs. (4.3) and (4.9),
we define H ?(7.5) by

hP(ry)2H?PFy)expler(y — 2)1, (5.21)
whence Eq. (5.1) gives
7 9°H® i 27"2 OH?® 7a3*:H®?
R +_
7 (2y 'y') F 'y oy
_i_aH(Z) _l_aZH(Z) _2H(2)
2% 9y 2 &
3 _ aZHQ) _ 7 aH(2)
e )
‘T e V)
7y 9°H?
2 a5
= @ =2 427702
yoH? 34 H2 +_]_)2H(2)] —0. (5.22)
4 dy 4 Jdy

If we further assume that H ® (7,7) is not an explicit function
of € then we must have

;2 azH(Z) _ (-';:_ 272\6H(2) Za2H(2)
WGP w3/ F y T
2) 2 2)
10HZ 1°H” ,ho_g (5.23)
2y ay 2 &
and
3 _,92H? (_ 7) dH? 75 3*H®
N I _D
s VY TF T s
- 2) =2 2 2)
JOHZ JIHZ  ppe_g (5.24)
4 dy 4

First consider Eq. (5.23), which is a parabolic equation
whose characteristic directions are given by
2
__7; ( dy\* 2¢dy t1=
¥ \&7) 5 dF
and which has the solution § = const 7. We therefore define
the canonical coordinates

(5.25)

EFY) =3/7, =9y, (5.26)
and q(£,m) = H®(7y) and Eq. (5.24) becomes
(Ze(&) +i2a +L(£77_)2)3_29_

25> \ oF FoFF  2\F/)/) op
7 d% 7 271 dn
2 75—_*-( ¥ = P12 7T 7 ]HF
I_ﬁ_iﬂ_iﬂ)_ﬁi_zq_o
yaordy wd 2 /Iy
(5.27)

For a parabolic equation the choice of %#(7,y) is arbitrary. If
we take 7 =y, Eq. (5.27) reduces to

d%q 1 Jq dq
_— 1 —— —49=0, 5.28
Nl I 29
and on setting ¢(§,y) = Z(&) Y(¥) in this equation we ob-
tain
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— T yY=0 5.29)
¢y dy Y (
and
dZ
484 —4)Z=0, 5.30
dé_+(7’ ) ( )

where 7 is the separation constant.
Equation (5.29) is solved by setting Y (¥) = yW(¥) and
it then becomes

d*W  _dw _
-2 2
+y——(1 W =0, 5.31
y = y p (1+9 (5.31)
which has the solution

W) = const, I,(¥"'%) + const, K, (¥'%), (5.32)

where I,, K, are, respectively, the modified Bessel function
of the first kind and modified Bessel function of the second
kind both of order 1. Equation (5.30) has the solution

Z(&) = const exp[ (1 — y/4)E], (5.33)
and thus the solution of Eq. (5.23) is
HPFp) =5 expl (1 — y/4)5/FUD ., (v
+ DK, (7)), (5.34)

where D, and D, are constants. However yI,(7'/%)

=0(?) asy-0and 5K, (") = O(y~"?) asj-0s0in
order to satisfy the boundary condition (5.14) we must have
D, =0so that

HPFy) =D, yexpl(1 — y/4)3/F1L,(¥"'%5). (5.35)

Furthermore this solution satisfies Eq. (5.24) if and only if
¥ = 4. Thus the required solution to Eq. (5.22) is

HP(7y) = D, 31,(2p), (5.36)

or in terms of the »,8 coordinates the required solution to Eq.
(3.3)is

g2(r,0) = D,(2¢)"? cos(8 /2)1,((8€) Y% cos(8 /2))

(5.37)

The final problem in determining g® (,) is to evaluate
D,. We have, from Egs. (3.1), (3.2), and (5.37) using the
identity” xI' | (x) = — I,(x) + xI,(x),

2
agr + (;12——26008 G)fm

2¢)'/? 6
= - D,(26)”2[-£;)T I(,((Se)”2 cos ?)

Xexpler(cos 6 —1)].

+ £ cos —‘ZII((SG)”2 cos i)]
r 2 2

Xexpler(cos 8 —1)], (5.38)
)
age + 2ersin 6@
= D2'/2¢3/2 sin%],((&s)”z cos %)
X expler(cos 8 —1)]. (5.39)

Next consider the Pfaffian differential equation arising from
this pair of equations. This is
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dro = [( ~ 1 4 ecos 0)[‘2’
rz
0

1/2
_D 1/2[ (2¢) I( 12 oo 7
1(2€) 53 ol (8€)/“ cos 5

N—

+ ; cos %Il((&s)”2 cos %)]
Xexpler(cos @ — 1)]]dr

+ [ — 2ersin 8@ + D22 %in %

><I,((8¢s)”2 cos %)exp[er(cos 6— 1)]]d0.

(5.40)

This equation is shown to be integrable in the Appendix. We
integrate using the method of Natani.® First we treat the
variable 7 as a constant and solve the resulting differential
equation. Taking r as a constant, Eq. (5.40) becomes

@
d;ﬁ + 2¢rsin 6 @
= D,2'%€*/? sin %Il((Se)”2 cos g—)

Xexpl[er(cos 8 —1)],
which implies that

(5.41)

f@(r,0) =exp[2ercos 0] [D,Z”zé‘/2 f sin g
1/2 6
X]]((SG) cos —2-—)

Xexp[ —er(cos 8 + 1)1d6 +D3(r)],
(5.42)
where D,(r) is a function of » only.

The right-hand side of Eq. (5.42) may be integrated by
the substitution

u=(8)"?cos (8/2) (5.43)
and the identity
A WL, ) =0t () (5.44)

du "
for modified Bessel functions I, of the first kind of order n.
We find that

— (2e)1? f sin -—QI,((SG)I/Z cos i)
2 2
Xexp[ — er(cos 8 + 1)1d6

2
=e—'"’/‘(lo(u) + 20w + (—’;-‘-) ,(u)

4o +(1;‘-)"1n(u))+Rn<u), (5.45)
where

r n+1 2
R, (u) = (—5-) fu”* I (u)e ™% du. (5.46)

The remainder can be evaluated as follows. Using the expan-
sion
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Law=3 —! (“)"“s (5.47)
u) = —_|— .
n ,;o si(n+s)N\ 2
and making the change of variable v = ru*/4 we have
R, = i S S J.v"“e‘”a'v. (5.48)
=o sl (n+4+)"r
But by successive integration by parts
n+s
fv"“e‘"dv: —e Y(n+5)! 2 L (5.49)
F=o p!
and so
o n+s
Ro=—erS LYY (5.50)
& siF o p!
and
mR, = — 3 ——= — e (5.51)
B o0 s=0 sir
Thus

— (2e)'/? J sin —Z—Il((&s)”2 cos %)

Xexp[ —er(cos 8 + 1)1d0

r(8€)'? cos (0/2)>1’

=exp[ —er(cos 8 +1)] i ( 5

p=0

><Ip((86)”2 cosi:-)—e"’, (5.52)

and Eq. (5.42) therefore gives
f(z)(r,e)

= — Djeexpler(cos 6 —1)]
e (r(8€)”2 cos (0/2))P

Xy 5

p=0

XIP((86)1/2 cos %) +Die exp[—!- + 2ercos 6 ]
r

+ Dy(r)exp(2er cos 8). (5.53)
We next set & = 7 in Eq. (5.40), which becomes
dre ( 1 ) o_ _ De
—+2 = — "L exp( —2er), (5.54)
7 + > +2€)f 2 p( ), (

and which has the solution

f@(r,m) = — D,e exp( — 2er) + D, exp(1/r — 2er),
(5.55)

where D, is constant because  has been given the definite
value of 6 = 7. Comparing Eq. (5.53) with 6§ = 7 and Eq.
(5.55) gives

Dy(r) = (D, — €D,)e"”
and so
f2(r,0) = — D,eexpler(cos 6 —1)]

) 1/2
Xy (r(8€) ;os (9/2))‘,1,,((86)”2 cos —g)

(5.56)

p=0

+ D, exp(i + 2er cos 6) (5.57)
r

and the boundary condition at 7 = 0 [Eq. (3.6) ] therefore
gives D, = 1.
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To determine D, we have first the identity®
X 1

exp[-2—(5+—)]= i s'I, (x).

s o
Taking x = (8¢)'/?cos(6/2),s = r(8¢)'/? cos(8/2)/2,
Eq. (5.58) gives

" 1/2 n
Z(,(ge) ;os(0/2)) I”((Se)”zcosg)

-3 2 " 1/2 i)
ngl(r(Se)”zcos(E’/Z)) I,,((Se) cos

(5.59)

(5.58)

n=0

+ exp[i + er(cos @ + 1)]
r

and using this with D, = 1 Eq. (5.57) becomes
f@(r,0) = D,eexpler(cos 8 —1)]

oo 2 n
X
,.Z:l(r(se)”2 cos (0/2))

><I,,((86) Y2 cos %)

+ (1 — eDl)exp(—l— + 2¢er cos 0) (5.60)
r

and the boundary condition (3.7) therefore requires that
D, = 1/€ and so from Egs. (5.37) and (5.57),

fP(r,0) = — expler(cos 8 —1)]
w (r(&s)”2 cOS(G/Z))"

X
p;() 2

XIP((SG) 12 cos —g—)

+ exp(i + 2¢er cos 6) (5.61)
r
and
172
g2 (r0) = (—2—) cos —0‘11((86)1/2 cos i)
€ 2 2
Xexpl[er(cos 8 —1)]. (5.62)

The equivalence of Eq. (5.61) and Onsager’s expression'

f(2)(r’0) —_ 1

——exp[—l— + er(cos 6 — 1)]
r r

1
xf Io((86)”2cos%)e_”'ds (5.63)
0

may be easily demonstrated. Furthermore from Eqgs. (2.14)
and (5.13), Eq. (5.62) gives

KX)_ 1 1,[(8¢)'?]

K0) 2 (2¢)'?
which is Onsager’s well-known result.

We further observe that since £ = 3/ 7 = 1/7, the trans-
formation 7 = 7(ep)!/2 is unnecessary in the above analysis.
The only necessary transformation is y = (ep)'/?, which
suggests that the characteristic length for associated ions is
the transverse length 2gy ;7. = 2¢/€.

Finally, the following important deduction may be
made from Eq. (5.62). Let us define 47K (6,;€) as the aver-

g2(r0) = , (5.64)
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age flux of i ions away from the axis across the surface of
revolution generated by any axial curve joining the reference
point Q on the ray 6 = 7 to any point P on the streamline
that makes an angle 6, with X at » = 0. Suppose that P is
constrained to vary only along this streamline. Since g is
constant along a streamline g?(P) = g®(0,6,) and there-
fore

K(6p€) = 18%(0,8,)

= cos(8,/2)1,[ (8€)''? cos(6,/2) ]/ (2¢) /2.
(5.65)

The function K ( 6,;€) increases monotonically from 0 to
K(X)/K(0) as 8, decreases from 7 to 0, which is consistent
with the existence of a source (for associated ions) at the
origin; K( 6,;€) is the contribution to K(X)/K(0) made by
those trajectories emanating from the origin at angles from
6 = 7 to 6 = 6,. The fractional contribution v of this range
of “initial angles” compared to K(X)/K(0) is from Egs.
(5.64) and (5.65) given by

v =cos(8,/2)1,[(8€)? cos (8,/2)1/1,[ (8¢)'/?].
(5.66)

Of special interest is the value of v, where 6, = 7/2. In this
case v = 49.75% when € = 0.01 and v = 6% when € = 10.
This shows that when the applied field intensity is very small
the contribution to dissociation by the forward directions
(6, < m/2) is approximately equal to the contribution made
by the reverse angles (8,> 7/2) but that when the applied
field intensity is large, the contribution to dissociation made
by the forward directions is much greater than the contribu-
tion made by the reverse directions.

APPENDIX: INTEGRABILITY OF THE PFAFFIAN
DIFFERENTIAL EQUATION

We have from Egs. (5.38) and (5.39),
) )
ar® =L o r0var + L £2r00d0
ar a6

= P(f®r,0)dr + Q( f?,1,6)d6,
say, where

(AD)
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P(f?r0) = (— 1/ + 2e cos 8)f@
—D,(2¢)"2 expler(cos 8 — 1)]
X{[(2€)"2/27711,((8€) " cos (8 /2))

+ (e/r)cos(8 /2)1,((8€)"? cos (8 /2))}
(A2)
and
O(f?r6) = —2ersin 6f?
+D;2'26¥? expler(cos 6 — 1) ]
Xsin(6 /2)I,((8€)? cos(8/2)). (A3)
If we write Eq. (A1) as

P(fP,r,0)dr + Q(f®r,0)d6 —df® =0 (A4)
and define

Y&[PQ— 1], (AS5)
then Eq. (A4) is integrable if and only if

Y-curl Y =0, (A6)
(Ref. 8), i.e., if and only if

PRi0 B kB,

Direct substitution of the denvatlves of Pand Qin Eq. (A7)
confirms Eq. (A6). O
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